Электронная библиотека » Стивен Строгац » » онлайн чтение - страница 6


  • Текст добавлен: 16 июня 2017, 17:53


Автор книги: Стивен Строгац


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 6 (всего у книги 27 страниц) [доступный отрывок для чтения: 9 страниц]

Шрифт:
- 100% +

В отличие от Уинфри, Курамото не использовал компьютер, чтобы получить примерную оценку того, как такая система будет вести себя. Он полагался исключительно на свою интуицию. Это делает его догадку относительно конечного исхода еще более провидческой: Курамото предположил, что на достаточно продолжительном отрезке времени такая популяция всегда перейдет в как можно более устойчивое для себя состояние. Участники забега будут продолжать бежать, но их относительные позиции в группе не будут изменяться, поэтому параметр порядка будет оставаться неизменным. Более того, сама по себе группа выйдет на некую компромиссную скорость, определяемую членами этой группы. Курамото предположил, что эта скорость также должна оставаться постоянной.

В своем смелом математическом порыве Курамото стремился отыскать лишь такие решения своих уравнений, которые отвечали его интуитивной догадке. Если у какого-либо решения не было постоянного параметра порядка и постоянной скорости группы, такое решение не интересовало Курамото. Он знал, что ищет, а на все остальное он просто не обращал внимания. Это был весьма смелый способ рассуждений, поскольку, если бы истина находилась не там, куда двигался Курамото, руководствуясь своей интуицией, он никогда не отыскал бы эту истину. Другая опасность заключалась в том, что решений, которые интересовали Курамото, могло бы не существовать вообще. Тем не менее он предположил, что такие решения существуют, и поставил перед собой цель найти их. Чтобы обеспечить себе максимальный простор для маневра, Курамото не указал заранее, какими именно должны быть значения параметра порядка и скорости группы – они просто должны быть постоянными. Определить их значения было одной из составляющих задачи, которую ему предстояло решить.

Он пришел к выводу, что такая система может удовлетворять его требованиям двумя разными способами. Параметр порядка мог равняться нулю всегда; это означало, что соответствующая популяция абсолютно и навсегда дезорганизована. Никакая группа в ней никогда не сформируется. Вы будете просто видеть бегунов, движущихся с самыми разными скоростями, причем эти бегуны будут рассредоточены по всей длине беговой дорожки. Такая система будет полностью рассинхронизирована. Как ни странно, это «некогерентное состояние» представляет собой исход, возможность которого нельзя исключить никогда, сколь бы разными или одинаковыми по уровню своей физической подготовки ни были участники забега. Даже если уровень физической подготовки всех участников забега одинаков, некогерентность может сохраняться все время, если она установилась изначально. Интуиция подсказывает, что участники забега не ставят перед собой цели бежать общей группой и с одинаковой скоростью, поэтому «по умолчанию» каждый из них бежит с наиболее комфортной для себя скоростью, а популяция в целом остается такой же дезорганизованной, как и прежде. Другой возможностью является «частично синхронизированное» состояние, которое характеризуется наличием трех групп: синхронизированная группа бегунов, имеющих некий средний уровень физической готовности; более медленная, рассинхронизированная стайка «слабаков»; и более быстрая, также рассинхронизированная стайка сильных бегунов. В отличие от случая некогерентности, такое состояние возможно не всегда. Курамото пришел к выводу, что существование такого состояния возможно лишь до определенного порога разнородности. Если колоколообразная кривая оказывается шире, чем этот порог (а это означает, что состав клуба бегунов чересчур разнороден), такое частично синхронизированное состояние пропадает. Из этого можно сделать вывод, что в популяции светлячков или клеток мозга осцилляторы должны быть достаточно однородны; в противном случае синхронизация вообще невозможна.

Одним махом Курамото «реабилитировал» и Винера, и Уинфри. Частично синхронизированное состояние является именно тем, что имел в виду Винер, когда он моделировал альфа-ритм мозговых волн. Узкий пик в центре спектра Винера соответствует синхронизированной группе, а «хвосты» по обе стороны от пика соответствуют рассинхронизированным осцилляторам, слишком медленным или слишком быстрым, чтобы можно было обеспечить их синхронизм с основной группой. Фазовый переход, обнаруженный Уинфри, был, по сути, то же самое, что и порог, обнаруженный Курамото. Как поняли они оба, синхронизированная группа не может образоваться, если соответствующая популяция не окажется в достаточной степени однородной. Этот важный момент Винер упустил из виду.

Курамото не только заметил этот фазовый переход, но и смог вывести точную формулу для него. Кроме того, он смог точно вычислить степень упорядоченности группы как функцию ширины колоколообразной кривой. Его формулы показали, что крошечное синхронизированное ядро зарождается при достижении порога; при этом параметр порядка едва превышает 0. По мере снижения разнородности (когда осцилляторы становятся все более похожи друг на друга) к синхронизированной группе подключается все большее число членов популяции, а параметр порядка повышается. Наконец, при достижении нулевой ширины колоколообразной кривой (все осцилляторы идентичны) формула Курамото прогнозирует состояние идеального порядка, то есть состояние полного синхронизма.


Вскоре после того как в 1986 г. мне было присвоено звание доктора философии, я начал стажироваться у Нэнси Копелл, математика из Бостонского университета[44]44
  Введение в ее труды, посвященные связанным осцилляторам в применении к нейробиологии, можно найти в статье Nancy Kopell, “Toward a theory of modelling central pattern generators,” помещенной в сборнике Neural Control of Rhythmic Movement in Mrtebrates, под ред. A. H. Cohen, S. Rossignol, and S. Griilner (New York: John Wiley, 1988), pp. 369–413.


[Закрыть]
. В то время Нэнси Копелл была лишь в начале своей научной карьеры. Симпатичная и веселая женщина, тонкий мыслитель и прирожденный лектор, она уже в те годы получила признание как один из лучших в мире биологов-математиков. (В частности, они вместе со своим сотрудником Бардом Эрментраутом заявили о себе во весь голос, применив новые математические методы к изучению нервной системы.) Мы несколько раз встречались с ней на научных конференциях, и она показалась мне идеальным наставником для очередного этапа в моей научной карьере, когда моя цель заключалась в углублении своей подготовки в области математики. Когда я сказал ей, что хотел бы работать над какой-либо проблемой, касающейся популяций осцилляторов, Нэнси предложила мне ознакомиться с моделью Курамото.

Результаты, полученные Курамото, привели меня в восторг. Во время учебы в магистратуре нам говорили, что большие нелинейные системы – настоящие монстры, практически не поддающиеся решению. Однако Курамото удалось найти решение для одной из таких систем – и это решение было просто блестящим. Более того, это решение показалось мне не таким уж трудным для понимания. Знакомясь с ходом рассуждений Курамото, я чувствовал себя так, словно именно я сам прихожу к таким выводам. Нэнси лишь улыбалась, слушая, с каким энтузиазмом я рассказываю о своих впечатлениях от знакомства с моделью Курамото. Затем она, как бы невзначай, указала на слабые места в рассуждениях Курамото, на все его логические нестыковки. Одним словом, здесь было к чему приложить руку молодому и многообещающему математику – такому, например, как я. Моя задача заключалась в том, чтобы поместить интуитивные догадки Курамото на более солидный математический фундамент. В течение всего следующего года я работал вместе с Нэнси, пытаясь доказать теорему, которая, по нашему общему мнению, должна быть верна. Хотя мне так и не удалось решить эту задачу, модель, предложенная Курамото, все больше увлекала меня.

Даже по окончании стажировки у Нэнси Копелл я продолжал размышлять над этой моделью на протяжении нескольких последующих лет. Аспект, который интересовал меня больше всего, касался возникновения порядка из хаоса случайности. Каким образом системе, состоящей из миллионов частиц, удается спонтанно организовать себя? В этом вопросе заключалось нечто мистическое. В нем звучали даже религиозные нотки, напоминающие мне библейскую историю рождения земной тверди из чего-то совершенно бесформенного и аморфного или, как называли это состояние древние греки, из хаоса.

Возможно, мы никогда не поймем причины возникновения порядка в реальной Вселенной, но в воображаемой вселенной модели Курамото эта задача упрощается до такой степени, что мы можем найти для нее математическое решение. Здесь возникает вопрос генезиса: каким образом некогерентность порождает синхронизм? Однажды мне пришло в голову, что существует достаточно простой способ сформулировать этот вопрос в виде упражнения на решение дифференциальных уравнений: нужно лишь рассматривать некогерентность как состояние равновесия, а затем вычислить его устойчивость.

Чтобы прояснить математический смысл таких знакомых большинству из нас понятий, как равновесие и устойчивость, рассмотрим ряд примеров из окружающего нас мира. Допустим, мы поставили стакан с водой на кухонный стол. Секунду-другую вода будет «устаканиваться», а затем придет в состояние покоя. Теперь поверхность воды в стакане выглядит плоской и горизонтальной. Это и есть состояние равновесия – в том смысле, что в таком состоянии вода может пребывать сколь угодно долго. Такое равновесие можно также назвать устойчивым состоянием, поскольку, если немного встряхнуть стакан, а затем оставить его в покое, то поверхность воды в нем быстро вернется к исходному состоянию. Таким образом, равновесие означает, что ничего не меняется; устойчивость означает, что слабые возмущения быстро сходят на нет. Теперь рассмоторим другой пример. Возьмите карандаш и заточите его, затем поставьте этот карандаш вертикально на заточенный кончик грифеля и попытайтесь тщательно сбалансировать его. Отпустите карандаш. Если вам удалось идеально сбалансировать его, он продолжит стоять вертикально; таким образом, по определению, это состояние также является состоянием равновесия. Но совершенно очевидно, что такое состояние не является устойчивым: даже легчайшее дуновение ветерка опрокинет карандаш, после чего он уже не вернется самостоятельно в вертикальное положение.

Для модели Курамото некогерентность является состоянием равновесия: если осцилляторы каждой частоты распределены равномерно по окружности, то они навсегда останутся распределенными равномерно. Несмотря на то что осцилляторы бегут по окружности, их равномерное распределение остается неизменным. Нерешенная проблема заключалась в том, остается ли это состояние равновесия устойчивым, подобно воде в стакане, или неустойчивым, подобно карандашу, балансирующему на кончике своего грифеля. Если оно неустойчиво, это означало бы, что синхронизм мог бы возникнуть самопроизвольно и что бегуны со временем соберутся в группу.

Этот вопрос не давал покоя ученым в течение 15 лет. Сам Курамото публично признавался в этом. В своей книге он написал, что не знал, как подступиться к решению этой проблемы. Этот вопрос ставил ученых в тупик, поскольку существовало бесконечно большое множество способов некогерентной организации осцилляторов. Именно в этом заключалось главное препятствие. Некогерентность не была каким-то одним состоянием; это было семейство из бесконечно большого числа состояний.


На протяжении многих лет мне не удавалось добиться хоть какого-то успеха в решении проблемы устойчивости. Однажды поздно вечером, в момент, когда я уже был готов погрузиться в сон, у меня в голове мелькнула неожиданная идея: а что, если осцилляторы похожи не на бегунов, а на молекулы в жидкости! Точно так же как вода состоит из триллионов дискретных молекул, эта воображаемая «осцилляторная жидкость» должна состоять из триллионов дискретных точек, бегущих по окружности[45]45
  Steven H. Strogatz and Renato E. Mirolio, “Stability of incoherence in a population of coupled oscillators,” Journal of Statistical Physics 63 (1991), pp. 613–635.


[Закрыть]
.

Вообще говоря, родившийся в моей голове образ должен был выглядеть еще более сложно и необычно. Мне нужно было вообразить множество разных жидкостей, по одной для каждой частоты, представленной в соответствующем распределении частот. Точнее говоря, бесконечно большое число разных частот, подобно сочетанию цветов в радуге. Поэтому я нарисовал в своем воображении радугу цветных жидкостей, причем все они «завихряются» вокруг одной и той же окружности, никогда не смешиваясь между собой, поскольку осцилляторы никогда не меняют свою естественную частоту. Преимущество этой психоделической картины заключается в том, что некогерентность становится единственным состоянием. Таким образом, я имею дело уже не с бесконечно большим семейством, а лишь с одним состоянием однородной плотности, причем каждая цветная жидкость равномерно распределена по всей окружности.

Я буквально выскочил из постели, схватил карандаш и бумагу. В голове засыпающего человека чаще всего возникают всевозможные фантастические картины, но идея, родившаяся в моей голове, казалась мне очень близкой к тому, что имеет место в реальности. Первым делом мне нужно было адаптировать законы механики жидкостей к моей воображаемой «осцилляторной жидкости». Затем я составил уравнения для создания стандартного теста на устойчивость: вывести систему из равновесия, решить уравнения для соответствующих возмущений (эти уравнения имеют решение, поскольку они линейны, даже если исходная система не является линейной) и проверить, нарастают ли эти возмущения или, наоборот, сходят на нет.

Составленные мною уравнения показали, что ответ зависит от того, насколько подобны между собой осцилляторы. Я нашел, что в случае, если они идентичны или почти идентичны, возмущения нарастают по экспоненциальному закону по мере того, как осцилляторы сближаются между собой по фазе, образуя зачаточную форму синхронизма. Затем родилась формула, описывающая скорость экспоненциального роста (аналогичная процентной ставке, определяющей скорость приращения суммы на вашем банковском счете). Никто до меня такой формулы не смог предложить. Это был точный прогноз, правильный или неправильный – другое дело. Наутро мне предстояло проверить свои догадки на компьютере.

У меня вспотели ладони, когда я, строка за строкой, проводил свои вычисления. Все работало! Я наблюдал рождение порядка. Затем я ненадолго остановился. Существует ли интервал критических частот, в котором скорость нарастания падает до нуля, а некогерентность уже не является неустойчивой? Да, такое критическое состояние возникает при достижении такого же порога, который был обнаружен Курамото. Это выглядело весьма убедительно. Итак, я нашел новый способ вычисления фазового перехода – точки замерзания, при которой впервые наступает синхронизация.

Через несколько часов после восхода солнца я позвонил своему сотруднику Ренни Миролло, чтобы соотщить ему приятную новость. Я начал описывать свои соображения относительно «осцилляторной жидкости», но он быстро прервал меня: «К чему вся эта софистика?» Будучи «чистым» математиком, он никогда не изучал механику жидкостей и доверял лишь уравнениям, не прибегая к помощи воображения. Мои вычисления казались ему весьма сомнительными. Но я был уверен в своей правоте. Несколько позже в тот же день я вернулся к себе в офис и убедился в том, что предсказанные мною скорости нарастания идеально совпадали с результатами компьютерного моделирования. Ренни быстро заключил мир с «осцилляторной жидкостью».

Вместе с Ренни мы решили вопрос устойчивости некогерентного состояния по другую сторону порога, где интервал частот достаточно большой, аналогично температурам выше точки замерзания. Мы ожидали, что некогерентность должна теперь стать устойчивой. Но вместо этого уравнения указывали на то, что она «нейтрально устойчива» – очень редкий, пограничный случай, когда переходные возмущения ни нарастают, ни затухают.

Вообразите, например, маленький шарик, который находится на дне чашки с полусферической формой внутренней поверхности. Если такой шарик переместить в любую другую точку на внутренней поверхности чашки, он скатится обратно на дно, которое является точкой устойчивого равновесия. Теперь допустим, что форму внутренней поверхности чашки можно регулировать: с помощью некоего рычажка вы можете постепенно делать ее более плоской (то есть придавать ей форму с меньшей кривизной). Дно по-прежнему остается устойчивым, но все же менее, чем прежде: шарик, перемещенный в любую другую точку на внутренней поверхности чашки, медленнее скатывается в точку устойчивого равновесия. По мере того как вы все больше поворачиваете рычажок регулирования кривизны, форма внутренней поверхности чашки становится все более плоской. Когда рычажок регулирования достигнет некого критического деления, внутренняя поверхность чашки станет совершенно плоской и горизонтальной, а в результате дальнейшего изменения положения рычажка она станет похожа на выпуклую контактную линзу (слабо выраженная куполообразная форма), превратившись в конечном счете в выпуклую полусферу. В ходе такого постепенного превращения вогнутое дно чашки превратилось в куполообразную выпуклость. Теперь, если шарик слегка подтолкнуть, он скатится на край дна: состояние равновесия оказалось неустойчивым. Наш регулировочный рычажок оказался на критической границе между устойчивостью и неустойчивостью, когда контактная линза стала совершенно плоской. В этом – и только в этом – положении регулировочного рычажка равновесие нельзя назвать ни устойчивым, ни неустойчивым. Шарик находится в состоянии неопределенности; можно сказать по-другому: это состояние является нейтрально устойчивым. Если шарик сместить с этого положения нейтрального равновесия, он не вернется в исходное положение, но и не скатится в какое-то другое положение.

Как следует из этой метафоры, нейтральная устойчивость обычно имеет место лишь в переходных состояниях, при неких критических значениях параметров системы («рычажков», которые управляют ее свойствами). Но модель Курамото нарушала это правило. Ее некогерентное состояние упрямо оставалось нейтрально устойчивым, даже когда мы расширяли колоколообразную кривую, чтобы сделать популяцию более разнородной. Изменение положения нашего «рычажка» в достаточно широком диапазоне значений параметров не оказывало никакого влияния.

Мы обсудили этот необычный результат с Полом Мэтьюзом, преподавателем прикладной математики в Массачусетском технологическом институте. Пол провел ряд сеансов компьютерного моделирования, результаты которых, однако, повергли нас в еще большее недоумение. Он протестировал устойчивость другим способом, вычислив поведение параметра порядка на достаточно продолжительном отрезке времени, и обнаружил, что значение этого параметра снижается по экспоненциальному закону – что было, вообще говоря, характерным признаком устойчивости, а не нейтральной устойчивости. Теперь мы оказались по-настоящему озадаченны: некогерентность была нейтральной по одному показателю, но устойчивой по другому показателю.

Спустя несколько недель Пол читал лекцию у себя на родине, в Англии, в университете Уорвика. В ходе этой лекции он описал странные результаты, полученные нами[46]46
  Steven H. Strogatz, Renato E. Mirollo, and Paul C. Matthews, “Coupled nonlinear oscillators below the synchronization threshold: Relaxation by generalized Landau damping,” Physical Review Letters 68 (1992), pp. 2730–2733.


[Закрыть]
. Один из присутствующих на этой лекции, профессор Джордж Роуландз, сказал Полу, что на самом деле в этом результате нет ничего странного: это явление называется демпфированием Ландау[47]47
  Lev Landau, “On the vibrations of the electronic plasma,” Journal of Physics USSR 10 (1946), pp. 25–34. (То же на русском языке: Л. Ландау, О колебаниях электронной плазмы // ЖЭТФ 16, 574 (1946).) Элементарное введение в демпфирование Ландау можно найти в статье David Sagan, “On the physics of Landau damping,” American Journal of Physics 62 (1994), pp. 450–462.


[Закрыть]
и стало известно физикам, изучающим свойства плазмы, еще около 45 лет назад.

О свойствах плазмы нам было известно не так уж много, но все мы, конечно же, слышали о Ландау. Лев Ландау был одним из выдающихся физиков XX столетия. В эпоху узкой специализации он хорошо разбирался во всех отраслях теоретической физики, начиная с субатомных частиц и заканчивая турбулентностью в жидкостях. Он был яркой личностью, эксцентричным и вспыльчивым гением, карьера которого завершилась 7 января 1962 г., когда он попал в ужасную автокатастрофу под Москвой[48]48
  Isaac Asimov, Asimov’s Biographical Encyclopedia of Science and Technology (Garden City, New York: Doubleday, 1972), p. 723.


[Закрыть]
. Его тело было раздавлено, кости переломаны, многие органы серьезно повреждены. Он впал в состояние комы. В течение 100 суток его электроэнцефалограмма представляла собой практически горизонтальную линию. Врачи подключили его к аппарату для искусственного дыхания и прилагали героические усилия, пытаясь спасти ему жизнь. Четырежды констатировали его смерть, но каждый раз, буквально чудом, он возвращался к жизни. Позже в том же году он был награжден Нобелевской премией за открытия, сделанные им десятью годами ранее (он использовал квантовую теорию, чтобы объяснить необычное поведение сверхтекучего гелия при температурах, близких к абсолютному нулю). В октябре 1964 г. его выписали из больницы, однако ему так и не удалось выздороветь полностью. Он умер через несколько лет.

За свою жизнь Ландау совершил немало открытий. В частности, в конце 1940-х годов он предсказал необычные свойства плазмы. Плазму иногда называют четвертым состоянием материи, возникающим при очень высоких температурах, намного превышающих температуры, при которых материя пребывает в твердом, жидком и газообразном состояниях. Такие температуры действуют на Солнце, а также в реакторах термоядерного синтеза, где обычные атомы превращаются в ионизированный газ, состоящий из примерно равных количеств электронов и положительно заряженных ионов. Парадоксальное явление, которое в настоящее время носит имя Ландау, происходит, когда электростатические волны проходят через высоко разреженную плазму. Ландау показал, что эти волны могут затухать даже в отсутствие столкновений между частицами в плазме, а также в отсутствие какого-либо трения или рассеяния. Джордж Роуландз понял, что демпфирование Ландау описывается, по сути, тем же математическим механизмом, что и сползание в некогерентность в модели Курамото: электроны, содержащиеся в плазме, играют роль осцилляторов, а величина колебаний в генерируемом ими электрическом поле играет роль параметра порядка.

На первый взгляд кажется удивительным, что между неистовым миром сверхгорячей плазмы на Солнце, где атомы регулярно теряют свои электроны, и спокойным миром биологических осцилляторов, в котором светлячки тихо мерцают, расположившись на берегах реки, может существовать какая-то связь. Действующие лица разные, но абстрактные картины взаимодействия между ними, по сути, одинаковы. Когда эта связь была выявлена, нам удалось перенести методы Ландау на модель Курамото, раскрыв таким образом тайну, которая многие годы не давала покоя ученым. Биологии также удалось внести вклад в развитие физики. Джон Дэвид Кроуфорд, физик из Питтсбургского университета, смог применить результаты, полученные при исследовании биологического синхронизма, для решения давней проблемы, касающейся поведения плазмы[49]49
  Джон Дэвид Кроуфорд – блестящий ученый, занимающийся прикладной математикой. Причиной его ранней смерти стало заболевание раком. Составить некоторое представление о его выдающихся работах по связанным осцилляторам и плазме можно, ознакомившись, например, с такими статьями: John David Crawford, “Amplitude expansions for instabilities in populations of globally-coupled oscillators,” Journal of Statistical Physics 74 (1994), pp. 1047–1084, и “Amplitude equations for electrostatic waves: Universal singular behavior in the limit of weak instability,” Physics of Plasmas 2 (1995), pp. 97–128.


[Закрыть]
.


Теории взаимной синхронизации биологических осцилляторов оказались правильными с математической точки зрения. Они пролили свет на один из самых фундаментальных механизмов самоорганизации. Однако предстояло ответить на более сложный вопрос: насколько точно эти модели описывают реальность. Позволяют ли они предсказывать явления, которые согласуются с данными, описывающими реальных светлячков, клетки сердца или нейроны[50]50
  Недавно было объявлено о первом экспериментальном тестировании модели Курамото в системе связанных химических осцилляторов; см. Istvan Z. Kiss, Yumei Zhai, and John L. Hudson, “Emerging coherence in a population of chemical oscillators,” Science 296 (2002), pp. 1676–1678. Хадсон и его коллеги подтвердили существование фазового перехода, предсказанного Уинфри и Курамото: синхронизация внезапно наступала, как только сила связи между осцилляторами становилась выше определенного порога. Они также обнаружили, что параметр порядка (показатель степени синхронизации осцилляторов) возрастает по мере увеличения силы связи между осцилляторами, причем Курамото точно предсказал математическую зависимость между параметром порядка и силой связи. Однако о столь же точном тестировании применительно к биологическим осцилляторам еще не сообщалось.


[Закрыть]
?

Этого мы не знаем. До настоящего времени никакие тесты в этом отношении не проводились. Соответствующие эксперименты выполнить было бы очень непросто, поскольку они требуют измерений на уровне отдельно взятых животных или клеток, в частности измерений их естественных частот и их реакций на внешние воздействия разной силы и в определенные моменты времени, а также на уровне сети в целом, чтобы количественно оценить взаимодействия между осцилляторами и результирующее коллективное поведение. Особенно трудно измерить взаимодействия между парами осцилляторов. Если эти пары осцилляторов оставить в сети, то на результатах наших измерений может сказаться влияние со стороны других осцилляторов; если же эти пары осцилляторов изъять из сети, хирургическим или иным способом, то в процессе такого изъятия могут пострадать окружающие осцилляторы и соединения между ними. Кроме того, соединения внутри сетей, как правило, остаются неизвестными за исключением нескольких малых систем нейронов. Не зная, кто с кем взаимодействует, невозможно выполнить количественное тестирование моделей. Например, если на дереве расположилось множество светлячков, то вам пришлось бы точно определить, какие из них кого видят, измерить естественные частоты мерцания каждого из них и, наконец, измерить функции чувствительности и влияния каждого насекомого. Никто не пытался выполнить такой эксперимент даже для двух светлячков, не говоря уж о том, чтобы выполнить его для большой совокупности светлячков.

Тест, носящий более качественный характер, следовало бы выполнить, чтобы подтвердить или опровергнуть существование фазового перехода. Прогноз заключается в том, что степень синхронизации должна повышаться резко, а не постепенно, при превышении определенного (критического) значения либо силы связи, либо разброса частот. В этом случае проведение эксперимента также оказалось бы очень непростым делом. Чтобы изменить силу связи между светлячками, вы могли бы поместить их в затемненное помещение, а затем регулировать уровень освещенности в этом помещении с помощью реостата, чтобы насекомые могли лучше или хуже видеть друг друга. В этом нет ничего сложного, но измерить одновременно картины мерцаний у всех насекомых было бы чрезвычайно сложно. Но без такой информации мы не могли бы определить степень синхронизации и, следовательно, не могли бы определить, произошел ли переход. Аналогичный эксперимент было бы легче выполнить с нейронами, но в этом случае вам пришлось бы одновременно фиксировать сигналы от каждой клетки (что, с технической точки зрения, было бы чрезвычайно трудно); параллельно с этим вам пришлось бы дозированно вводить лекарственные препараты для постепенного устранения связей между ними и следить за тем, чтобы эти препараты не повлияли на какие-либо другие свойства этих клеток, помимо их взаимной связи. Пока еще никто не пытался провести столь сложный эксперимент.

Или можно было бы попытаться воспроизвести винеровский спектр частот, с его узким центральным пиком и «провалами» по обе стороны от пика. Это было важнейшим свидетельством в пользу его теории подтягивания частот, но, учитывая его центральную роль, мне всегда казалось странным, что я никогда не слышал о попытках такого воспроизведения. И еще кое-что казалось мне подозрительным. Если Винеру и его сотрудникам действительно удалось найти важнейшее доказательство – спектр с двойным провалом, который, по мнению Винера, является свидетельством синхронизации, – то почему он не предоставил соответствующие данные, которые говорили бы сами за себя? В своей книге «Нелинейные задачи в теории случайных процессов», опубликованной в 1958 г.[51]51
  В русском переводе книга вышла в 1961 году. Прим. ред.


[Закрыть]
, он предложил схематическую картину спектра, которую мы видели ранее, с ее идеально симметричным пиком, возвышающимся меж двух провалов, идеально симметрично расположенных по обе стороны от пика, причем центр этой идеально симметричной картины соответствует в точности 10 циклам в секунду. Это не должно было никого ввести в заблуждение. На осях предложенной им диаграммы даже не было разметки. Впоследствии – в книге «Управление и связь в животном и машине. Новые главы кибернетики», изданной в 1961 г.[52]52
  В русском переводе книга вышла в 1963 году. Прим. ред.


[Закрыть]
, – Винер наконец-то представил кое-какие реальные данные (предположительно, это был самый убедительный пример, имевшийся в его распоряжении), однако на рисунках отсутствовал его любимый «провал».

Несколько лет тому назад я спросил у Пола Раппа, биолога-математика и эксперта по мозговым волнам, не приходилось ли ему встречать такой спектр в своих собственных измерениях. Нет, не приходилось, но если бы такой спектр действительно существовал, то обнаружить его было бы не так уж сложно. Он провел ряд новых экспериментов, целенаправленно пытаясь обнаружить такой эффект, но даже при использовании новейших технологий его попытки не принесли желаемого результата. Неужели Винер пытался ввести нас в заблуждение? Неужели столь любимый им «провал» был лишь плодом его богатого воображения? Я не хотел верить этому, поэтому лично для меня было огромным облегчением узнать подоплеку того, что в действительности случилось в 1958 г.


Во время посещения мною конференции по прикладной математике в июле 2001 г. мне удалось поговорить с Джеком Кауэном, биологом-теоретиком, который долгое время работал над математическими моделями мозга. Рассчитывая на то, что Джек Кауэн располагает обширной информацией об альфа-ритмах, я спросил у него, знаком ли он со старой теорией Винера. Разумеется, ответил он с улыбкой. В то самое время он тоже работал в Массачусетском технологическом институте. Однажды у него состоялась продолжительная беседа с Винером, во время которой тот прочитал ему целую лекцию об интересующем меня спектре. «Норберту вообще нравились люди, готовые слушать его долгие рассуждения».

Джек Кауэн прибыл в МТИ осенью 1958 г. и был включен в группу аспирантов, работающих под руководством Уолтера Розенблита. Примерно в то же время Маргарет Фриман, работавшая исследователем в группе Розенблита, выполнила первые измерения спектра. Именно она открыла этот пресловутый пик и двойной «провал», которые привели в восторг Винера. Несмотря на то что это были лишь предварительные результаты, Винер раструбил о них в своей книге, опубликованной в 1958 г.

К сожалению, результаты, полученные Фриман, оказались неправильными. «Другие исследователи пытались воспроизвести эти результаты, – рассказал мне Кауэн, – а когда их попытки завершились неудачей, все теоретические построения, базировавшиеся на этих результатах, оказались несостоятельными». Фриман допустила ошибку в своих вычислениях. Когда она повторила свои вычисления, двойной «провал» исчез. Впрочем, спустя три года, когда была опубликована книга «Управление и связь в животном и машине. Новые главы кибернетики», у Винера появился шанс исправить эту досадную ошибку. На этот раз он решил продемонстрировать реальные данные. Вот как он описывает этот спектр:

Когда мы анализировали эту кривую, мы обнаружили ярко выраженный провал мощности вблизи частоты, составляющей 9,05 цикла в секунду. Точка, в которой наблюдается существенное «проседание» спектра, очень резкая и характеризует объективное количественное значение, которое можно проверить с гораздо большей точностью, чем любую количественную величину, встречавшуюся до настоящего времени в электроэнцефалографии[53]53
  Cybernetics, pp. 190–191.


[Закрыть]
.

В приведенной цитате голос Винера звучит очень уверенно. Это голос гения, который решил поучить уму-разуму специалистов по электроэнцефалографии. Но затем его речь начинает звучать гораздо осторожнее, а его высказывания носят сослагательный характер.

У нас имеются некоторые свидетельства того, что в других кривых, которые мы получили, но надежность которых вызывает определенные сомнения, это внезапное падение мощности сопровождается весьма кратковременным внезапным подъемом, в результате чего между ними наблюдается провал кривой. Так это или нет, у нас есть все основания утверждать, что мощность в пике соответствует оттягиванию мощности от участка, на котором наблюдается проседание кривой.

Когда я впервые прочитал это десять лет тому назад, я был поражен невнятностью этих высказываний. Это было так непохоже на Винера, обычно предпочитающего смелые и безапелляционные формулировки. Но когда я читаю этот отрывок сейчас, он берет меня за душу. Я будто слышу голос человека, переживающего мучительную борьбу с самим собой, – ученого, цепляющегося за идею, которая, по его твердому убеждению, должна быть правильной, и вместе с тем пытающегося найти в себе силы быть интеллектуально честным. Несмотря на то что «провал» нигде не обнаруживается, он призывает нас верить, что этот «провал» обязательно обнаружится в ходе других исследований, но он не позволяет себе «давить» на нас слишком сильно: он допускает, что результаты этих других исследований могут «вызывать определенные сомнения», и говорит, что существуют лишь «некоторые свидетельства» наличия «провала» в кривых. Есть этот «провал» или его нет, последнее предложение показывает, что Винер вовсе не был намерен отказываться от представления о том, что осцилляторы синхронизируются путем подтягивания частот друг друга. Он был уверен, что такой механизм синхронизации является универсальным. Этот механизм был обязан играть важную роль. Винер не желал пасть жертвой того, что Т. Г. Хаксли называл «великой трагедией науки – уничтожения прекрасной теории каким-нибудь отдельным безобразным фактом».


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации