Текст книги "От микроорганизмов до мегаполисов. Поиск компромисса между прогрессом и будущим планеты"
Автор книги: Вацлав Смил
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 6 (всего у книги 55 страниц) [доступный отрывок для чтения: 18 страниц]
Наблюдаемый рост в высоту подсолнечника (Helianthus) в период между посадкой и 84-м днем очень близко соответствует логистической функции с четырьмя параметрами, где точка перегиба приходится на 37-й день (рис. 1.13).
В 1920 году логистическая функция снова появилась в демографии, когда Реймонд Перл и Лоуэлл Рид, профессора Университета Джонса Хопкинса, опубликовали работу, посвященную росту населения США (Pearl and Reed, 1920), но только два года спустя они кратко признали первенство Ферхюльста (Pearl and Reed, 1922). Во многом как и Ферхюльст в середине 1840-х годов, Перл и Рид использовали логистическую функцию, чтобы вычислить максимальный размер населения США, который сможет прокормить сельское хозяйство страны (Pearl and Reed, 1920, 285):
Верхняя асимптота… имеет значение приблизительно 197 274 000. Это означает, что… максимальное население, которое будут иметь континентальные США при текущем ограничении площади, будет приблизительно вдвое выше нынешнего. Мы боимся, что некоторые осудят всю теорию, потому что это число недостаточно внушительно. Рассчитать население с помощью геометрической прогрессии (и большинство авторов работ на тему населения склоняются к этому) или с помощью параболы или другой чисто эмпирической кривой и прийти к таким изумляющим цифрам настолько легко, что спокойно осмыслить реальную вероятность этого будет крайне сложно.
Рис. 1.13. Логистический рост (точка перегиба на 37,1-й день, асимптота на уровне 292,9 см) растения подсолнечника, изображенный Ридом и Холландом (Reed and Holland, 1919)
Как в случае с максимальными цифрами населения Ферхюльста для Бельгии и Франции, Перл и Рид также недооценили приемлемый максимум населения США. К 2018 году оно превысило 325 млн, что почти на 65 % больше их расчетов максимальной предельной нагрузки (рис. 1.14) – даже с учетом того, что 40 % урожая кукурузы, крупнейшей сельскохозяйственной культуры США, перерабатывают в этиловый спирт и страна является крупнейшим в мире экспортером продуктов питания. Но Перл не сомневался в прогностической силе своего уравнения: в 1924 году он «скромно» сравнил кривую с законом движения планет Кеплера и законом о газах Бойля (Pearl, 1924, 585).
Рис. 1.14. Прогноз роста населения США на основе логистической кривой (точка перегиба в 1919 году, асимптота на уровне 197,3 млн), согласованный с переписью населения, проводившейся раз в десять лет в период между 1790 и 1910 годами (Pearl and Reed, 1920)
Применение функции логистического роста начало распространяться. Робертсон использовал информацию о росте молочных коров, домашней птицы, лягушек, однолетних растений и фруктовых деревьев в своем объемном исследовании под названием The Chemical Basis of Growth and Senescence («Химические основы роста и старения») (Robertson, 1923). Год спустя Спиллман и Ланг (Spillman and Lang, 1924) подробно изложили Закон убывающего плодородия, приведя множество количественных описаний ограниченных темпов роста. Рид и Берксон (Reed and Berkson, 1929) применили логистическую функцию к нескольким бимолекулярным реакциям и протеолизу гелеобразования с помощью панкреатина, а Блисс (Bliss, 1935) использовал ее для расчета кривой зависимости смертности вредителей от дозировки пестицидов. И в течение двадцати лет до Второй мировой войны Перл и его коллеги применяли логистическую кривую «к популяциям почти всех живых существ от плодовых мушек до населения французских колоний в Северной Африке, а также росту дынь канталуп» (Cramer, 2003, 6).
В 1945 году Харт опубликовал всестороннее исследование логистических социальных тенденций со множеством примеров, поделенных на серии, отражающие рост конкретных социальных единиц (населения, городов, урожая, производства и потребления промышленных продуктов, выдачи патентов на изобретения, длины железных дорог), распространение конкретных культурных явлений (охват детей школьным образованием, владение автомобилями, социальные и гражданские движения) и так называемые индексы социальной эффективности, включая продолжительность жизни, рекорды скорости и доход на душу населения (Hart, 1945). В течение двадцати лет после окончания Второй мировой войны наблюдался быстрый рост населения и экономический рост, вызванный расширением технических возможностей. В тот период преобладали многочисленные примеры экспоненциального роста, но с ростом экологического сознания в конце 1960-х и 1970-х логистическая функция снова получила популярность. Неудивительно, что существует множество публикаций о том, как описать данные с помощью логистической кривой (Cavallini, 1993; Meyer et al., 1999; Arnold, 2002; Kahm et al., 2010; Conder, 2016).
Существует еще одна довольно распространенная модель роста – кривая Гомпертца, выведенная еще раньше функции Ферхюльста. Изначально модель была предложена в 1825 году Бенджамином Гомпертцем (1779–1865), британским математиком, для оценки смертности людей (Gompertz, 1825). В ней, как и в логистической функции, имеются три константы, асимптота и фиксированная степень асимметрии, но, как уже отмечалось, логистическая функция имеет точку перегиба точно посередине между двумя асимптотами, и ее кривая радиально симметрична по отношению к этой точке перегиба. В отличие от нее функция Гомпертца дает асимметричную кривую с точкой перегиба на уровне 36,78 (е–1) асимптотического максимума и, следовательно, асимметрична (Tjørve and Tjørve, 2017). Эта кривая подходит лучше, чем логистическая, для моделирования процессов сигмоидального роста, которые замедляются после достижения приблизительно трети от своего максимального значения (Vieira and Hoffmann, 1977).
Более века спустя Винзор (Winsor, 1932, 1) отмечал, что «кривая Гомпертца долго интересовала только статистиков страховых учреждений. Однако в последнее время она используется различными авторами как кривая роста для оценки как биологических, так и экономических феноменов». Но он называл только три области применения: рост веса скота (но только после того как животные достигли около 70 % своей зрелой массы), рост размера раковины двустворчатого моллюска и рост гигантского Тихоокеанского моллюска, – делая вывод, что в силу практически аналогичных свойств ни логистическая кривая, ни кривая Гомпертца не имеют «значительного преимущества друг перед другом в отношении количества явлений, рост которых можно было бы описать с их помощью» (Winsor, 1932, 7).
Но это было до того, как во многих исследованиях было обнаружено, что более старая функция во многих случаях является предпочтительной. К природным явлениям, которые лучше всего описывает функция Гомпертца, относятся такие фундаментальные биохимические процессы, как рост нормальных и злокачественных клеток, кинетика ферментативных реакций и интенсивность фотосинтеза как функция концентрации CO2 в атмосфере (Waliszewski and Konarski, 2005). Когда логистическое уравнение стало чаще использоваться для изучения роста организмов, многие исследователи отмечали ограничения функции при воспроизведении наблюдаемого роста животных и растений и ее недостаточную надежность при прогнозировании прироста на основе прошлых показателей. Нгуимке (Nguimkeu, 2014) предлагает простой дифференциальный тест для выбора между моделями Гомпертца и логистического роста.
Основным недостатком кривой логистического роста является ее симметрия: она напоминает колебания маятника, набирающего максимальную скорость в середине траектории. Точка перегиба логистической кривой приходится на 50 % максимального значения, в результате чего схема роста дает симметричную колоколообразную кривую (кривую Гаусса), которая будет рассмотрена в следующем разделе. Многие организмы демонстрируют более быстрые темпы роста на начальных стадиях, и кривые их роста достигают точки перегиба гораздо раньше, чем асимптотического максимума. Аналогично многие процессы распространения (будь то внедрение новых промышленных методов или распространение владения бытовой техникой) следуют асимметричной S-образной траектории.
И поскольку степень асимметрии также зафиксирована в асимметрической функции Гомпертца, многие попытки избавиться от этих недостатков ведут к формулированию нескольких дополнительных моделей роста логистического типа. Цуларис (Tsoularis, 2001) рассмотрел эти производные модели – главные из которых были представлены Берталанффи (von Bertalanffy, 1938), Ричардсом (Richards, 1959), Блумбергом (Blumberg, 1968), Тернером и др. (Turner et al., 1976) и Берчем (Birch, 1999), – а также предложил собственную обобщенную логистическую функцию, из которой можно получить все эти модификации. Они не систематизированы в зависимости от практической ценности: все эти функции принадлежат к одной семье (являясь вариациями на тему S-образного роста), и ни одна из них не превосходит другие сигмоидальные кривые с тремя постоянными по степени пригодности.
Фон Берталанффи (von Bertalanffy, 1938) построил уравнение роста на аллометрическом (неравномерном) соотношении между скоростью обмена веществ и массой тела животного, где масса меняется в связи с разницей анаболических и катаболических процессов. Максимальный темп роста функции (точка перегиба) находится на уровне около 30 % (8/27) асимптотического значения и применяется при изучении роста и продукции лесного хозяйства, но особенно в гидробиологии, для коммерческих видов рыбы, таких как треска (Shackell et al., 1997), тунец (Hampton, 1991), а также акул (Cailliet et al., 2006) и даже белых медведей (Kingsley, 1979). Однако Рофф (Roff, 1980, 127) доказывал, что данная функция «в лучшем случае пригодна для отдельных случаев, а в худшем – лишена смысла» и от нее следует отказаться, так как она исчерпала себя в исследованиях рыболовного промысла. Дей и Тейлор (Day and Taylor, 1997) также пришли к выводу, что уравнение фон Берталанффи не следует использовать для моделирования возраста и размера организмов в период зрелости.
Ричардс (Richards, 1959) модифицировал уравнение фон Берталанффи, чтобы оно соответствовало эмпирическим данным о росте растений. Функция, также известная как модель роста Чапмана – Ричардса, имеет на один параметр больше, чем логистическая кривая (необходимый для асимметрии), и широко используется в исследованиях лесного хозяйства, а также для моделирования роста млекопитающих и птиц и для сравнения влияния ухода на рост растений, но имеются и возражения против ее использования (Birch, 1999). Ее точка перегиба колеблется на уровне от менее 40 % до почти 50 % асимптотического значения. Тернер и др. (Turner et al., 1976) называл модифицированное ими уравнение Ферхюльста универсальной функцией роста. Гиперлогистическая функция Блумберга (Blumberg, 1968) также является модификацией уравнения Ферхюльста, предназначенной для моделирования роста размеров органов, а также динамики населения.
И распределение Вейбулла, изначально разработанное для изучения вероятности отказа вследствие изменения свойств материала (Weibull, 1951) и используемое в тестах на надежность в инжиниринге, легко модифицируется для получения гибкой функции роста, которая может дать самые разнообразные сигмоидальные функции роста. Оно используется в лесном хозяйстве для моделирования высоты и объемного прироста отдельных видов деревьев, а также объема и возраста полиморфических лесных насаждений (Yang et al., 1978; Buan and Wang, 1995; Gómez-García et al., 2013). Двумя последними пополнениями по-прежнему растущего семейства сигмоидальных кривых являются новое уравнение роста, разработанное Берчем (Birch, 1999), и уже упоминавшаяся обобщенная логистическая функция Цулариса (Tsoularis, 2001). Берч модифицировал уравнение Ричардса, чтобы оно лучше подходило для универсальных имитационных моделей, особенно для представления роста различных видов растений с отличающимися вегетационными периодами, тогда как Цуларис (Tsoularis, 2001) предложил уравнение обобщенного логистического роста, включающее все прежде использовавшиеся функции в качестве особых случаев.
Логистические кривые в прогнозировании
Логистические кривые являются любимым инструментом специалистов по прогнозам благодаря их способности отражать, часто очень точно, траектории роста как живых организмов, так и антропогенных артефактов и процессов. Конечно, с их помощью можно сделать ценные открытия, но в то же время я должен предостеречь от излишнего энтузиазма при использовании логистических кривых в качестве инструментов прогнозирования отказоустойчивости. В своем вердикте Ноэль Бонней (Noel Bonneuil, 2005, 267) вспоминал «золотой век логистической кривой, когда Перл с энтузиазмом применял одну и ту же функцию к любому случаю роста, от длины хвостов крыс до данных переписи населения США» и развенчал заявления об удивительно точном применении этой модели к историческим данным, назвав их «сомнительным триумфом: большинство процессов ограниченного роста действительно напоминают логистические, но это мало способствует пониманию исторических процессов… Подбор кривых слишком часто вводит в заблуждение по двум направлениям: его не только не следует использовать в качестве эмпирического доказательства, но он может скрывать важные детали».
Очевидно, что применение этих кривых для долгосрочного прогнозирования не гарантирует успеха. Их использование может давать новые идеи и обеспечивать представление о пределах, и в этой книге я представлю примеры из прошлого, когда прогнозы оказывались очень точными и могли служить надежным признаком ближнесрочного роста. Но в других случаях даже высокоточное логистическое соответствие прошлых траекторий приводило к обманчивым выводам о предстоящем росте, а ошибки прогнозов превосходили ожидаемые и приемлемые ±10–25 % отклонений за период в 10–20 лет.
В один из первых обзоров логистических трендов, опубликованных в конце Второй мировой войны, Харт (Hart, 1945) включил данные о скорости самолетов в период между 1903 и 1938 годами: эта траектория очень близко соответствовала логистической кривой с точкой перегиба в 1932 году и максимальной скоростью около 350 км/ч, но за десять лет после этого технический прогресс дважды опроверг его вычисления. Во-первых, рост мощности поршневых двигателей (на которых работали самолеты в военное время) достиг практических пределов, и вскоре их стали применять в пассажирских авиаперевозках. Самолет Lockheed L–1049 Super Constellation, впервые поднявшийся в воздух в 1951 году, имел крейсерскую скорость 489 км/ч и максимальную скорость 531 км/ч, что примерно на 50 % выше предсказанной логистическим потолком Харта.
Рис. 1.15. Самолет, поднявший потолок логистического роста крейсерской скорости: Boeing 707. Изображение из wikimedia
Super Constellation стал самым быстрым трансатлантическим авиалайнером, но его господство было недолгим. Злополучный британский самолет de Havilland Comet совершил свой первый полет в январе 1951 года и был снят с производства в 1954 году, а первый рейс реактивного Boeing 707, принадлежавшего американской компании Pan Am, состоялся в октябре 1958 года (Smil, 2010b; рис. 1.15). Турбореактивные двигатели, первые газотурбинные двигатели, увеличили крейсерскую скорость пассажирских самолетов (начавших летать в 1919 году) более чем вдвое по сравнению с периодом до Второй мировой войны и создали новую логистическую кривую с точкой перегиба в 1945 году и асимптотой в районе 900 км/ч (рис. 1.16). Более мощные и эффективные турбореактивные двухконтурные двигатели впервые были представлены в 1960-х годах и позволили увеличить размер самолетов и снизить потребление топлива, но их максимальная крейсерская скорость практически не изменилась (Smil, 2010b).
Рис. 1.16. Логистическая кривая, отражающая рост крейсерской скорости пассажирских авиалайнеров в период с 1919 по 2039 год (точка перегиба в 1945 году, асимптотическая крейсерская скорость 930,8 км/ч). Построена на основе данных о скоростях конкретных самолетов, начиная с de Havilland DH–16 компании KLM в 1919 году и заканчивая Boeing 787 в 2009 году
В 1970-е годы казалось, что траектория скорости самолетов может еще вырасти за счет сверхзвуковых самолетов, но Concorde (крейсерская скорость которого составила 2150 км/ч, что в 2,4 раза больше, чем у широкофюзеляжных лайнеров) оставался дорогостоящим исключением, пока в 2003 году от его производства не отказались (Glancey, 2016). К 2018 году несколько компаний (Spark Aerospace и Aerion Corporation для Airbus, Lockheed Martin и Boom Technology в Колорадо) работали над проектами сверхзвуковых самолетов, и, хотя любые прогнозы относительно их массового коммерческого использования крайне преждевременны, не исключено, что в XXI веке произойдет еще одно удвоение (по крайней мере некоторых) крейсерских скоростей.
Одной из наиболее богатых иллюстраций излишнего логистического энтузиазма является книга на тему прогнозов, подзаголовок которой – «Характерные свойства общества раскрывают прошлое и предсказывают будущее» – указывает на веру автора в прогностическую силу логистической функции. Модис (Modis, 1992) использовал логистические кривые для прогнозирования траекторий развития многих современных технологий (от доли автомобилей с каталитическими конвертерами до мощности реактивных двигателей) и разнообразных экономических и социальных феноменов (от роста нефте– и газопроводов до объема пассажирских авиаперевозок). Одно из выделенных им совпадений данных и кривой касалось роста мировых авиаперевозок: согласно его прогнозу, к концу 1990-х годов он должен был достичь 90 % от предполагаемого потолка. В реальности же к 2017 году воздушные перевозки были на 80 % выше, чем в 2000 году, а количество пассажиров, перевозимых в год, более чем удвоилось (World Bank, 2018).
Кроме того, Модис представил длинную таблицу прогнозируемых уровней насыщения, взятых у Грублера (Grübler, 1990). Не прошло и 30 лет, как выяснилось, что некоторые из этих прогнозов оказались впечатляюще ошибочными. Примечательным примером такой ошибки является прогноз мирового числа автомобилей: их количество должно было достичь 90 % уровня насыщения к 1988 году.
В то время насчитывалось около 425 млн зарегистрированных автомобилей, а предполагаемый уровень насыщения составлял около 475 млн, но к 2017 году был зарегистрирован 1 млрд автомобилей, более чем вдвое больше предполагаемого максимума, и их количество в мире продолжает расти (Davis et al., 2018).
Маркетти (Marchetti, 1985; 1986b) провозгласил диктат логистического роста «одним из самых защищаемых оплотов человеческого эго, оплотом свободы, и особенно свободы творчества», сделав вывод, что «каждый из нас обладает внутренней программой, регулирующей его производительность до самой смерти… и люди умирают, исчерпав 90–95 % своего потенциала» (Marchetti, 1986b, рис. 42). Проанализировав совокупное наследие Моцарта, он пришел к выводу, что к моменту своей смерти в возрасте 35 лет «он уже сказал все, что должен был сказать» (Marchetti, 1985, 4). Модис (Modis, 1992) с энтузиазмом воспринял эту мысль и развил ее.
Изобразив все произведения Моцарта на S-образной кривой, Модис (Modis, 1992, 75–76) заявил не только, что «Моцарт сочинял с момента рождения, но его первые восемнадцать произведений не были записаны, так как он еще не умел ни писать, ни достаточно хорошо говорить, чтобы продиктовать их своему отцу». Он утверждал, что с точностью порядка 1 % его логистическая кривая также указывает, что общий потенциал Моцарта составлял 644 произведения, и поскольку к моменту смерти его творческие возможности были исчерпаны на 91 %, то, повторяя мысль Маркетти, «Моцарту мало что осталось сделать. Его работа в этом мире была практически завершена».
Интересно, что бы ответил на это Бонней! Я построил собственную кривую, используя сохранившийся каталог Кехеля, включающий 626 произведений за период с 1761 по 1791 год (Giegling et al., 1964). Нанеся на график значения за пятилетние интервалы, я получил симметричную логистическую кривую с точкой перегиба в 1780 году (R2 = 0,995): уровень насыщения составил 784 произведения, и к 1806 году, когда Моцарту исполнилось бы 50 лет, он написал бы 759 из них (рис. 1.17а). Введя число произведений для каждого продуктивного года жизни Моцарта, я обнаружил, что лучше всего им соответствует ассиметричная (с пятью параметрами) сигмоидальная кривая (R2 = 0,9982), прогнозирующая 955 произведений к 1806 году (рис. 1.17b).
Рис. 1.17. Произведения Моцарта, вписанные в кривые роста, симметричную (а) и асимметричную (b) логистическую функцию, квадратическую регрессию (c) и регрессию четвертого порядка (d), все из которых имеют высокую степень соответствия (R2 = 0,99), но прогнозируют существенно различающиеся долгосрочные результаты на 1806 год, когда Моцарту (умершему в 1791 году) исполнилось бы 50 лет. Произведения по датам перечислены у Гиглинга и др. (Giegling et al., 1964)
Но квадратическая регрессия (полиномальное уравнение второго порядка) также отлично описывает тридцать лет творческой деятельности Моцарта, как и регрессия четвертого порядка (полиномальное уравнение четвертого порядка), где в обоих случаях R2 = 0,99), и они дают прогноз в соответственно 1200 и более 1300 произведений, «написанных» к 1806 году (рис. 1.17c и 1.17d). Вердикт ясен: творчество Моцарта можно описать с помощью различных траекторий, но ни одну из них не следует рассматривать как достоверный прогноз будущего, которого лишился композитор в результате ранней смерти (или, согласно Модису, которое он не смог бы реализовать, даже если бы прожил гораздо дольше).
Кроме того, здесь отсутствует наиболее очевидный смысл подобного построения кривых с использованием совокупных данных о творческой деятельности (музыкальных произведений, романов или картин): анализируемые данные являются исключительно количественными, лишены качественных характеристик и ничего не говорят о творческом процессе или художественном уровне отдельных произведений.
Маркетти активно использовал логистические кривые и для прогнозирования технических достижений в целом и мирового потребления первичных источников энергии в частности. В своих исследованиях преобразования энергии он применял метод, разработанный Фишером и Праем (Fisher and Pry, 1971). Изначально он использовался для изучения проникновения на рынок новых технологий и предполагает, что новые технологии, по сути, являются конкурентным замещением; они будут действовать до завершения цикла (то есть захвата большей части или всего рынка) таким образом, что темп частичного замещения будет пропорционален остатку, который еще предстоит заместить.
Поскольку их рост (скорость проникновения на рынок), как правило, соответствует логистической кривой, расчет доли рынка (f) новой технологии и ее выражение в виде f/1-f дают прямую линию на полулогарифмическом графике и значительно облегчают составление средне– и долгосрочных прогнозов технических достижений, чем использование логистических функций. Фишер и Прай представили этот метод для прогнозирования результатов простых замещений с двумя переменными и первоначально применяли его для изучения конкуренции между синтетическими и натуральными волокнами, пластмассами и кожей, мартеновскими печами и конвертером Бессемера, электродуговыми печами и мартеновским производством, красками на водной и масляной основе (Fisher and Pry, 1971).
Когда Маркетти начал применять метод Фишера – Прая к историческому распределению мировых источников первичной энергии (начиная с 1850 года), его потрясла «необычайная точность» аппроксимации прямой линией, и это придало ему уверенности и позволило расширить свои прогнозы до 2100 года (рис. 1.18). Его вывод был абсолютно однозначным:
Судьба источников энергии полностью предопределена с самого начала… эти тенденции… не затрагивают ни войны, ни дикие колебания цен на энергию и депрессия. Конечная доступность основных резервов также, по-видимому, не влияет на скорость замещения (Marchetti, 1977, 348)
Рис. 1.18. Заявление Маркетти (Marchetti, 1977) о предопределенных долях отдельных компонентов в мировом обеспечении первичной энергией: график Фишера – Прая демонстрирует регулярное замещение
Два года спустя он снова восторгался совершенством соответствия исторических данных прямой линии и сделал вывод, что «система как будто имеет график, волю и часы» и способна поглощать все отклонения «эластично, меняя траектории» (Marchetti and Nakicenovic, 1979, 15). За крайний технологический детерминизм Маркетти отвечала непогрешимая «система», но он ошибался. Даже в конце 1970-х предложенная им модель не выглядела настолько безупречной, как он заявлял, а в течение 1970-х годов влиятельные силы (изменение цен и спроса, новые технологии) начали менять мировой энергетический расклад. Сорок лет спустя глобальная энергетическая система далека от «полностью предопределенной» схемы (рис. 1.19).
Упрощенной, механистической, детерминистской модели не хватало всех ключевых реалий периода после 1980-х годов: доли потребления угля и нефти оставались на удивление неизменными и не демонстрировали устойчивого падения, главным образом в результате активного спроса на энергетический уголь и транспортное топливо в Азии в целом и в Китае в частности. В результате к 2015 году мировая доля нефти составляла 30 %, значительно выше прогноза Маркетти в 25 %, в то время как уголь, доля которого должна была сократиться на 5 %, по-прежнему обеспечивал практически столько же энергии (около 29 %), что и нефть. В отличие от них природный газ, который должен был стать новым лидером и приобрести долю в размере 69 %, в 2015 году обеспечивал всего около 24 % мировой первичной энергии. Более того, согласно прогнозу перехода на новые источники энергии Маркетти (Marchetti, 1977), традиционные виды биотоплива (дерево, древесный уголь, отходы сельскохозяйственных культур и сушеный навоз) должны были полностью исчезнуть к 2000 году, но к 2015 году более 2,5 млрд человек ежедневно пользовались им для приготовления пищи и обогрева. В абсолютных значениях годовой спрос на эти виды топлива был почти вдвое выше, чем век назад, и в 2015 году они обеспечивали не менее 8 % всех первичных источников энергии (Smil, 2017a).
Рис. 1.19. Реальные траектории распределения долей первичных источников энергии демонстрируют отсутствие системы с безупречными «графиком, волей и часами». Доли источников энергии изображены на основе данных (Smil, 2017b)
Любопытно, что в оригинальном анализе первичных источников энергии отсутствовала гидроэлектроэнергия: в 2015 году она обеспечивала на 55 % больше электричества, чем ядерный распад. Но он включил в него категорию «солнечная энергия / энергия управляемого термоядерного синтеза», вклад которой должен был превзойти долю угля примерно к 2020 году, но в 2019 году о коммерческой энергогенерации на основе управляемого термоядерного синтеза даже речи не шло (электроэнергия с использованием термоядерного синтеза не производится, и скорого прорыва в этой области не ожидается), а на солнечное фотоэлектричество в 2018 году приходилось менее 0,5 % мировых источников первичной энергии. Очевидно, что безошибочные внутренние часы дали сбой и все предполагаемые Маркетти траектории роста значительно отошли от предопределенного графика.
Единственный правильный вывод анализа Маркетти заключается в том, что замещение мировых источников энергии происходит медленно, но указанный им период – около 100 лет для роста рыночной доли с 1 до 50 % рынка, что он называл временной константой системы, – оказался скорее исключением, чем правилом. Только углю удалось увеличить долю с 1 % в 1800 году до 50 % век спустя – даже доля нефти не достигла 50 %. К 2015 году, более чем через 100 лет после преодоления отметки 1 %, доля природного газа по-прежнему немного не достигла 25 %, а доля ветряной и солнечной энергии после 20 лет субсидированного развития к 2016 году достигла всего 2 % мирового потребления. Примеры провалившихся прогнозов следует учитывать, используя логистические кривые для обозначения (не прогнозирования!) возможных будущих событий: некоторые могут предсказывать конкретные уровни довольно точно, другие оказываются лишь приблизительными индикаторами, а третьи могут оказаться ошибочными в связи с неожиданным возникновением более удачных решений.
Рис. 1.20. Траектория логистического роста (точка перегиба в 2024 году, асимптота на уровне 625,5 Втч/кг) емкости батарей за период 1900–2017 одов. Построена на основе данных (Zu and Li, 2011) и последующих новостных сообщений
Но какие из них превзойдут наши ожидания? С 1900 года энергоемкость батарей возросла с 25 Втч/кг для свинцово-кислотных аккумуляторов до около 300 Втч/кг для лучших литиево-ионных моделей в 2018 году – 12-кратный рост, соответствующий логистической кривой, предсказывающей емкость около 500 Втч/кг к 2050 году (рис. 1.20). Нужно надеяться, что благодаря новым открытиям мы окажемся на новой логистической траектории, так как даже 500 Втч/кг недостаточно для машин с питанием от аккумуляторных батарей, чтобы вытеснить все жидкие производные нефти: дизельное топливо, использовавшееся в работе тяжелых машин, поездов и кораблей, обладает энергоемкостью 13 750 Втч/кг. В отличие от нее другая (довольно зрелая) логистическая кривая демонстрирует гораздо более высокую вероятность точного прогноза: количество пассажирских автомобилей в США – после роста с 8000 до 134 млн в течение XX века и до 189 млн к 2015 году – к 2015 году скорее всего вырастет не более чем на 25 %.
Ограниченный экспоненциальный рост
Многие феномены роста не соответствуют S-образным траекториям и относятся к другому крупному классу конечных моделей роста, ограниченным экспоненциальным распределениям. В отличие от экспоненциального роста эти кривые отражают экспоненциальный спад с уменьшающимся темпом роста. Их максимальный подъем и изгиб приходятся на самое начало, и, следовательно, у них нет точки перегиба, и их вогнутая форма становится все более заметной с повышением темпов роста (рис. 1.21). Подобные траектории иллюстрируют множество феноменов уменьшающейся отдачи и встречаются в самых разнообразных процессах, от переноса тепла и массы до отслеживания зависимости урожая от удобрения растений. Ограниченная экспоненциальная функция, часто используемая в исследованиях на тему применения удобрений (отзывчивость сельскохозяйственной культуры), также известна как уравнение Митчерлиха (Banks, 1994).
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?