Текст книги "От микроорганизмов до мегаполисов. Поиск компромисса между прогрессом и будущим планеты"
Автор книги: Вацлав Смил
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 5 (всего у книги 55 страниц) [доступный отрывок для чтения: 18 страниц]
Гиперболический рост
Неограниченный и, следовательно, на Земле только временный экспоненциальный рост не следует путать (как это иногда бывает) с гиперболическим ростом. Для экспоненциального роста характерно увеличение абсолютного темпа роста, однако он остается функцией по времени, приближенному к бесконечности. В отличие от него гиперболический рост достигает своей кульминации в абсурде (сингулярности), когда значение растущей переменной достигает бесконечности за конечный промежуток времени (рис. 1.7). Это конечное событие, конечно, невозможно в любых конечных пределах, и сдерживающая обратная связь в конечном счете окажет тормозящий эффект и прекратит гиперболический рост. Но, начавшись в низком темпе, гиперболические траектории могут развиваться в течение относительно длительных периодов времени, прежде чем их развитие остановится и сменится другой формой роста (или спада).
Рис. 1.7. Кривая гиперболического роста в сравнении с экспоненциальным ростом
Первым так называемую суперэкспансию – то есть ускоряющийся рост мирового населения благодаря ускоренной эволюции цивилизаций – отметил Анрэ Кайо: «…вполне естественно связывать суперэкспансию человечества с присутствием Духа?»[7]7
В статье Кайо противопоставляет устойчивый рост популяций животных почти гиперболическому росту человеческой популяции – и если характеристики темпов роста популяций животных объяснимы рациональными причинами, то для объяснения феномена суперэкспансии Кайо понадобилось ввести иррациональный фактор – Дух. – Прим. ред.
[Закрыть] (Cailleux, 1951, 70). Этот процесс соответствует квазигиперболическому уравнению: P = a/(D – t)M, где a, D и M являются константами. Мейер и Валли (Meyer and Vallee, 1975, 290) пришли к выводу, что рост населения «далек от “естественной” склонности к состоянию равновесия… демонстрирует уникальное свойство самоускорения».
Но такое возможно лишь на ограниченном временном промежутке, иначе число людей в конце концов достигло бы бесконечности. Фон Фёрстер и др. (von Foerster et al., 1960, 1291) рассчитали, что «пятница, 13 ноября 2026 года» станет Судным днем, когда «население приблизится к бесконечности, если будет расти, как росло за последние два тысячелетия». Очевидно, что это никогда не случится, и всего через несколько лет после того, как Фёрстер и его соавторы опубликовали свою работу, годовой рост мирового населения достиг пика, и начался переход к новой траектории.
Правда, Хёрн (Hern, 1999) доказывал, что рост мирового населения демонстрируют поразительные параллели с ростом раковой опухоли, так как некоторые виды рака также демонстрируют сокращение периода удвоения клеток во время самой агрессивной фазы. Начав отсчет 3 млн лет назад, он рассчитал, что к 1998 году население удваивалось 32,5 раза, а 33-й (когда оно достигнет 8,59 млрд) закончится в начале XXI века[8]8
На 2020 год население Земли достигло 7,753 млрд человек. – Прим. ред.
[Закрыть]. Если к антропомассе добавить биомассу домашних животных, то 33-е удвоение уже завершилось. Некоторые злокачественные опухоли вызывают смерть организма-хозяина после 37–40 удвоений, и (если предположить, что тенденция продолжится) 37-е удвоение населения будет достигнуто через несколько веков.
Анализ роста мирового населения Нильсена (Nielsen, 2015) показывает, что за последние 12 000 лет наблюдалось приблизительно три периода гиперболического роста: первый – между 10 000 и 500 годами до н. э., второй – между 500 и 1200 годами н. э. и третий – между 1400 и 1950 годами. На эти три периода пришлось около 89 % всего роста за последние 12 тысяч лет. Во время первых двух переходных периодов (с 500 года до н. э. по 500 год н. э. и 1200–1400) происходило значительное замедление роста народонаселения, и кривая этого роста далеко уходила от гиперболической траектории. Траектория же сегодняшнего переходного периода еще неизвестна: увидим ли мы сравнительно быстрое выравнивание и последующее длительное плато или пик, за которым последует значительный спад? О траекториях роста населения будет сказано больше в главах 5 и 6.
Существует еще один класс примечательных примеров антропогенного гиперболического роста, который отмечают многие авторы, изучающие ускоренное развитие. У этих работ длинная история: впервые они появились во второй половине XIX века (Lubbock, 1870; Michelet, 1872), а в XX веке их дополнили работы Генри Адамса, французских историков 1940-х годов и (начиная с 1950-х) многих американских историков, физиков, специалистов в области техники и информатики. Адамс писал о законе ускорения (Adams, 1919) и «законе фазы применительно к истории», согласно которым человеческое мышление предельно и интеллект в конце концов должен достичь предела своих возможностей (Adams, 1920)[9]9
Адамс воспринимал историю через собственную интерпретацию второго закона термодинамики и закона энтропии применимо к общественным процессам. Он полагал, что в процессе развития общество стремиться к «равновесию» как к предельному состоянию, в котором развитие останавливается, достигнув наивысшей точки. – Прим. ред.
[Закрыть]. Мейер (Meyer, 1947) и Галеви (Halévy, 1948) писали об ускорении эволюции и об ускорении истории. Основной вклад в американскую волну с разных точек зрения внесли Фейнман (Feynman, 1959), Мур (Moore, 1965), Пил (Piel, 1972), Моравец (Moravec, 1988), Корен (Coren, 1998) и Курцвейл (Kurzweil, 2005).
Многие из работ этих авторов или подразумевают, или явно говорят о наступлении сингулярности, когда развитие искусственного суперинтеллекта достигнет такого уровня, что превратится в беспрецедентный неконтролируемый процесс. Подразумевается, что искусственный интеллект не только превзойдет человеческие возможности (вообразимые), но также приблизится по скорости обработки информации к мгновенной скорости физических изменений. Очевидно, что подобные достижения кардинальным образом изменят нашу цивилизацию. Адамс предсказывал (как он понимал ее, то есть исключая вычислительные измерения) наступление сингулярности в период между 1921 и 2025 годами (Adams, 1920). Корен (Coren, 1998) откладывал ее до 2140 года, а последние прогнозы Курцвейла, касающиеся момента, когда машины, работающие с помощью искусственного интеллекта, возьмут верх над людьми, относятся к 2045 году (Galleon and Reedy, 2017). Пока мы (как утверждают многие из этих авторов) неумолимо движемся к этой фантастической ситуации, сторонники ускоренного, то есть гиперболического, роста приводят другие его примеры, разворачивающиеся на наших глазах. Среди них чаще всего называют способность человечества обеспечивать продовольствием растущее население, использовать еще более мощные способы преобразования энергии или путешествовать на еще более высоких скоростях. Это отображается в виде последовательности логистических кривых, феномена, хорошо описанного Дереком Джоном де Соллой Прайсом (Derek J. de Solla Price, 1963, 21):
Каждое новое осознанное ограничение вызывает восстановительную реакцию… Если реакция успешна, ее ценность обычно настолько трансформирует измеряемое явление, что оно обретает вторую жизнь и поднимается с новой силой, пока наконец не встретит свою гибель. Поэтому встречаются два варианта традиционной логистической кривой, более частые, чем простая S-образная интегральная кривая распределения. В обоих случаях вариант возникает во время перегиба, предположительно в тот момент, когда лишения, связанные с потерей экспоненциального роста, становятся невыносимыми. Если небольшое изменение определения измеряемого явления позволяет считать это явление новым наравне со старым, то новая логистическая кривая, как феникс, возрождается из пепла старой…
Мейер и Валли (Meyer and Vallee, 1975) доказывали, что феномен логистического расширения или ускоренного роста недооценивается и что скорее гиперболический, чем экспоненциальный, рост довольно распространен, если рассматривать технический прогресс в долгосрочном плане. Их примеры гиперболического роста включают как число людей, которые могут прокормиться с участка земли, так и рост максимальной мощности первичных двигателей, скорости путешествий и максимальной эффективности методов преобразования энергии. Историческая траектория роста отдельных явлений описывается S-образными кривыми (логистическими или другими, с характерными для них асимптотами[10]10
Асимптота – прямая, расстояние до которой от точки описанной возле нее кривой стремится к нулю при удалении точки вдоль ветви в бесконечность. Классический пример асимптот – координатные оси (оси абсцисс и ординат) для гиперболической кривой. Асимптотический минимум – значение, максимально близкое к предельно низкому (нулю); асимптотический максимум – значение, максимально приближенное к наивысшему. – Прим. ред.
[Закрыть]), но огибающая кривая последовательных приростов делает всю последовательность роста временно гиперболической. Как и Прайс, Мейер и Валли (Meyer and Vallee, 1975, 295) рассматривали этот процесс передачи эстафеты как автоматическую последовательность: «как только машина достигает потолка производительности, другая, с качественно отличающейся технологией, подхватывает эстафету у предыдущей и превосходит ее предельный результат, в результате чего создается эффект поддержания ускорения количественной переменной».
Однако при более пристальном взгляде становится понятно, что реальность несколько сложнее.
Пищи, добытой первыми собирателями и охотниками, хватало всего на 0,0001 человека с гектара земли. В более благоприятных условиях это число достигало 0,002 человека/га. Переход к производящему сельскому хозяйству поднял плотность на два порядка, до 0,2–0,5 человека с гектара. Первые государства, где практиковалось интенсивное земледелие (Месопотамия, Египет, Китай), подняли этот показатель до 1 человека с гектара. Лучшие традиционные методы агрокультуры XIX века в таких интенсивно возделываемых регионах, как южный Китай, позволяли прокормить более 10 человек с гектара, обеспечивая в среднем гораздо лучшее питание, чем ранее (Smil, 2017a).
Но эта последовательность не описывает строго распределенное во времени универсальное эволюционное движение, так как во многих регионах собирательство тысячелетиями сосуществовало с оседлым земледелием (и существует по сегодняшний день: вспомним сбор трюфелей и охоту на кабанов в Тоскане). Переложное земледелие[11]11
Переложное земледелие – экстенсивный вид сельского хозяйства, при котором поле возделывается до тех пор, пока оно сохраняет плодородие. После этого оно забрасывается и распахивается следующий участок. Один из древнейших видов такого земледелия – подсечное-огневое. – Прим. ред.
[Закрыть] практиковалось даже в некоторых частях Европы (Скандинавия, Россия) еще в XX веке и по-прежнему кормит миллионы семей в Латинской Америке, Африке и Азии, а такие гибридные методы, как агропасторализм[12]12
Агропасторализм – сочетание растениеводства и животноводства, практикуемое среди оседлых, кочевых и полукочевых сообществ. – Прим. ред.
[Закрыть], по-прежнему распространены там, где они помогают сократить риск чрезмерной зависимости от растениеводства.
И, очевидно, что даже если сажаются лучшие семена, а растения получают оптимальное питание, влагу и защиту от сорняков и вредителей, максимальный урожай по-прежнему ограничен интенсивностью освещения, продолжительностью вегетационного периода, морозостойкостью и уязвимостью перед множеством природных катаклизмов. Как я продемонстрирую в главе 2 (в разделе, посвященном росту сельскохозяйственных культур), во многих регионах, где прежде наблюдался рост производительности, теперь она сократилась, несмотря на активное применение удобрений и усиленную ирригацию, а динамика урожайности отражает минимальный прирост или откровенный застой. Ясно, что универсального, суперэкспоненциального роста урожайности не существует. Человеческий гений добился множества впечатляющих результатов, когда ему не нужно было считаться со сложностями организмов, чей жизненный цикл определяется разнообразными ограничениями среды. Технический прогресс демонстрирует лучшие примеры самоускоряющегося развития, за которым следуют траектории гиперболического роста, и максимальная удельная мощность первичных двигателей и скоростей передвижения являются точно задокументированными иллюстрациями.
Максимальная удельная мощность современных первичных двигателей (первичных источников механической энергии) в начале XVII века составляла 1000 Вт у паровых двигателей. Им на смену пришли водяные турбины (между 1850 и 1900 годами), а затем показатели мощности поднялись до рекордных более 1 ГВт у паровых турбин (рис. 1.8).
Рис. 1.8. Эстафетный рост мощности самых крупных стационарных первичных двигателей (Smil, 2017b). Пересекающийся логистический рост номинальных мощностей паровых двигателей, водяных турбин и паровых турбин дает временный гиперболический рост на семь порядков за 300 лет
Картину можно расширить, включив в нее ракетные двигатели, использовавшиеся только в течение коротких периодов времени: мощность ракеты Saturn C 5, осуществлявшей полет «Аполлона» на Луну, составляла около 2,6 ГВт (Tate, 2012). Аналогично максимальная скорость передвижения возросла со скорости человеческого бега (10–12 км/ч – скорость гонцов) и скорости всадников (средняя скорость 13–16 км/ч) до скорости парусных судов (клиперы середины XIX века в среднем развивали скорость около 20 км/ч, а максимальная достигала 30 км/ч), поездов (максимум около 100 км/ч до 1900 года) и пассажирских самолетов на поршневых двигателях (чья скорость возросла с 160 км/ч в 1919 году до 550 км/ч в 1945 году) и, наконец, реактивных самолетов (более 900 км/ч с конца 1950-х годов).
В обоих случаях ускоряющийся рост был достигнут за счет феномена эстафеты, когда накладывающиеся друг на друга логистические (самоограничивающие) кривые дают впечатляющую восходящую огибающую кривую. Очевидно, что эстафета не может продолжаться бесконечно, так как в конце концов приведет к невозможно высоким темпам роста, будь то удельная мощность или скорость… Как и в случае с мировым населением, временная гиперболическая огибающая кривая в конце концов трансформируется в логистическую траекторию. Можно сказать, что это уже произошло, если рассматривать технический прогресс с практической, реалистичной точки зрения, а не как последовательность максимальных показателей.
Очевидно, что построение огибающей кривой максимальной скорости с помощью накладывающихся друг на друга логистических кривых скорости лошадей, парусников, поездов, автомобилей, самолетов и ракет демонстрирует прогресс видов транспорта, которые не являются последовательно заменяемыми. Массовый городской транспорт эволюционировал от конных экипажей до моторизированных дорожных транспортных средств и подземных поездов, но мы не будем передвигаться по городу на реактивных самолетах. Верно как раз обратное, поскольку средняя скорость городского движения с 1960-х годов сократилась почти во всех крупных городах, и ее удвоение невозможно, даже если каждое транспортное средство будет частью синхронизированной, автоматизированной городской системы (если только не убрать в городах все перекрестки, что невозможно с точки зрения инфраструктуры существующих городов). Средняя скорость скоростных поездов возросла лишь незначительно с момента первого запуска в 1964 году и, опять-таки, вероятнее всего, миллиарды людей, пользующихся поездами, не будут путешествовать на сверхзвуковых скоростях.
Типичная скорость крупных контейнерных судов (30–40 км/ч) ненамного превышает типичную скорость клиперов XIX века. Конечно, их грузоподъемность на несколько порядков выше, но скорость морских перевозок не испытала гиперболического роста, и не существует реалистичных перспектив, что этот основополагающий вид транспорта, сделавший возможным современную экономическую глобализацию, войдет в новый век с радикально повысившейся скоростью. Эксплуатационная скорость последнего самолета Boeing 787 (913 км/ч) почти на 7 % ниже, чем у первого гражданского реактивного самолета Boeing 707, выпущенного в 1958 году (977 км/ч). И перспектива миллиардных авиапассажирских перевозок на сверхзвуковых скоростях также отсутствует. Кажущаяся гиперболической огибающая кривая максимальных показателей на деле мало что говорит нам о реальных траекториях скоростей, создавших современную экономику путем передвижения миллиардов людей и миллиардов тонн сырья, продуктов питания и потребительских товаров.
То же самое неизбежно верно для других огибающих кривых растущих технических возможностей. Самые большие ракеты могут производить гигаватты энергии за очень короткий период старта, но это не имеет отношения к мощности великого множества машин, работающих на благо современной цивилизации. Большинство электродвигателей в нашей технике имеет мощность меньше, чем может обеспечить хорошо взнузданная лошадь: стиральным машинам нужно 500 Вт, а откормленная лошадь легко дает 800 Вт. Типичная или условная мощность паровых турбин в крупных электростанциях остается стабильной с 1960-х годов: на новых угольных или газовых электростанциях преобладают установки мощностью 200–600 МВт, а турбогенераторы мощностью 1 Гвт используются в основном на более крупных атомных электростанциях. И мощность типичных автомобилей немного выросла лишь потому, что они стали тяжелее, а не потому, что им нужно больше мощности, чтобы доехать от одного светофора до другого или поддерживать разрешенную скорость на автостраде – для равномерной езды со скоростью 100 км·ч по ровной дороге достаточно силы тяги приблизительно в 11 кВт/ч на тонну массы автомобиля (Besselink et al., 2011). И снова синтетическая восходящая траектория состоит из несопоставимых прогрессий, не подразумевающих единообразной тенденции к постоянному росту замещающих феноменов.
В истории существует достаточно примеров технических достижений, не демонстрирующих автоматического, строго последовательного ускорения показателей. Сталевары пользовались мартеновскими печами почти век после того, как довели их применение до совершенства, а проводной дисковый телефон мало изменился со времен своего появления в 1920-х годах и внедрения кнопочных моделей в 1963 году (Smil, 2005; 2006b). И перспективы долгосрочной траектории любого гиперболического роста на Земле не вызывают сомнений: он должен либо прекратиться, либо перейти в ограниченную прогрессию, которая может стать частью гомеостатического сосуществования человека и биосферы, включая конечный верхний предел содержания информации во внешней памяти (Dolgonosov, 2010).
Модели ограниченного роста
В первую очередь это траектории жизни: биосферная масса перерабатываемых питательных веществ допускает невероятное разнообразие видовых генетических выражений и мутаций, но ставит фундаментальное ограничение на производительность первичной продукции (фотосинтеза) и, следовательно, на накопление вторичной продукции (гетеротрофного метаболизма разнообразных организмов от микробов до самых крупных млекопитающих). Эти ограничения проявляются в процессе внутри– и межвидовой конкуренции микроорганизмов, растений и животных за ресурсы путем хищничества и вирусной, бактериальной и грибковой инфекции, и все многоклеточные организмы имеют внутренние пределы роста, обусловленные апоптозом – запрограммированной гибелью клеток (Green, 2011).
Ни одно дерево не растет до небес, как и ни один артефакт, структура или процесс; и модели ограниченного роста характеризуют развитие машин и технических возможностей так же, как описывают рост населения и расширение империй. Все процессы распространения и внедрения неизбежно должны соответствовать этой модели: не важно, быстрый или медленный рост демонстрирует траектория на начальном этапе – в конце концов за ним последует значительное замедление темпов роста по мере того, как процесс асимптотически приближается к насыщению и часто достигает его (иногда после многих десятилетий распространения) всего за несколько процентов, даже за доли процентов до максимума. В 1880 году ни в одном доме не было электричества, но сколько зданий в городах Запада не подключено к электричеству сегодня?
Учитывая распространенность феноменов, демонстрирующих ограниченный рост, неудивительно, что многие исследователи стремились вписать их в разнообразные математические функции. Два основных класса траекторий ограниченного роста включают S-образный (сигмоидальный) и ограниченный экспоненциальный рост. В десятках работ даны описания оригинальных производных и последующих модификаций этих кривых. Они рассмотрены в обширных обзорах (Banks, 1994; Tsoularis, 2001), а лучший обзор, пожалуй, приведен в таблице S1 у Мирвольда (Myhrvold, 2013), где систематически сравниваются уравнения и ограничивающие условия для более 70 нелинейных функций роста.
S-образный рост
S-образные функции описывают множество естественных процессов роста, а также внедрение и распространение инноваций, будь то новые промышленные методы или потребительские товары. Изначально медленный рост ускоряется в точке нижнего изгиба, за которым следует быстрый подъем, темп которого в конце концов замедляется, формируя второй изгиб, за которым следует замедленный подъем, так как рост становится минимальным и значения приближаются к максимальной границе конкретного параметра или к полному насыщению рынка. Наиболее известная и распространенная функция с S-образной траекторией описывает логистический рост.
В отличие от экспоненциального (неограниченного) роста, увеличение темпа которого пропорционально текущему значению, относительное приращение логистического (ограниченного) роста уменьшается по мере приближения растущего значения к максимально возможному уровню, который в экологических исследованиях обычно называют предельной нагрузкой. Подобный рост интуитивно кажется нормальным:
Обычно население медленно растет с асимптотического минимума, затем быстро множится и медленно движется к нечетко определенному асимптотическому максимуму. Два конца кривой роста населения в целом определяют всю кривую между ними: чтобы так начаться и так закончиться, кривая должна пройти через точку перегиба, это должна быть S-образная кривая (Thompson, 1942, 145).
Формальное определение логистической функции восходит к 1835 году, когда Адольф Кетле (1796–1874; рис. 1.9), бельгийский астроном и в то время ведущий статистик Европы, опубликовал революционную работу под названием Sur l’homme et le développement de ses facultés, ou Essai de physique sociale («О человеке и развитии его способностей, или Эссе по социальной физике»), где отметил невозможность продолжительного экспоненциального роста любого населения (Quetelet, 1835).
Кетле предположил, что силы, противоположные неограниченному развитию и росту населения, возрастают пропорционально квадрату скорости, с которой оно возрастает, и попросил своего ученика, математика Пьера Франсуа Ферхюльста (1804–1849; рис. 1.9), дать формальное решение и затем применить его к лучшим доступным статистическим данным. Ферхюльст согласился и сформулировал первое уравнение, выражающее ограниченный рост населения в короткой публикации в альманахе Correspondance Mathématique et Physique («Работы по математике и физике») (Verhulst, 1838; перевод на английский язык опубликован Vogels et al., 1975). Логистическая модель описана с помощью дифференциального уравнения
где r – скорость максимального роста, а K – максимально достижимая величина, известная в исследованиях экологии и населения как предельная нагрузка.
Рис. 1.9. Адольф Кетле и Пьер Франсуа Ферхюльст. Гравюра на стали из коллекции изображений XIX века, принадлежащей автору
Чтобы проверить возможность применения уравнения роста, Ферхюльст сравнил ожидаемые результаты с относительно короткими периодами данных переписей населения во Франции (1817–1831), Бельгии (1815–1833), графстве Эссекс (1811–1831) и России (1796–1827), и хотя он обнаружил «очень точное» совпадение с данными по Франции, он сделал верный вывод (учитывая малый объем данных), что «только будущее откроет нам истинный образ действий сдерживающей силы…» (Verhulst, 1838, 116). Семь лет спустя в более объемной работе он решил «назвать кривую логистической» (Verhulst, 1845, 9). Он никогда не объяснял, почему назвал ее именно так, но в период его жизни термин использовался во Франции для обозначения искусства вычислений в целом; возможно, также он использовал слово «логистический» в военном значении (управление резервами), подразумевая арифметическую стратегию (Pastijn, 2006).
В своей второй работе Ферхюльст иллюстрировал логистическую кривую, сравнивая ее с экспоненциальным (логарифмическим) ростом (рис. 1.10). В первой части логистической кривой нормальное население растет экспоненциально, только когда возделываются плодородные земли, а затем наступает замедление роста. Относительный темп роста сокращается с ростом населения, точка перегиба (в которой темп роста достигает своего максимума) всегда находится на полпути от верхнего предела, и в конце концов избыточное население достигает своего максимума. Моментальный темп роста логистической функции (ее производной относительно времени) распределяется нормально, достигая пикового значения в точке перегиба кривой (рис. 1.11). Более высокие темпы роста дадут более крутые кривые роста, достигающие максимального значения быстрее (кривая будет ограничена горизонтально), в то время как более низкие темпы роста дадут кривые, вытянутые по горизонтали.
В своей работе 1845 года Ферхюльст утверждал, что увеличение дальнейшего роста населения будет пропорционально размеру избыточного населения (population surabondante), и когда он использовал функцию роста для определения пределов размера населения Бельгии и Франции, то установил отметки на уровне 6,6 млн и 40 млн соответственно, которые будут достигнуты до конца XX века. Но в своей последней работе на тему роста населения он пришел к выводу, что препятствия к росту населения пропорциональны отношению между избыточным населением и общим населением (Verhulst, 1847). Это изменение дало более высокое значение конечного населения, или, как позже стали называть его асимптотическое значение, более высокий показатель предельной нагрузки (Schtickzelle, 1981).
Рис. 1.10. Сравнение логистической и логарифмической (экспоненциальной) кривых Ферхюльста (1845)
Рис. 1.11. Качественные характеристики логистического роста
По сути, уравнение Ферхюльста отражает смену доминирования (или, математически говоря – мажорирования) между двумя циклами обратной связи: цикл позитивной обратной связи (FBL) инициирует рост, который в конце концов замедляется и уравновешивается негативной обратной связью, отражающей пределы роста, преобладающие в ограниченном мире. Как выразился Кунш (Kunsch, 2006, 35), логистический рост «описывается как сочетание экспоненциального роста, выраженного в (+) FBL, и целенаправленного роста, выраженного в (—) FBL». В этом смысле функцию Ферхюльста с двумя циклами обратной связи, конкурирующими за доминирование, можно рассматривать как основу динамики систем, базирующихся на обратной связи, разработанную Джеем Форрестером из Массачусетского технологического института в 1950-е и 1960-е годы (Forrester, 1971) и примененную в исследовании под названием «Пределы роста», поддержанном Римским клубом (Meadows et al., 1972).
Эта ключевая систематическая концепция ограниченного роста (высокая плотность организмов является непосредственным сдерживающим фактором, а доступность ресурсов – сложной причинной движущей силой) полезна при концептуализации многих природных, социальных и экономических достижений, включая серии обратной связи, но ее механическое применение может вызывать серьезные ошибки. Оригинальные прогнозы роста населения, сделанные Ферхюльстом, представляют собой первые примеры таких ошибок, так как максимальные значения населения не предопределяются какой-либо конкретной функцией роста, а зависят от изменения производственного потенциала страны и в конечном счете всей планеты с помощью научного, технического и экономического прогресса. Сколько можно поддерживать эти максимальные значения на высоком, развивающемся уровне – другой вопрос. Ферхюльст в конце концов увеличил прогнозируемый размер населения Бельгии к 2000 году с 6,6 млн до 9,5 млн человек, но к концу XX века население Бельгии и Франции составляло 10,25 млн и 60,91 млн человек соответственно, то есть для Бельгии было приблизительно на 8 % выше скорректированного Ферхюльстом максимума, а для Франции ошибка составляла 52 %.
Во второй половине XIX века наблюдался всплеск демографических и экономических исследований, однако работу Ферхюльста игнорировали, и она была обнаружена только в 1920-е годы, а влияние приобрела в 1960-х годах (Cramer, 2003; Kint et al., 2006; Bacaër, 2011). Это не единственной пример подобного забвения: фундаментальные эксперименты Грегора Менделя в области генетики растений, проводившиеся в 1860-х годах, также игнорировались в течение почти полувека (Henig, 2001). Можно ли объяснить пренебрежение работами Ферхюльста сомнениями Кетле в ценности вклада его учеников, высказанными в надгробной речи, посвященной преждевременной смерти Ферхюльста в 1849 году? Удни Юл предлагает более правдоподобное объяснение: «Вероятно, в силу того, что Ферхюльст значительно опередил свое время и что существовавшие тогда данные не подходили для того, чтобы эффективно проверить его взгляды, они были преданы забвению, но остаются классикой в этой области» (Yule, 1925a, 4).
Следующее появление логистической функции (без использования этого названия) было связано с количественным выражением прогресса аутокаталитических реакций в химии. Если катализ обозначает повышающуюся скорость химической реакции, что вызвано присутствием дополнительного элемента (в частности, какого-либо тяжелого металла) или сложного вещества (часто в ничтожных количествах), то аутокатализ означает реакцию, ускоряющуюся за счет собственных результатов. Аутокаталитические процессы – реакции, демонстрирующие ускорение темпов роста как функцию от времени, за которым следует насыщение, – необходимы для роста и поддержания живых систем, и без них абиотические химические факторы не смогли бы привести к репродукции, обмену веществ и эволюции (Plasson et al., 2011; Virgo et al., 2014).
После того как Вильгельм Оствальд (1853–1932, ведущий химик времен до Первой мировой войны) представил данную концепцию в 1890 году (Ostwald, 1890), стало быстро понятно, что процесс развивается в соответствии с логистической функцией: концентрация одного реагента повышается по сравнению с начальным уровнем, сначала медленно, потом быстрее, но затем, с учетом ограниченного количества другого реагента, процесс замедляется, а концентрация второго реагента постепенно уменьшается до нуля. В 1908 году Брейлсфорд Робертсон (1884–1930), австралийский физиолог из Калифорнийского университета, отметил, что, если сравнить кривую мономолекулярной аутокаталитической реакции с кривой роста массы тела самцов белых крыс, «схожесть между кривой роста и кривой аутокаталитической реакции сразу становится очевидной» (рис. 1.12) – но сравнение кривой аутокаталитической мономолекулярной реакции с кривой роста массы тела мужчины показало, что вторая из этих траекторий имеет две совмещенные кривые (Robertson, 1908, 586).
Рис 1.12. Сравнение Робертсоном (Robertson, 1908) прогресса аутокаталитической реакции и увеличения массы тела самцов белой крысы
Обе кривые являются сигмоидальными, но Робертсон не упомянул Ферхюльста. Три года спустя Маккендрик и Кесава Паи (McKendrick and Kesava Pai, 1911) использовали эту функцию, снова не называя имени Ферхюльста, для изображения роста микроорганизмов, а в 1919 году Рид и Холланд (Reed and Holland, 1919) сослались на Робертсона (Robertson, 1908), но не использовали термин «логистическая» в своей кривой роста подсолнечника. Этот пример роста растений позже стал широко цитироваться в биологической литературе, посвященной теме роста.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?