Электронная библиотека » Владимир Успенский » » онлайн чтение - страница 2


  • Текст добавлен: 12 октября 2017, 06:40


Автор книги: Владимир Успенский


Жанр: Математика, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 2 (всего у книги 35 страниц) [доступный отрывок для чтения: 12 страниц]

Шрифт:
- 100% +

Раздел математики, сейчас называемый математическим анализом, в старые годы был известен под названием «дифференциальное и интегральное исчисление». Отнюдь не всем обязательно знать точное определение таких основных понятий этого раздела, как производная и интеграл. Однако каждому образованному человеку желательно иметь представление о производном числе как о мгновенной скорости (а также как об угловом коэффициенте касательной) и об определённом интеграле как о площади (а также как о величине пройденного пути). Поучительно знать и о знаменитых математических проблемах (разумеется, тех из них, которые имеют общедоступные формулировки) – решённых (как проблема Ферма и проблема четырёх красок[8]8
  Проблема четырёх красок заключается в требовании доказать следующий факт: любую мыслимую карту можно так раскрасить в четыре цвета, чтобы страны, имеющие общую границу, всегда были окрашены в разные цвета. Проблема ждала решения более ста лет.


[Закрыть]
), ждущих решения (как проблема близнецов[9]9
  Близнецами называются такие два простых числа, разность между которыми равна двум: например, 3 и 5, 5 и 7, 11 и 13, 17 и 19, 29 и 31. Неизвестно, конечным или бесконечным является количество близнецовых пар; в требовании дать ответ на этот вопрос и состоит проблема близнецов. (Напомним, что простым называется такое большее единицы целое число, которое делится без остатка только на само себя и на единицу.)


[Закрыть]
) и тех, у которых решения заведомо отсутствуют (из числа задач на геометрическое построение и простейших задач на отыскание алгоритмов). Ясное понимание несуществования чего-либо – чисел ли с заданными свойствами, или способов построения, или алгоритмов – создаёт особый дискурс, который можно было бы назвать культурой невозможного. И культура невозможного, и предпринимаемые математикой попытки познания бесконечного значительно расширяют горизонты мышления.

Всё это, ломая традиционное восприятие математики как сухой цифири, создаёт образ живой области знания, причём живой в двух смыслах: во-первых, связанной с жизнью; во-вторых, развивающейся, т. е. продолжающей активно жить. Всякому любознательному человеку такая область знания должна быть интересна. Вообще, образованность предполагает ведь знакомство не только с тем, что непосредственно используется в профессиональной деятельности, но и с человеческой культурой как таковой, чьей неотъемлемой частью – повторим это ещё раз – является математика.

Здесь возможен следующий упрёк. Хотя в названии настоящего очерка политкорректно говорится о преодолении барьера, изложение явно уклоняется в сторону пропаганды «математического». Автор болезненно относится к такому упрёку и спешит оправдаться. Дело в том, что гуманитарная культура не нуждается в пропаганде: она не только повсеместно признана непременной частью культуры вообще, но часто отождествляется с последней. Отличать ямб от хорея, понимать смысл выражения «всевышней волею Зевеса», а заодно и знать, кто такой Зевес, – все (или по крайней мере большинство) согласны в том, что подобные знания и умения входят в общеобязательный культурный багаж. Включение же в этот багаж чего-то математического в качестве обязательной составной части многим может показаться непривычным и потому нуждается в лоббировании.

IV

Однако образование состоит не только в расширении круга знаний. В неменьшей степени оно подразумевает расширение навыков мышления. Математик и гуманитарий обладают различными стилями мышления, и ознакомление с иным стилем обогащает и того и другого. Скажем, изучение широко распространённого в математике аксиоматического метода, дозволяющего использовать в рассуждениях только ту информацию, которая явно записана в аксиомах, прививает привычку к строгому мышлению. А знакомство со свойствами бесконечных множеств развивает воображение. Потребуются ли когда-нибудь, скажем, историку аксиоматический метод или бесконечные множества? Более чем сомнительно. Но вот строгость мышления и воображение не помешают и ему. С другой стороны, и математику есть чему поучиться у гуманитария. Последний более толерантен к чужому мнению, чем математик, и это говорится здесь в пользу гуманитария (разумеется, имеются в виду некоторые усреднённые – а то и воображаемые автором этих строк – гуманитарий и математик). Математические понятия резко очерчены, тогда как гуманитарные расплывчаты; и как раз эта расплывчивость делает их более адекватными для описания окружающего нас расплывчатого мира, поскольку его явления (или надо сказать «его феномены»?) сами расплывчаты. Математик ведь привык иметь дело с такими утверждениями, каждое из которых либо истинно, либо ложно, и эта привычка поневоле заставляет его видеть мир в чёрно-белом цвете. Его мышление настроено на более высокую контрастность или резкость (не знаю, какое слово здесь правильнее употребить). Ему, в отличие от гуманитария, чужда или непонятна мысль, что истина, может быть, и одна, но вот правда у каждого своя.

Поучительно сравнить между собой методы рассуждений, применяемые в математических и в гуманитарных науках. На самом деле речь идёт здесь о двух типах мышления, и человеку полезно познакомиться с каждым из них. Автор не берётся (потому что не умеет) описать эти типы, но попытается проиллюстрировать на двух примерах своё видение их различия.

Пример первый. Все знают, что такое вода. Это вещество с формулой Н2О. Но тогда то, что мы все пьём, не вода. Разумеется, в повседневной речи и математик, и гуманитарий и то и то называет водой, но в своих теоретических рассуждениях первый как бы тяготеет к тому, чтобы называть водой лишь Н2О, а второй – всё, что имеет вид воды. Потому что математик изучает идеальные объекты, имеющие такой же статус, как, скажем, круги и треугольники, которых нет в реальной природе; гуманитарий же изучает предметы более реалистические. Боюсь, впрочем, что этот пример слишком умозрителен и способен отчасти запутать читателя.

Вот другой, уже не умозрительный, а взятый из жизни пример. Имеется строгое (кстати, в наиболее отчётливой форме сформулированное Колмогоровым) определение того, что такое ямб. Мы имеем здесь в виду не ямбическую стопу та-тА, понимание которой не вызывает затруднений, а ямбическую строку, которая может состоять отнюдь не из одних только ямбических стоп (как иногда ошибочно думают): любая ямбическая стопа может быть всегда заменена пиррихием та-та (здесь оба слога безударны), а в особых случаях, впервые чётко указанных Тредиаковским, – и спондеем тА-тА (здесь оба слога ударны). Если в стихотворении встречается отклонение от законов, которым обязана подчиняться ямбическая строка, то, с точки зрения математика, это уже не ямб. Однако для многих филологов стихотворение, содержащее не слишком много нарушений, не перестаёт быть ямбическим – в то время как математик назовёт его всего лишь похожим на ямб, ямбоподобным.

По-видимому, математики, которых специально обучают обращению с абстракциями, начинают мыслить отчасти по-особому. Одни из них перестают это замечать и утверждаются в убеждении, что так мыслят все. Другие же достаточно трезво оценивают применимость своих ограниченных представлений к реальным ситуациям и с удовольствием рассказывают анекдоты про тех, кто этой ограниченности не замечает (или не желает замечать). Вот три таких анекдота.

Жена говорит мужу-математику: «Купи батон, а если будут яйца, возьми десяток». Муж приносит десять батонов. (Действительно, сказанное женой имеет – на формальном уровне – два смысла, и муж руководствуется тем из них, который аналогичен смыслу фразы: «Купи один батон, а если хватит денег, возьми десяток».)

Математика окликают с заплутавшего воздушного шара: «Где мы?» – «На воздушном шаре». (В другом, более пространном варианте анекдота после обмена репликами один из воздухоплавателей замечает: «Все ясно. Это математик». «С чего ты взял?» – спрашивает другой. «Он подумал, прежде чем ответить, и ответ дал совершенно точный – и совершенно бессмысленный».)

Пассажиры поезда наблюдают в окно нескончаемые стада белых овец. И вдруг замечают чёрную овцу, повернувшуюся к поезду боком. «О, здесь бывают и чёрные овцы!» – восклицает один. «По меньшей мере одна овца с по меньшей мере одним чёрным боком», – поправляет его другой, математик.

«Сказка ложь, да в ней намёк! Добрым молодцам урок». Эти анекдоты весьма поучительны: они в наглядной и сжатой форме выражают идею о том, что чрезмерная точность может быть вредной, способной мешать адекватному восприятию текста. Здесь есть основа для уважительного диалога между гуманитарием и математиком, диалога, полезного для обеих сторон. В этом диалоге математик обучает гуманитария – нет, не так, не обучает, а делится своими представлениями о том, сколь важна точность, причём не только точность выбора слов, о которой говорил ещё Декарт, процитированный нами в эпиграфе, но и точность построения синтаксических конструкций. Математик в этом диалоге пытается передать гуманитарию свою способность увидеть логический каркас текста. Гуманитарий же делится с математиком своими соображениями о важности неточности; он объясняет математику, что и «плоть» текста, облекающая его логический каркас, и контекст, в котором возникает текст, не менее существенны, чем упомянутый каркас. Окружающий мир, говорит гуманитарий, аморфен и расплывчат, и потому неточные, расплывчатые тексты и образы более приспособлены для адекватного его отражения, нежели тексты и образы математически точные.

V

Ряд положений языкознания может быть изложен с математической точностью. (А скажем, для литературоведения подобный тезис справедлив разве что в применении к стиховедению.) В то же время именно на уроках математики учащиеся могли бы приучаться правильно выражать свои мысли на родном языке. Уроки языка и уроки литературы на родном языке проводятся, как правило, одним и тем же учителем. На наш взгляд, было бы полезнее несколько отделить лингвистику от литературоведения. И уж совсем крамольная идея – объединить, хотя бы в порядке эксперимента, родной язык и математику, с тем чтобы их преподавал один и тот же учитель. Некоторые уважаемые коллеги автора этих строк нашли эту фантастическую идею ужасающей. Поэтому спешу объясниться.

Прежде всего идея эта не столько крамольная, сколько утопическая и относится к некоторому идеальному будущему. Будущее, как известно, подразделяется на обозримое и необозримое. В обозримом будущем объединение уроков языка и уроков математики нереально хотя бы потому, что учителей, способных преподавать оба этих предмета, на сегодняшний день не найдёшь. Если же говорить о будущем необозримом, то можно предполагать, что сама технология обучения в этом будущем кардинально изменится и окажется мало похожей на сегодняшнюю. Так что высказанное предложение обозначает всего лишь вектор движения, и притом движения не реальной организации образования, а мысли. Это как показ образцов высокой моды или футуристических градостроительных проектов, которые хотя и не предполагают массового тиражирования, но служат источником вдохновения для создателей реальной одежды и реальной архитектуры.

Что до движения мысли, то здесь надлежит сказать следующее. Среди многочисленных функций языка можно выделить две: передавать информацию и передавать эмоции. Разумеется, в реальной языковой практике названные функции переплетены. Тем не менее при всей их нераздельности наличествует и некая неслиянность, и можно попытаться разделить их как в обучении языку, так и в его преподавании. Функция передачи эмоций сближает язык с литературой (думается, что, когда говорят о «великом и могучем», имеют в виду именно эту функцию). Действительно, вся стилистика, всевозможные художественные средства языка – в частности, такие локальные, как тропы (метафоры, метонимии, гиперболы и т. п.), – всё это относится столько же к ведомству лингвистики, сколько к ведомству литературоведения. Поэтому названные темы могут изучаться на лингво-литературоведческих уроках. Нас же будет интересовать функция бесстрастной передачи информации; она воплощается в текстах, которые один из основоположников отечественного программирования Андрей Петрович Ершов называл деловой прозой. К деловой прозе относятся, в частности, естественно-научные тексты[10]10
  Было бы хорошо, если бы и некоторые гуманитарные тексты, в частности все тексты исторической науки, писались с такой же безоценочной бесстрастностью.


[Закрыть]
(и прежде всего математические), юридические тексты, тексты делопроизводства, инструкции. Деловая проза занимает всё большее место в нашей жизни и потому должна быть предметом, которому учат в школах. Преподавать его можно было бы на уроках родного языка или же на специальных занятиях, посвященных чистой, не несущей эмоции информации.

Обучение деловой прозе призвано прививать навыки правильного составления и правильного восприятия деловых текстов, иначе говоря, умение правильно выражать мысль посредством слов и правильно интерпретировать выраженную словами мысль. Это особенно важно для понимания инструкций, ошибочная трактовка которых нередко вызывает проблемы.

Проблема такого рода возникла, например, в 2008 г. на выборах в Российскую академию наук (РАН). Как известно, выборы в РАН трёхступенчатые: сперва кандидатуры соискателей рассматривает секция, затем – отделение и наконец – общее собрание академии. Проблема возникла в одном из гуманитарных отделений при выборах в секции. Мы не будем указывать ни имён, ни названий подразделений РАН, сведя всё к абстрактной задаче.

Итак, чтобы стать членом некоего общества гуманитарной направленности, надо пройти процедуру голосования на имеющиеся вакансии. Правом голоса обладают все члены общества, голосование проводится в несколько туров. Положение о выборах было написано математиками. Оно гласит:

Для избрания членом общества необходимо получить не менее ⅔ голосов лиц, принявших участие в голосовании, и не менее половины от списочного состава общества. Кандидат считается избранным в данном туре голосования, если в этом туре он получил необходимое для избрания число голосов и число всех кандидатов, получивших в этом туре такое же или большее число голосов, не превышает числа вакансий по данной специальности, оставшихся незаполненными в предыдущих турах (в первом туре – числа всех имеющихся вакансий). Если в первом туре голосования число избранных кандидатов по данной специальности оказалось меньше, чем число вакансий по этой специальности, то проводится второй тур голосования. Если по результатам первого и второго туров остались незаполненные вакансии по данной специальности, то проводится третий тур голосования.

Случилось так, что при выборах на единственную вакансию каждый из кандидатов X и Y получил во втором туре не менее ⅔ голосов лиц, принявших участие в голосовании, и не менее половины списочного состава. При этом Y собрал больше голосов, чем X. Возникает три вопроса: 1) избран ли кто-нибудь в этом туре, 2) если избран, то кто и 3) надо ли проводить третий тур?

Эксперимент показал, что математики отвечают на этот вопрос, как правило, верно, тогда как гуманитарии, как правило, неверно. Верный ответ состоит в том, что X не избран, избран Y и третий тур проводить не надо. Это обосновывается следующим рассуждением. Имеются два условия избрания. Первое условие – получить необходимое количество голосов: не менее ⅔ голосов участвующих в голосовании и не менее половины от списочного состава. Второе условие – количество N всех кандидатов, получивших в этом туре такое же или большее число голосов, не превышает числа Р вакансий.

В нашем примере первое условие выполнено для обоих кандидатов. Посмотрим, что происходит со вторым условием. В нашем примере число вакансий Р = 1. Для X второе условие не выполнено, поскольку для этого кандидата N = 2, а значит, N превышает Р. Для Y второе условие выполнено, поскольку для этого кандидата N = 1 и, стало быть, N не превышает Р.

В реальности же был проведён третий тур, в котором избранным оказался X. Напомним, что электорат состоял из гуманитариев. (Возвращаясь к реальным событиям, отметим, что через год справедливость была восстановлена и кандидат Y также стал членом Академии.)

Мораль этой истории такова: текст положения о выборах, логически и лингвистически безупречный, всё же обладает тем недостатком, что реальный гуманитарный электорат понимает его (по крайней мере отдельные его фрагменты) с трудом, или вовсе не понимает, или понимает неправильно. По-видимому, текст стоило бы переписать с учётом этого обстоятельства. Так что упрёк можно предъявить не только гуманитариям, не понявшим инструкцию, но и математикам, её составлявшим. Хотя текст инструкции безупречен с логической точки зрения и смысл его однозначен, он, этот текст, составлен без учёта возможных психологических трудностей его восприятия.

Интерпретация деловой прозы определяется главным образом трактовкой синтаксических конструкций, по-разному воспринимаемых математиками и гуманитариями. Рассмотрим два утверждения: «Каждый из присутствующих знает хотя бы один из следующих двух языков – баскского и ирокезского» и «Среди присутствующих есть некто, кто не знает ни баскского, ни ирокезского». Абсолютное большинство студентов-математиков сразу понимает, что первое из этих утверждений равносильно отрицанию второго, и наоборот. Для немалого же числа студентов-гуманитариев это не столь очевидно.

Следует, однако, подчеркнуть, что реальная фраза на естественном языке состоит не только из логического каркаса. Каркас этот облачён в мягкую (а то и пульсирующую студенистую) плоть, какова плоть весьма существенна для адекватного восприятия фразы. Что и было продемонстрировано приведёнными выше анекдотами о математиках.

VI

В последние годы получило заметное распространение преподавание математики студентам гуманитарных специальностей. И это переводит задачу постижения математиками гуманитарного образа мышления из общефилософской в практическую плоскость. Чтобы успешно преподавать свой предмет, математик должен понимать, как предмет этот воспринимается его учениками-гуманитариями.

Вот простой пример. Отношение называют рефлексивным, коль скоро всякий предмет, для которого данное отношение осмысленно, находится в этом отношении к самому себе. Пример рефлексивного отношения: 'жить в том же городе' – каждый живёт в том же городе, что он сам. (Не исключено, впрочем, что некоторые сочтут предложение «NN живёт в том же городе, что он сам» бессмысленным.) Будет ли рефлексивным отношение 'находиться неподалёку'?

Опрошенные мною математики (притом отнюдь не математические логики) отвечали, что будет: каждый предмет находится неподалёку от самого себя. Гуманитарии же – да и просто обычные люди, нематематики – в большинстве своём расценивают высказывание «Нечто находится неподалёку от самого себя» либо как ложное, либо как бессмысленное. Причина такого расхождения, надо полагать, заключается в следующем. Слово «неподалёку» означает «на малом расстоянии» (но смысл его этим не ограничивается, о чём будет сказано ниже). Математики свободно оперируют расстоянием ноль, на каковом расстоянии любой предмет находится от самого себя. Для нематематика же, в том числе для гуманитария, нулевых расстояний не бывает.

Беседуя как-то с дамой, мастером по маникюру и педикюру, я спросил её, находится ли предмет неподалёку от самого себя. Получив, к немалому своему удивлению, положительный ответ, я справился о расстоянии между предметом и им самим и был удивлен ещё более: ответом был ноль. Тогда я поинтересовался, какое образование получила моя собеседница. Оказалось – высшее техническое по специальности «гидравлика», включая достаточно обширный курс математики. Всё стало на свои места. Даже если этот курс и не познакомил её с расстоянием ноль, преподаваемая в его рамках общая система понятий и терминов не могла не выработать мысли о возможности такого расстояния.

Математики в большинстве своём не замечают, что слово «неподалёку» означает нечто большее, чем малость расстояния. Напомним, что отношение называется симметричным, коль скоро выполняется следующее условие: всякий раз, когда какой-то предмет находится в этом отношении к другому, то и этот второй предмет находится в том же отношении к первому; примеры симметричных отношений: 'жить в том же городе', 'быть родственниками'. По наблюдению автора этих строк, для большинства математиков отношение 'находиться неподалёку' является симметричным. Но анализ естественного языка показывает, что значение словосочетания «находиться неподалёку» отнюдь не симметрично. Соответствующее наблюдение сделал выдающийся американский лингвист Леонард Талми. Вот что пишет Талми по этому поводу[11]11
  Talmy Leonard. Toward a Cognitive Semantics. Vol. 1. The MIT Press, 2000. P. 314. (http://linguistics.bufalo.edu/people/faculty/talmy/talmyweb/Volumel/chap5.pdf)


[Закрыть]
:

Можно было бы ожидать, что такие два предложения, как

(a) Велосипед находится неподалёку от дома;

(b) Дом находится неподалёку от велосипеда[12]12
  В оригинале: «The bike is near the house» и «The house is near the bike».


[Закрыть]

будут синонимичны на том основании, что они всего навсего выражают две инверсные формы некоторого симметричного отношения. Отношение это выражает не что иное, как малость расстояния между двумя объектами. На самом же деле эти два предложения вовсе не означают одно и то же. Они были бы синонимичными, если бы выражали только указанное симметричное отношение. Однако в дополнение к этому (а) содержит не симметричное указание, что один из объектов (а именно дом) имеет местоположение [set location] в пределах некоторой рамки [reference frame] (в качестве таковой здесь подразумевается данная окрестность, весь мир и т. п.) и используется в целях сообщения о местоположении другого объекта (а именно велосипеда). Соответственно, местоположение этого другого объекта есть переменная (для рассматриваемого примера это так и есть, поскольку в разных ситуациях велосипед окажется в разных местах), чьё частное значение и составляет предмет интереса.

Что касается предложения (b), то оно содержит противоположное указание. Это указание, однако, не вписывается в привычную картину мира, вследствие чего предложение (b) выглядит странным, что ясно демонстрирует его отличие от (а).

Из разбора Талми в действительности видно, что обычный человек (в том числе гуманитарий) полнее и глубже понимает смысл русского слова «неподалёку» (а именно слышит во всей полноте заключённый в нём «семантический звук», а потому и отвергает фразу, где он прозвучать не может), чем типичный математик. Типичный математик слышит в этом слове только те элементы, которые ему профессионально близки (да ещё зачастую учит гуманитария быть таким же полуглухим).

VII

Различие в понимании слов составляет существенную часть барьера, упомянутого в заголовке настоящего очерка. И следует признать, что подавляющая часть людей находится по ту же сторону барьера, что и гуманитарии. Честнее было бы сказать, что гуманитарии просто пользуются общепринятыми значениями слов. (Подозреваю, правда, что, когда в гуманитарном собрании звучат слова «дискурс», «парадигма», «экзистенциальный» и им подобные, затесавшийся на собрание математик получает редкую возможность насладиться своим единством с большинством человечества.) Можно выделить два фактора, вызывающие указанное различие.

Первый, очевидный, фактор состоит в том, что математики оперируют точной терминологией, а в качестве терминов нередко употребляют слова обычного языка, придавая им совершенно новый смысл. Например, слова «кольцо» и «поле» обозначают в математике алгебраические структуры определённого вида, ничего общего не имеющие с обручальными кольцами и засеянными полями. Подобные явления следует квалифицировать как омонимию, а возможная путаница легко устраняется контекстом, и потому обычно не составляет труда уяснить, что имеется в виду[13]13
  Математикам, впрочем, иногда нравится обыгрывать указанную омонимию в каламбурах: И до боли жаждет воли / Истомившийся от бега / По борелевскому полю / Измеримых по Лебегу. Те множества, которые являются измеримыми по Лебегу, действительно образуют борелевское поле, но бежать по нему, разумеется, невозможно.


[Закрыть]
. Математики настолько привыкли черпать специальные термины из общеупотребительной лексики, что порой склонны отыскивать математический смысл в самых обычных словах.

Вот иллюстрация к сказанному. Механико-математический факультет Московского университета, 1950-е гг. Идёт научный семинар, руководимый знаменитым математиком Сергеем Львовичем Соболевым (сейчас его имя носит Институт математики Сибирского отделения РАН). До слегка задремавшего Соболева доносятся слова докладчика: «А теперь я должен ввести целый ряд обозначений». Соболев просыпается и спрашивает: «Простите, какой ряд вы называете целым?» (Для тех читателей, которые незнакомы с математическим термином «ряд», поясню, что в математике рядом называется последовательность из бесконечного числа членов, подлежащих суммированию.) В подобных случаях долг гуманитария – напомнить математику, что обычные слова имеют значения и за пределами математического жаргона.


Второй фактор заключается в том, что математический смысл слова, заимствованного из естественного языка, может быть близок к обычному смыслу этого слова, но не совпадать с этим обычным смыслом. Так, математическое значение слова «угол» происходит от его обыденного значения, однако эти значения не совпадают даже в простейшем случае угла между двумя прямыми линиями (не говоря уже об угле комнаты): обыденное сознание вряд ли примирится с углом ноль градусов. В подобных случаях выбор правильного значения может оказаться затруднительным. Второй фактор глубже первого и предопределяется, по-видимому, тем, что занятия математикой и сопряжённое с ними систематическое использование точной терминологии накладывают свой отпечаток на психологию, по крайней мере в части восприятия слов. Этот фактор и проявился в нашем примере со словом «неподалёку».

Пожалуй, существует и третий фактор, не упомянутый нами по той причине, что он, возможно, обнаруживается лишь в отношении одного (но очень важного) слова. Фактор этот сводится к тому, что для обозначения одного важнейшего – и важнейшего не только для математики! – понятия в русском языке отсутствует нужное слово. В математике понятие, о котором идёт речь, обозначается словом «ложь».

Слово «ложь» происходит от глагола «лгать», каковой факт отражается в его словарном толковании: «неправда, намеренное искажение истины». Подчеркнём здесь слово «намеренное». Знаменитый «Энциклопедический словарь» Брокгауза и Ефрона в одноименной статье прямо указывает на аморальность лжи:

Ложь – в отличие от заблуждения и ошибки – обозначает сознательное и потому нравственно предосудительное противоречие истине. Из прилагательных от этого слова безусловно дурное значение сохраняет лишь форма лживый, тогда как ложный употребляется также в смысле объективного несовпадения данного положения с истиною, хотя бы без намерения и вины субъекта; так, лживый вывод есть тот, который делается с намерением обмануть других, тогда как ложным выводом может быть и такой, который делается по ошибке, вводя в обман самого ошибающегося.

Мы видим, что значение русского существительного «ложь» непременно подразумевает субъекта и его злонамеренность. Но субъект со своими намерениями чужд математике.

Вместе с тем в математике ощущается острая потребность в слове, обозначающем любое неистинное утверждение. В качестве такового и выбрано слово «ложь». Таким образом, математики употребляют это слово, лишая его какой-либо нравственной оценки и отрывая от слова «лгать». Заметим, что английский язык располагает двумя словами для перевода русского слова «ложь»: это lie для передачи обычного, общеупотребительного, бытового его смысла, предполагающего сознательную злонамеренность, и falsehood для смысла математического. Заметим также, что в русском языке существует слово, обозначающее любое истинное утверждение, вне зависимости от намерений, с которыми данное утверждение сделано. Это слово «истина». Можно сказать: «Дважды два четыре – это истина» – и при этом не иметь в виду никого, кто бы собирался кого-либо просветить. Но в математике можно сказать: «Дважды два пять – это ложь», не имея в виду никого, кто бы стремился кого-либо обмануть. (Вот тема для интересующихся философией языка: истина в русском языке объективна, а ложь – субъективна.)

VIII

Было бы замечательно, если бы математик был способен понимать точку зрения гуманитария, в значительной степени отражённую в языке гуманитария, а гуманитарий – точку зрения математика, в ещё большей степени отражённую в языке математика. И то и другое трудно. Ещё труднее не требовать признания одной из точек зрения единственно правильной. Таким образом, и гуманитариев, и математиков следует призвать сделать шаг навстречу друг другу. И начинать надо с преподавания, руководствуясь следующими словами А. Н. Колмогорова:

…Учитель (для конкретности – преподаватель математики) находится в том же положении, как учёный, приходящий со своей проблематикой в уже существующий вычислительный центр с определённым набором вычислительных машин, запасом заготовленных (с другими целями!) программ, даже со штатом программистов. Задача его состоит в том, чтобы обучить этот сложный механизм выполнить новую работу, используя все свои уже заготовленные заранее механизмы, программы, навыки.

IX

Обсуждая вопрос о преподавании кому-либо чего-либо, полезно иметь представление о целях этого преподавания. Среди таких целей можно выделить две: 1) получение образования; 2) подготовка к профессии.

Следует заметить, что в ряде стран различие названных целей отчётливо отражено в организации образовательных учреждений. Так, в России разделение целей организационно оформлено на уровне среднего образования, во Франции – на уровне высшего. В современной России, как это было ещё в СССР, образование призваны давать средние школы; в СССР к профессии готовили техникумы, каковые в современной России переименованы, кажется, в колледжи (слава богу, что не в академии). Во Франции образование дают университеты, профессии же – так называемые высшие школы (grandes écoles), среди которых наиболее известны Высшая нормальная школа (École normale supérieure) и Политехническая школа (École polytechnique). В университеты берут без экзамена всякого, лишь бы он проживал в данном регионе и имел надлежащую справку о среднем образовании; в высшие школы – суровый конкурс, и в них, по крайней мере в некоторых, платят приличную стипендию.

X

Разумеется, грань между повышением общеобразовательного уровня и профессиональной подготовкой зачастую стирается. Скажем, знакомство с аксиоматическим методом значимо не только в плане общего образования.

Разъясним прежде всего, как в рамках этого метода трактуется слово «аксиома». В повседневном языке аксиома понимается, скорее всего, как утверждение настолько очевидное, что оно не требует доказательств. Однако авторитетный толковый словарь Ушакова вообще отрицает принадлежность слова «аксиома» повседневному языку, относя один из оттенков его значения к математике, а другой – к языку книжному[14]14
  Положение, принимаемое без доказательств (мат.). || Очевидная истина, утверждение, принимаемое на веру (книжн.) (Толковый словарь русского языка / Под ред. Д. Н. Ушакова. – М., 1935–1940.).


[Закрыть]
. Словари же иностранных слов – и словарь Крысина[15]15
  Крысин Л. П. Толковый словарь иноязычных слов. – 2-е изд., доп. – М., 2000.


[Закрыть]
, и словарь Захаренко и др.[16]16
  Захаренко Е. Н., Комарова Л. Н., Нечаева И. В. Новый словарь иностранных слов. – М., 2003.


[Закрыть]
 – если и впускают это слово в повседневный язык, то лишь в значении, квалифицируемом как переносное: «Бесспорное, не требующее доказательств положение». Основное же, даваемое первым значение слова «аксиома» эти словари толкуют сходным образом: «Исходное положение, принимаемое без доказательств и лежащее в основе доказательств истинности других положений» (словарь Крысина), «Отправное, исходное положение какой-либо теории, лежащее в основе доказательств других положений этой теории, в пределах которой оно принимается без доказательств» (словарь Захаренко и др.). Таким образом, в том своём значении, которое является основным для математиков, аксиомы трактуются не как положительные утверждения, а как формулировки предположений. В современной математике развитие какой-либо аксиоматической теории происходит следующим образом: предположим, что верно то, что записано в аксиомах, тогда окажется верным то-то и то-то.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации