Электронная библиотека » Владимир Успенский » » онлайн чтение - страница 4


  • Текст добавлен: 12 октября 2017, 06:40


Автор книги: Владимир Успенский


Жанр: Математика, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 4 (всего у книги 35 страниц) [доступный отрывок для чтения: 12 страниц]

Шрифт:
- 100% +

Мы потому назвали пример характерным, что подобные псевдоконструкции, ничего на самом деле не конструирующие, были довольно типичны для литературы по языкознанию несколько десятилетий назад. Возникало даже парадоксальное удовлетворение, когда некоторое утверждение можно было квалифицировать всего лишь как ложное. Чувство удовлетворения возникало потому, что ложность утверждения свидетельствовала о его осмысленности.

Преподавателю-математику, ведущему диалог со студентом-гуманитарием, зачастую приходится просить студента вдуматься в то, что тот только что сказал, и затем спрашивать, понимает ли студент, чтó сказал. Не столь уж редко честные студенты, поразмыслив, в некоторой растерянности признаются, что не понимают.

Когда знаменитого педиатра доктора Спока спросили, с какого возраста следует воспитывать ребёнка, он, узнав, что ребёнку полтора месяца, ответил: «Вы уже опоздали на полтора месяца». Не следует ли способность отличать осмысленное от бессмысленного и истинное от ложного неназойливо прививать уже с начальных классов школы? И не является ли это главным в школьном преподавании?

Надо сказать, что квалификация высказывания как ложного, бессмысленного или непонятного, как правило, требует некоторого усилия – иногда почти героического. Как же так, уважаемый человек что-то говорит или пишет, а ты осмеливаешься его не понимать или, поняв, возражать? Не все и не всегда способны на такое усилие.

XVI

Способность к усилию, о котором только что говорилось, вырабатывается (во всяком случае должна вырабатываться) на уроках математики и при общении с математиками. Дело в том, что математика – наука по природе своей демократическая. На её уроках воспитывается (а при косвенном воздействии – прививается) демократизм.

Внешние формы такого демократизма произвели большое впечатление на автора этих строк в его первые студенческие годы, когда в конце 1940-х гг. он стал обучаться на знаменитом мехмате – механико-математическом факультете Московского университета. Если почтенный академик обнаруживал, что выступающий вслед за ним студент собирается стереть с доски им, академиком, написанное, он с извинениями вскакивал с места и стирал с доски сам. Для профессора мехмата было естественно самому написать и вывесить объявление, но не для профессора гуманитарного факультета.

Эти внешние проявления косвенно отражают глубинные различия. Ведь математическая истина не зависит от того, кто её произносит – академик или школьник. При этом академик может оказаться неправ, а школьник – прав.

Реакция Колмогорова на третьекурсника, опровергнувшего его на лекции, была такова: он пригласил студента к себе на дачу, там покатался с ним на лыжах, накормил обедом и взял себе в ученики.

С горечью приходится признать, что подобный демократизм имеет свои издержки, на что указывает Андрей Анатольевич Зализняк:

Мне хотелось бы высказаться в защиту двух простейших идей, которые прежде считались очевидными и даже просто банальными, а теперь звучат очень немодно.

1. Истина существует, и целью науки является её поиск.

2. В любом обсуждаемом вопросе профессионал (если он действительно профессионал, а не просто носитель казённых титулов) в нормальном случае более прав, чем дилетант.


Им противостоят положения, ныне гораздо более модные:

1. Истины не существует, существует лишь множество мнений (или, говоря языком постмодернизма, множество текстов).

2. По любому вопросу ничьё мнение не весит больше, чем мнение кого-то иного. Девочка-пятиклассница имеет мнение, что Дарвин неправ, и хороший тон состоит в том, чтобы подавать этот факт как серьёзный вызов биологической науке[19]19
  Зализняк А. А. Похвала филологии. М., 2007. С. 79. А также: Зализняк А. А. Из заметок о любительской лингвистике. М., 2009. С. 210.


[Закрыть]
.

Чем наука дальше от математики, чем она, так сказать, гуманитарнее, тем сильнее убедительность того или иного высказывания начинает зависеть от авторитета высказывающего лица. На гуманитарных факультетах подобная персонализация истины ещё недавно ощущалась довольно сильно. «Это верно, потому что сказано имяреком» или даже «Это верно, потому что сказано мною» – такие категорические заявления, высказанные в явной или чаще неявной форме, не столь уж редки в гуманитарных науках. (И имярек в первой фразе, и первое лицо во второй фразе обычно относились как раз к одному из тех «носителей казённых титулов», о которых говорит Зализняк.)

В естественных науках и в математике подобные заявления невозможны. Впрочем, в тоталитарном обществе принцип верховенства мнения того, кто на должность авторитета назначен властью, применялся с печальными последствиями и к естественным наукам – достаточно вспомнить лысенковщину. Проживи Сталин дольше, возможно, изменению подверглась бы и таблица умножения. Предпринимались же попытки отменить теорию относительности.

Нет в математике и «царского пути». Здесь я ссылаюсь на известную историю, то ли подлинную, то ли вымышленную, которую одни рассказывают про великого математика Архимеда и сиракузского царя Гиерона, другие про великого математика Евклида и египетского царя Птолемея.

Царь изъявил желание изучить геометрию и обратился с этой целью к математику. Математик взялся его обучать. Царь выразил недовольство тем, что его учат совершенно так же, в той же последовательности, как и всех других, не принимая во внимание его царский статус, каковой особый статус, по мнению царя, предполагал и особый способ обучения. На что математик, по преданию, ответил: «Нет царского пути в геометрии».

Эпилог

Первоначальный вариант этого очерка был напечатан в 2007 г. в декабрьском номере журнала «Знамя». Даже самые доброжелательные критики не могли не предъявить автору упрёка в односторонности. Хотя и чувствуется, говорили они, что автор желает примирить «физиков» и «лириков» на основе презумпции равенства сторон, но на деле из этого ничего не получилось. Сколь бы благими ни были намерения автора, декларируемое им преодоление барьера вылилось в агрессию математики: математическое проламывает барьер и, вторгшись на территорию гуманитарного, начинает устанавливать там свои порядки.

Такое положение вещей автору определённо не нравилось и, главное, не отвечало его замыслу. Автор стал размышлять, почему так сложилось. Результатами своих размышлений он и хотел бы поделиться с читателем в эпилоге.

Дело в том, что слова «математик» и «гуманитарий» употребляются в тексте в двух значениях или смыслах. Эти смыслы не указаны явно, но при желании легко извлекаются из контекста. Первое (прямое, терминологическое) значение подразумевает математика и гуманитария как носителей определенных профессий, второе (переносное, бытовое) – как обладателей характерного для этих профессий склада мышления. В своём переносном значении слова «математик» и «гуманитарий» имеют значительной больший объём, поскольку первое слово включает в себя уже не только профессиональных математиков, но и просто людей с математически ориентированными мозгами; а второе распространяется почти на всех остальных представителей человеческого рода.

Каждая из двух трактовок – и строгая, и расширительная – намечает своё направление преодоления барьера. Иными словами, выбор трактовки определяет, с какой стороны происходит или должно происходить преодоление: математическое влияет на гуманитарное, его математизируя, или же, напротив, гуманитарное влияет на математическое, его гуманизируя.

Математик в широком смысле этого слова вряд ли поможет широко понимаемому гуманитарию, но вот как профессионал профессионалу может помочь. Только не следует понимать это в вульгарном смысле: мол, математик – это ментор, который с высоты своего величия подаёт гуманитарию непрошеные советы. Говоря здесь о математике, мы скорее имеем в виду абстрактную персонификацию математического. Математическое же может проявляться в разных формах, в том числе и в виде реального лица, в пессимальном случае действительно, увы, ментора, а в случае оптимальном – доброжелательного критика, обращающего внимание гуманитарного исследователя на неясности, нелогичности или неточности. Наилучший результат математического влияния, к коему надлежит стремиться, состоит в усвоении гуманитарием дисциплины мышления, о которой шла речь в настоящем очерке, в пестовании им некоего «внутреннего математика», математического начала в своём мозгу. (Теоретически дисциплина мышления должна вырабатываться на уроках математики в школе, практически же этого не происходит, поскольку математика редко когда преподаётся интересно, да и вообще преподаётся не та математика, которой следовало бы обучать школьников.)

Гуманитарий же, напротив, вряд ли поможет математику в его профессиональной деятельности, но способен прямо или косвенно приобщить его к общепринятым нормам выстраивания и интерпретации синтаксических конструкций. Например, тем, которые требуют учитывать контекст («предлагаемые обстоятельства», как сказал бы Станиславский) и предписывают купить не десять батонов, а десять яиц. А также к нормам словоупотребления: например, употребления слова «неподалёку».

Возможно, слово «норма», даже с эпитетом «общепринятая», здесь слишком узко. Потому что, скажем, рекомендации по составлению инструкций вряд ли поддаются жесткой регламентации, предполагаемой термином «норма». Ведь одна из главных рекомендаций состоит в том, что текст инструкции должен быть лёгок для понимания, а именно этой лёгкости была лишена электоральная инструкция, о которой мы говорили выше. Безупречная с точки зрения синтаксиса и семантики, а потому полностью устраивающая математиков (в широком смысле слова), она оказалась, как выявила практика, трудна для понимания гуманитариями (опять-таки в широком смысле слова), а значит, неудачна. Лингвист сказал бы, что текст инструкции неудовлетворителен с точки зрения прагматики.

И ещё одно немаловажное обстоятельство. Нисколько не умаляя роли школы (роли, впрочем, не реальной, а желательной) и прочих общественных институтов, заметим, что влияние математического на гуманитарное главным образом опосредуется через личность математика-человека. Такое положение вещей не может не поставить его в незавидное положение высокомерного ментора, каковым он не является. Напротив, основная форма влияния гуманитарного на математическое деперсонализирована и не выглядит как личное влияние какого-то гуманитария. Влияние гуманитарного на математическое выражается в мощном давлении среды при условии, что среда эта, в широком смысле преимущественно гуманитарная, сумеет победить желание математика от неё отгородиться.

Апология математики, или О математике как части духовной культуры

 
Мира восторг беспредельный
Сердцу певучему дан.
 
Александр Блок. Роза и крест


Наука умеет много гитик.

Ключ к карточному фокусу

Глава 1
Ватсон против Холмса

«Человек отличается от свиньи, в частности, тем, что ему иногда хочется поднять голову и посмотреть на звёзды». Это изречение принадлежит Виктору Амбарцумяну (в 1961–1964 гг. президенту Международного астрономического союза). А почти за 200 лет до него на ту же тему высказался Иммануил Кант, который поставил звёздное небо по силе производимого впечатления на один уровень с пребывающим внутри человека – и прежде всего внутри самого Канта – нравственным законом. Эти высказывания объявляют усеянное звёздами небо частью общечеловеческой духовной культуры, более того, частью, обязательной для всякого человека. Трудно представить индивидуума, не впечатлявшегося видами неба. Впрочем, воспоминания переносят меня в осень 1947 г., на лекцию по астрономии для студентов первого курса механико-математического факультета МГУ. Лекцию читает профессор Куликов. Он делает нам назидание. «В прошлом веке профессор Киевского университета Митрофан Хандриков, – говорит он, – на экзамене спросил студента, каков видимый размер Луны во время полнолуния, и в ответ услышал, что студент не может этого знать, поскольку никогда не видал Луны»[20]20
  Константин Алексеевич Куликов вообще щедро делился со студентами замечательными подробностями из истории науки. Так, из его лекций я узнал, что знаменитый датский астроном XVI в. Тихо Браге, чьим именем названы кратеры на Луне и на Марсе, лишился части носа во время дуэли и носил протез. Уже в передаче до меня дошёл такой его рассказ. В конце XVIII в. на Сухаревской башне была установлена зрительная труба. Образованные барышни, зная о способности трубы показывать перевёрнутое изображение, старательно придерживали юбки.


[Закрыть]
.

Приведённые выше высказывания о роли звёздного неба в духовной культуре человека декларируют если не прямо, то косвенно, принадлежность к ней сведений об устройстве небесного свода. Неотъемлемой частью человеческого знания является то или иное представление об этом устройстве, хотя бы и признаваемое в наши дни совершенно фантастическим, как, например, такое: «А Земля – это только лишь плесень в перевёрнутой неба корзине; звёзды – это свет другого мира, к нам просвечивающий сквозь дно корзины, сквозь бесчисленные маленькие дыры, не затёртые небесной глиной». Человек, вовсе не имеющий представления об устройстве мироздания, признаётся выпадающим из культуры. Вспомним, как изумился доктор Ватсон, когда вскоре после вселения в знаменитый дом 221b по Бейкер-стрит узнал: Холмс понятия не имеет, что Земля вертится вокруг Солнца. И даже полагает это знание совершенно излишним. «Ну хорошо, пусть, как вы говорите, мы вращаемся вокруг Солнца, – возражал Холмс. – А если бы я узнал, что мы вращаемся вокруг Луны, много бы это помогло мне или моей работе?» Вот здесь очень важный момент. Холмс признаёт нужным только то знание, которое может быть использовано в практических целях. Ватсон считает – и, очевидно, исходит из того, что читатели его записок разделяют эту точку зрения, – что некоторые знания обязательны независимо от того, имеют они практическое применение или нет. При всём уважении к великому сыщику, согласимся с доктором.

Итак, есть определённый объём непрактических знаний, обязательный для всякого культурного человека[21]21
  Сказанному, впрочем, отчасти противоречат данные Всероссийского центра изучения общественного мнения (ВЦИОМ). Как явствует из его пресс-выпуска № 679 от 20.04.2007 (выложенного в интернете по адресу http://wciom.ru/novosti/press-vypuski/press-vypusk/single/4448.html), на вопрос «Согласны ли вы со следующим утверждением: „Солнце обращается вокруг Земли“?» правильный ответ дали 67 % россиян, неправильный – 28 %, затруднились с ответом 5 %. Я не осмеливаюсь согласиться с тем, что лишь не более чем 67 % моих соотечественников являются «культурными людьми». (То обстоятельство, что, по данным ВЦИОМ, те же цифры с точностью до 1 % дал аналогичный опрос в странах Европейского союза, служит слабым утешением.) Приходится признать, что мои представления об исключительности астрономических познаний (точнее, невежества) Холмса неверны. Однако не следует забывать и знаменитое высказывание Корнея Ивановича Чуковского. Когда его упрекнули в наивности: и как это он не понимает, что все его усилия в защиту чистоты русского языка напрасны, – Чуковский возразил: «Я понимаю, но партия учит нас, что новое должно рождаться в борьбе со старым». В данном случае старым, по-видимому, является гелиоцентрическая система Коперника, а новым – приходящие ей на смену невежественные представления.


[Закрыть]
(выражение «культурный человек» в силу расхожести и затрёпанности отдает дурновкусием, но ради ясности изложения приходится его употреблять). Мы полагаем, что в этот объём входят и некоторые математические представления, не нашедшие утилитарного использования. Это не только факты, но также понятия и методы оперирования с ними.

Роль математики в современной материальной культуре, как и роль её элементарных разделов в повседневном быту, достаточно известна, так что на ней можно не останавливаться. В этом очерке мы собираемся говорить о математике как о части культуры духовной.

Математические идеи способны вызывать эмоции, сравнимые с теми, что вызывают литературные произведения, музыка, архитектура. К сожалению, косные методы преподавания математики редко позволяют ощутить её эстетическую сторону, доступную, хотя бы отчасти, не только математикам. Математиками же эта сторона ощущается с полной ясностью. Вот что писал выдающийся математик, учитель великого Колмогорова Николай Николаевич Лузин (1883–1950): «Математики изумляются гармонии чисел и геометрических форм. Они приходят в трепет, когда новое открытие открывает им неожиданные перспективы. И та радость, которую они переживают, разве это не есть радость эстетического порядка, хотя обычные чувства зрения и слуха здесь не участвуют. ‹…› Математик изучает свою науку вовсе не потому, что она полезна. Он изучает её потому, что она прекрасна. ‹…› Я говорю о красоте более глубокой [чем та, которая поражает наши чувства. – В. У.], проистекающей из гармонии и согласованности воедино всех частей, которую один лишь чистый интеллект и сможет оценить. Именно эта гармония и даёт основу тем красочным видимостям, в которых купаются наши чувства. ‹…› Нужно ли ещё прибавлять, что в развитии этого чувства интеллектуальной красоты лежит залог всякого прогресса?»

Являясь (через Колмогорова) научным «внуком» Лузина, автор настоящего очерка с сочувствием относится к формуле «математика для математики», образованной по аналогии с известным слоганом «искусство для искусства». Однако всё не так просто. Следует огорчить поклонников чистого разума и утешить приверженцев практической пользы. Опыт развития математики убеждает, что самые, казалось бы, оторванные от практики её разделы рано или поздно находят важные применения. Всю первую половину XX в. математическая логика рассматривалась как наука, занятая исключительно проблемами логического обоснования математики, своего рода философский анклав в математике; в СССР борцы со всевозможными «-измами» ставили её под подозрение, и первая кафедра математической логики была открыта лишь в 1959 г. Сегодня математическая логика переплетена с теоретической информатикой (theoretical computer science) и служит для последней фундаментом. Теория чисел, одна из древнейших в математике, долгое время считалась чем-то вроде игры в бисер. Оказалось, что без этой теории немыслима современная криптография, равно как и другие важные направления, объединённые названием «защита информации». Специалисты по теоретической физике интересуются новейшими разработками алгебраической геометрии и даже такой абстрактной области, как теория категорий.

Применение математики в физике не ограничивается числовыми формулами и уравнениями. Её (математики) абстрактные конструкции позволяют лучше понять природу тех физических явлений, исследования которых составляют передовой край науки. Поясним сказанное с помощью исторической аналогии. Когда-то считалось, что Земля плоская. Ничего другого в то время просто не могло прийти в голову. Затем люди пришли к мысли о её шарообразности. Вряд ли эта мысль затеплилась бы в человеческом сознании, не обладай оно представлением о шаре. Точно так же долгое время считалось очевидным, что окружающее нас физическое пространство есть самое обычное трёхмерное евклидово пространство, известное из школьного курса геометрии. В этом были уверены все, включая тех, кто, не владея учёной терминологией, ведать не ведал, что это за «евклидово пространство» такое. (Вспомним мольеровского Журдена, не подозревавшего, что он говорит прозой.) И действительно, а как же может быть иначе? Первыми прониклись сомнением в XIX в. независимо друг от друга в России великий геометр Лобачевский, а в Германии – великий математик Гаусс и, возможно, юрист и математик Швейкарт[22]22
  Впрочем, озарение снизошло на Швейкарта (Ferdinand Karl Schweikart, 1780–1857), когда он находился в России. С 1811 по 1816 г. (по другим источникам – с 1812 по 1817 г.) Швейкарт состоял ординарным профессором древних прав Харьковского университета. В «Энциклопедическом словаре» Брокгауза и Ефрона (2-й дополнительный том, или 4-й полутом, с. 880) сообщается, что Фердинанд Львович Швейкарт читал лекции на латыни. О том, что к неевклидовой геометрии Швейкарт пришёл именно в харьковский период своей жизни, свидетельствует письмо ученика Гаусса Х. Л. Герлинга (Christian Ludwig Gerling, 1788–1864), своему учителю от 26 февраля 1844 г., в котором он, благодаря Гаусса за указания на труды Лобачевского, прибавляет: «Das russische Steppenland scheint demnach doch ein geeigneter Boden für diese Speculationen, denn Schweikart (jetzt Professor in Königsberg) ersann seine Astral-Geometrie während er in Charkov war» [ «Русские степи, должно быть, благоприятная почва для этих изысканий, потому что Швейкарт (сейчас профессор в Кёнигсберге) придумал свою астральную (звёздную) геометрию, будучи в Харькове»].
  Просвещённого читателя может удивить, что выше не упомянуто имя великого венгерского геометра Бóйаи. Увы, автор не знает, допускал ли Бóйаи возможность неевклидова строения реального мира.


[Закрыть]
. Они первыми осознали не только существование неевклидовой геометрии как математического объекта, но и возможность неевклидового строения нашего мира (мы ещё коснёмся этой темы в главе 8). Лобачевского тогда никто не понял, кроме Гаусса, сам же Гаусс, предчувствуя непонимание, ни с кем не делился своим прозрением. Теория относительности подтвердила неевклидовость мироздания, предсказав искривление пространства под воздействием массивных тел, что, в свою очередь, было подтверждено наблюдаемым отклонением луча света вблизи таких объектов. Некоторые свойства пространства-времени оказались парадоксальными, другие остаются неизвестными. Вместе с тем познание этих свойств может оказаться жизненно важным для человечества. Математика предлагает уже готовые модели, позволяющие лучше понять подобные свойства, в особенности же свойства парадоксальные, противоречащие повседневному опыту. Более точно, в математике построены структуры, обладающие требуемыми свойствами.

В частности, математические модели позволяют понять два непривычных качества окружающего нас пространства – его признанную сообществом физиков кривизну и его возможную четырёхмерность (нельзя исключать, что измерений ещё больше). Говоря о четвёртом измерении, мы не имеем в виду время (которое иногда не без оснований так называют), а ведём речь об измерении в прямом, пространственно-геометрическом смысле. Не исключено, что в реальности[23]23
  Автор просит не допытываться у него, что значит «в реальности»: он всё равно не сумеет ответить.


[Закрыть]
пространство, в котором мы живём, четырёхмерно (или даже имеет пять, шесть, а то и больше измерений), хотя непосредственному наблюдению, по крайней мере до сих пор, было доступно лишь его трёхмерное подпространство. Осознание подлинной размерности пространства (оставим в стороне вопрос о смысле слова «подлинный») может оказаться важным для познания мира. Представим себе двумерную поверхность (например, плоскость или сферу), по которой ходит слон. Его следы на поверхности имеют вид пятен. Двумерным, не обладающим толщиной существам, живущим в (не на, а именно в!) поверхности, появление этих пятен покажется необъяснимым. Наиболее проницательные двумерные мудрецы предположат наличие третьего измерения и передвигающегося в нём «слона». Возможно – всего лишь возможно! – некоторые явления в доступном нашим чувствам трёхмерном пространстве получат аналогичное объяснение на основе представлений о «четырёхмерном слоне», т. е. как следы процессов, развивающихся в четырёхмерном пространстве.

Здесь мы прикоснулись к важной философской, а точнее, гносеологической теме. Выше говорилось, что мысль о шарообразности Земли не возникла бы в человеческом сознании, если бы ещё раньше в нем не появилось представление о шаре. Само же это представление, в свою очередь, опиралось на повседневный опыт, а именно на наблюдение шарообразных тел природного происхождения (плодов и ягод, катимых скарабеями навозных шариков и т. п.). И когда человек задумался над формой Земли, ему оставалось лишь воспользоваться названным представлением. Иначе обстоит дело с попытками познать строение Вселенной. Повседневный опыт не даёт требуемых геометрических форм. Но хотя такими формами и не обладают предметы, доступные непосредственному созерцанию, оказалось, что этим формам отвечают уже обнаруженные математиками структуры. Поскольку указанные математические структуры точно описаны, при желании нетрудно понять, как в них реализуются предполагаемые свойства мироздания – даже те, которые кажутся парадоксальными. А тогда остаётся допустить, что геометрия реального мира хотя бы отчасти выглядит так, как геометрия этих структур. Таким образом, математика, не давая ответ на вопрос, как оно есть в реальном мире, помогает понять, как оно может быть, что не менее важно, ведь как оно есть, мы вряд ли когда-нибудь узнаем до конца. (Мы вернёмся к этой теме в главе 12.) И помощь, которую оказывает математика в познании мира, также следует вписать в перечень её практических приложений.

Как говорил один из самых крупных математиков XX в. Джон фон Нейман (1903–1957), «в конечном счёте современная математика находит применение. А ведь заранее и не скажешь, что так должно быть».

Нередко утверждают, что математику следует рассматривать как часть физики, поскольку она описывает внешний физический мир. Но с тем же успехом её можно считать частью психологии, поскольку изучаемые в ней абстракции суть явления нашего мышления, а значит, должны проходить по ведомству психологии. Взять, например, такое основное (и, может быть, самое главное) понятие математики, как понятие натурального числа, т. е. числа, являющегося одновременно и целым, и положительным (иногда к натуральным числам причисляют ещё и число ноль, для чего есть серьёзные основания). Ведь показать, скажем, число пять невозможно, можно только предъявить пять пальцев или пять иных предметов. Уже здесь не такая уж малая степень абстракции. Ещё более высокая степень абстракции в числе пять септиллионов: ясно, что предъявить столько предметов невозможно. И уж совсем высокая (и одновременно глубокая) абстракция заключена в понятии натурального числа вообще и натурального ряда как совокупности всех натуральных чисел. Здесь поле, которое психология только начала распахивать. Упоминавшийся уже Лузин, который был не только математиком, но и философом (и даже его избрание в 1929 г. в Академию наук СССР произошло «по кафедре философии»), так высказывался на эту тему: «По-видимому, натуральный ряд чисел не представляет собой абсолютно объективного образования. По-видимому, он представляет собой функцию головы того математика, который в данном случае говорит о натуральном ряде».

Тем не менее два математика на разных континентах приходят к одним и тем же выводам о свойствах натурального ряда чисел, хотя могут наблюдать числа никак не внешним зрением, а лишь зрением внутренним, мысленным. В этом труднообъяснимом единстве взглядов на идеальные сущности некоторые усматривают доказательство существования Бога. (Как пишет Ю. И. Манин, «мы [математики. – В. У.] изучаем идеи, с которыми можно обращаться так, как если бы они были реальными предметами»[24]24
  Манин Ю. И. Математика как метафора. М., 2008. С. 20.


[Закрыть]
. Весь вопрос в том, почему это возможно.)

Итак, мы отстаиваем два тезиса. Первый: математика – вне зависимости от того, находит ли она практическое использование, – принадлежит духовной культуре. Второй: отдельные разделы математики входят в общеобязательную часть этой культуры.

Задаваться же вопросом, что именно из математики, причём неприкладной, должно входить в общеобязательный культурный минимум, вряд ли стоит, потому что однозначного ответа на него не найти. Каждый должен определять этот минимум для себя. Задача общества – предоставить каждому индивидууму ту информацию о математических понятиях, идеях и методах, из которой можно было бы отобрать этот субъективный минимум. Вообще, приобретение знаний есть дело добровольное, и насилие тут неуместно. На ум приходит замечательное высказывание Сухарто (второго президента Индонезии – не путать с первым её президентом Сукарно): «В наше время чрезвычайно трудно заставить кого-либо сделать что-либо добровольно». Тем не менее дальше вам встретятся рекомендации о включении в математический минимум тех или иных знаний; это отнюдь не категорическое требование, а скорее, примеры и материал для дальнейшего обсуждения. Школьная программа по математике – слишком болезненная тема, чтобы её здесь затрагивать (хотя она не может не волновать, поскольку касается миллионов наших детей). Ограничусь тем, что скажу: хорошо бы в этой программе устранить перекос в сторону вычислений и уделить больше внимания качественным моментам, с вычислениями непосредственно не связанным.

Замечу в заключение, что математика составляет часть мировой культуры и благодаря своему этическому аспекту. Хотя существование такового может показаться странным, он есть. Математика не допускает лжи, т. е. ложных утверждений. Более того, математика требует, чтобы утверждения не просто провозглашались, но доказывались. Она учит задавать вопросы и требовать разъяснений, если ответ оказался тёмен. Она по природе демократична, её демократизм обусловлен характером математических истин. Их непреложность не зависит от того, кто их провозглашает – академик или школьник. Вот поучительный эпизод из жизни механико-математического факультета (знаменитого мехмата) Московского университета, относящийся к концу 1940-х гг. Великий Колмогоров читает специальный (т. е. необязательный) курс по теории меры. Он объявляет некоторую теорему и говорит, что, поскольку дальнейшее изложение на неё не опирается, он её доказывать не будет, а просит поверить на слово. Один из слушателей, третьекурсник, строит опровергающую конструкцию и в перерыве показывает её лектору. Вторую половину лекции Колмогоров начинает с изложения этой конструкции, а третьекурсника приглашает к себе на дачу, где производит в ученики.

Здесь прошу читателя остановиться и подумать, следует ли ему читать дальше. А помочь в этом раздумье способно мнение другого читателя, содержащееся в приложении к этой главе, которое помещено в конце очерка. Того, кто решит продолжить чтение, прошу прочесть (или перечесть) тот абзац предисловия, где говорится о точности и понятности.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации