Электронная библиотека » Андрей Иорданишвили » » онлайн чтение - страница 2


  • Текст добавлен: 22 ноября 2013, 19:24


Автор книги: Андрей Иорданишвили


Жанр: Медицина, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 2 (всего у книги 10 страниц) [доступный отрывок для чтения: 3 страниц]

Шрифт:
- 100% +

Биологические свойства имплантационных материалов

С биологической точки зрения материал имплантата, его химические элементы а также возможные продукты, образующиеся при его взаимодействии с биологической системой, не должны:

– вызывать патологических изменений в окружающих тканях во время их регенерации;

– нарушать гомеостаз организма, жизнедеятельность органов и тканей в течение всего периода функционирования;

– оказывать токсического, канцерогенного и аллергического воздействия на ткани и организм в целом.

Диссоциация приводит к диффузии ионов материала имплантата, что, естественно, оказывает влияние на процессы жизнедеятельности как окружающих имплантат тканей, так и организма в целом [А.И. Воложин, Г.В. Порядина, 1998].

Если суммировать химический состав биосовместимых материалов, то можно составить перечень ионов неметаллов, которые широко представлены в организме человека [Ю.А. Ершов и др., 1993; P. Марри, Д. Греннер, П. Мейес, В. Родуэл, 1993] – это Са2+, N+, H+, С+, сО32, РО4.

При этом можно допустить, что в результате диссоциации биосовместимого материала незначительное увеличение концентрации этих ионов не будет оказывать существенного влияния как на окружающие имплантат ткани, так и на организм в целом.

Некоторые металлы, входящие в состав биосовместимых материалов, например, железо, также широко представлены в организме и согласно классификации Ю.А. Ершова и соавт. (1993) являются макроэлементами. Содержание других – алюминия, кобальта, хрома, молибдена и ванадия – составляет от 10 3 до 10 5 % от общей массы организма человека.

Эти металлы являются микроэлементами. Концентрация титана и никеля в живых организмах ещё меньше, и они считаются ультрамикроэлементами [Ю.А. Ершов и др., 1993].

Таким образом, при введении в организм материалов, в составе которых имеются микро– и ультрамикроэлементы, содержание этих химических элементов может превышать их физиологический уровень. Следовательно, возможно определённое их воздействие на окружающие имплантат ткани и организм в целом.

Ионы железа являются одним из компонентов гемоглобина, миоглобина и различных ферментов. Кроме того, они принимают активное участие в трансформации аморфных кальций-фосфатных соединений в гидроксиапатит. Однако увеличение содержания железа может привести к нарушению окислительно-восстановительных процессов в тканях и оказывать токсическое воздействие на клетки.

Ионы алюминия ингибируют синтез АТФ, поэтому его повышенное содержание может существенно снизить метаболическую активность костной ткани и замедлить минерализацию [D. Williams, 1981].

Ионы алюминия могут угнетать эритропоэз и поражать центральную нервную систему. Считается, что их длительная аккумуляция в тканях головного мозга способна вызвать мутации генов AD3 и AD2, находящихся в 14-й и 19-й хромосомах, вследствие чего может развиться болезнь Альцгеймера.

Ионы кобальта накапливаются в почках, печени и поджелудочной железе. Значительное его количество содержит витамин В. Кобальт считается аллергенным металлом. Ионы кобальта ингибируют процесс преобразования аморфных кальций-фосфатных соединений в гидроксиапатит. Канцерогенная потенция кобальта в настоящее время не доказана.

Ионы хрома аккумулируются в печени, почках и костной ткани. Этот химический элемент обладает высокой аллергенной потенцией, способен проникать через клеточные мембраны, взаимодействовать с ДНК и индуцировать мутации генов [А.С. Смирнов, 2000].

Ионы никеля могут вызывать общую интоксикацию организма при попадании в кровь. При использовании материалов на основе никеля его ионы могут накапливаться в лёгких и разрушать митохондрии клеток [M. Bergman, В. Bergman, R. Soremark, 1980].

Кроме того, они являются одним из наиболее активных ингибиторов процесса образования гидроксиапатита и обладают высокой аллергенной и канцерогенной потенцией [Sinibaldi K. et al., 1976].

Ионы молибдена входят в состав некоторых ферментов, которые катализируют реакции, связанные с транспортом кислорода, и участвуют в метаболизме пуринов. Токсическое воздействие молибдена отмечается только при попадании его ингаляционным путём в лёгкие.

Ионы ванадия принимают участие в обмене жиров, минерализации костной ткани и зубов [Toth R.W., Parr G.R., Gardner L.K., 1985].

Повышенное содержание ванадия может оказывать выраженное цитотоксическое воздействие на ткани и вызывает разрушение некоторых ферментов.

Титан не является типичным и основным химическим элементом тканей и биомолекул организма, как, например, железо или кобальт. Титан может накапливаться в лёгких. Вместе с тем этот металл считается абсолютно биоинертным. Увеличение его концентрации даже в несколько тысяч раз не оказывает токсического, аллергенного и канцерогенного воздействия, не вызывает воспалительной реакции в окружающих тканях и не ингибирует процесс образования костного гидроксиапатита. Кроме того, ионы титана обладают умеренно выраженным бактериостатическим эффектом.

Приведенные выше данные о воздействии некоторых ионов металлов, входящих в состав имплантационных материалов, основаны на экспериментальных исследованиях и не всегда находят подтверждение в клинической практике. Это связано в первую очередь с низкой степенью диссоциации и высокой коррозийной устойчивостью материалов, например, алюмооксидной керамики. Применение изготовленных из неё имплантатов не приводит к повышению концентрации алюминия в тканях и органах, либо степень диффузии его ионов в окружающие ткани настолько ничтожна, что не оказывает токсического воздействия на окружающие ткани [Smith D.C. et al., 1997].

Сплавы на основе титана также обладают очень высокой коррозийной устойчивостью, и каких-либо статистически достоверных данных, основанных на экспериментальных и клинических исследованиях, о негативном воздействии этого сплава на окружающие ткани и организм в целом в настоящее время пока не представлено. Вместе с тем, ряд авторов считает, что сплавы по своим биологическим свойствам значительно уступают технически чистому титану.

На сегодняшний день доказано негативное воздействие на окружающие ткани и организм только сплавов на основе кобальта, хрома и никеля. Экспериментальные и клинические исследования показали, что эти сплавы могут вызывать:

– воспалительную реакцию в окружающих тканях, сопровождающуюся формированием грануляционной ткани и инкапсуляцией этих материалов;

– гибель клеток соединительной ткани за счёт цитотоксического эффекта;

– иммунные реакции, сенсибилизацию организма и аллергию;

– образование злокачественных опухолей в окружающих тканях.

Возможное негативное воздействие сплавов с высоким содержанием кобальта, хрома и никеля существенно ограничивает их использование для изготовления внутрикостных имплантатов.


Биохимические и термодинамические свойства имплантационных материалов

С биохимической и термодинамической точек зрения поверхность материала имплантата должна обеспечивать самопроизвольную адсорбцию биомолекул и клеток, а также физическую или химическую связь с матриксом кости.


Гетерогенный катализ

Адсорбция биомолекул на поверхности биосовместимых материалов происходит на поверхности фазового раздела; при этом молекулы вещества, находящегося в жидкой фазе, реагируют с поверхностью твёрдого тела. Такой физико-химический процесс называется гетерогенным катализом и включает пять обратимых стадий [Фримантл М., 1991]:

1. Диффузия. Реагирующие молекулы диффундируют к поверхности твёрдого вещества.

2. Адсорбция. Реагирующие молекулы сначала подвергаются физической адсорбции на активных центрах поверхности твёрдого вещества, затем происходит их хемосорбция.

3. Химическая реакция. Реагирующие молекулы жидкости, а точнее их ионы, вступают в реакцию с ионами поверхностного слоя твёрдого вещества с образованием продуктов.

4. Десорбция. Обратная адсорбции стадия. Хемосорбированные молекулы жидкости становятся физически адсорбированными на поверхности твёрдого вещества и в конце концов высвобождаются с его поверхности.

5. Диффузия. Молекулы продуктов диффундируют от поверхности твёрдого вещества.

Физическая адсорбция происходит, когда молекулы связываются с активными центрами на поверхности твёрдого вещества силами Ван-дер-Ваальса (слабые силы межмолекулярного притяжения).

Адсорбция белков и физико-химическая связь биологических тканей с небиологическим материалом может происходить в том случае, если поверхность материала является «интересной» для биомолекул, которые стремятся к ней, а также, если эта поверхность имеет активные центры, способные образовать физико-химическую связь.

С физико-химической точки зрения биосовместимый материал может обеспечивать адсорбцию биомолекул, если он обладает достаточной для этого процесса энергией и способностью к рекомбинации с дисоциированными молекулами аминокислот и белков [Helsen J.A., Breme HJ. (ed), 1998].


Термодинамические свойства биосовместимых материалов

Для того, чтобы судить о возможности самопроизвольного протекания реакции адсорбции, следует учитывать три основных фактора: энергию, энтальпию и энтропию.

Энергия – это единая мера способности совершать работу. Последняя является формой передачи энергии от одной системы к другой или от системы к ее окружению. Любое тело или система обладает внутренней энергией, которая является суммой кинетической и потенциальной энергий всех частиц этого тела или системы. Внутренняя энергия является функцией состояния системы и не зависит от того, каким образом система оказалась в данном состоянии. Термодинамическая функция состояния, которая отражает баланс энтропии и энергии системы, является свободной энергией Гиббса (G). Свободная энергия Гиббса является мерой устойчивости химического соединения, а также мерой осуществимости самопроизвольной физико-химической реакции. Изменение свободной энергии Гиббса (дельта G) – это та часть изменения внутренней энергии, которая может превращаться в работу. Только при отрицательных значениях этой дельты может происходить адгезия биомолекул на поверхности материала.

Как показывают расчеты, биосовместимые материалы имеют различную величину энергии Гиббса и, следовательно, потенцию к самопроизвольной адгезии биомолекул на своей поверхности. Наиболее высокие показатели имеют цирконийоксидная и алюмооксидная керамика, а также оксиды титана; наиболее низкие – оксиды кобальта.


Физико-химические свойства поверхностей биосовместимых материалов

Одной из составляющих внутренней энергии тела или системы является поверхностная энергия. Как и свободная энергия Гиббса, она определяет одно из наиболее важных биохимических свойств поверхности материалов – способность к адгезии биомолекул [Thull R., 1998].

Считается, что для её осуществления поверхностная энергия биосовместимого материала должна составлять 60-120 мДж/м2, так как адсорбция является энергоёмким процессом, требующим потребления не менее 45–60 мДж/м2 поверхности биосовместимого материала. Математическое уравнение расчёта энергетических затрат, необходимых для адгезии биомолекул на поверхности небиологического материала, было выведено F.M. Fowkes (1986).

Вместе с тем для образования костной ткани на поверхности имплантата важна не столько способность к адсорбции собственно белков на поверхности биосовместимого материала, сколько способность этой поверхности к связыванию специфических белков, обеспечивающих адгезию остеобластов и формирование остеоида.

Можно предположить, что первоначально с поверхностью имплантата будут взаимодействовать белки плазмы крови, в первую очередь фибриноген. Этот белок является основой для образования волокон фибрина, которые необходимы для направленной пролиферации остеогенных клеток. Однако фибриноген спустя 3–5 дней (период пролиферации остеогенных клеток и их преобразования в остеобласты) должен освободить место для специфических белков (витро– и фибронектина), обеспечивающих адгезию остеобластов и адсорбцию коллагена. Это означает, что к моменту секреции остеобластами этих специфических белков должна произойти десорбция фибриногена от поверхности имплантата. Согласно разработанной В. Kasemo и J. Lausmaa (1986) схеме за первичной адсорбцией на поверхности имплантата биомолекул и молекул воды следует десорбция биомолекул. Затем происходит реабсорбция других биомолекул, их модификация или фрагментация. Поэтому сила связывания фибриногена поверхностью биосовместимого материала имеет большое значение, но она должна быть адекватной, т. е. обеспечивать адсорбцию фибриногена не более 3–5 дней.

Изучая процессы адсорбции и десорбции различных белков, D.F Williams, I. Askill и R. Smith (1985) также пришли к выводу, что сила адсорбции самого фибриногена составляет не более 3–5 дней.

На основании результатов многочисленных исследований [Williams D.F. et al., 1985] можно сделать вывод о том, что титан обладает умеренной способностью к адсорбции фибриногена и обеспечивает оптимальные сроки его десорбции.

После десорбции фибриногена происходят диффузия, адсорбция и химическая реакция между кислотными остатками витронектина и ионами титана, что создаёт условия для адгезии остеобластов к поверхности имплантата. Витронектин при этом выступает в качестве мишени для рецепторов остеобластов, которые представляют собой белки интегрин и адгерин, входящие в состав клеточной мембраны остеобластов, прикрепляющиеся к витронектину и обеспечивающие связь вне– и внутриклеточных белковых комплексов.

В процессе секреции остеоида связь между рецепторами остеобластов и витронектином ослабевает, происходит их отрыв от поверхности имплантата, а затем десорбция, диффузия или фрагментация витронектина. Места, освободившиеся после десорбции и диффузии этого белка, могут быть заняты молекулами диссоциированных аминокислот, образующих коллаген.


Механические свойства имплантационных материалов

Известно, что у человека с интактными зубными рядами вертикальный компонент силы, воздействующей на отдельные группы зубов во время жевания, обычно составляет в области моляров и премоляров 200–880 N; клыков и резцов – 50-222 N. Иногда вертикально направленная сила, приходящаяся на жевательную группу зубов, может достигать даже 2440 N. Боковая сила, воздействующая на зубы, имеет величину приблизительно 20 N. При дефектах зубных рядов окклюзионная сила снижается на 20–50 % по отношению к первоначальному значению. Максимальная величина силы, воздействующей при жевании на съёмные протезы, составляет 69 N; на протезы, опирающиеся на имплантаты, – в среднем 143 N и может достигать более 211–412 N.

Таким образом, на имплантат воздействуют внешние силы, которые могут достигать значительной величины. Поэтому материал и сам имплантат должны не только выдерживать максимальную силу воздействия, но и обладать определённым запасом прочности.

Прочность – это свойство материала выдерживать действия внешних сил без разрушения. Пределом прочности называется механическое напряжение, которому соответствует наибольшая выдерживаемая телом нагрузка перед разрушением его кристаллической структуры [Яворский М., Селезнёв Ю.А., 1989].

При этом механическим напряжением (сигма – о) называется физическая величина, численно равная силе упругости, приходящейся на единицу площади сечения тела:

Сигма (o) = F/S, где F – сила упругости, S – площадь сечения тела.

Под воздействием внешней силы частицы, расположенные в узлах кристаллической решётки материала, смещаются из своих равновесных положений. Смещению препятствуют силы, связывающие эти частицы. Поэтому при деформации материала, вызванной внешним воздействием, возникает сила упругости, направленная в сторону, противоположную смещению частиц тела при его деформации [Яворский Б.М., Селезнёв Ю.А., 1989].

Запасом прочности называется число, показывающее, во сколько раз предел прочности превышает допускаемое напряжение. Прочность материала зависит от его способности (или неспособности) к деформации, а также от технологии обработки материала. Деформацией твёрдого тела называется изменение его размеров и объёма, которое сопровождается изменением формы тела. Упругостью называется свойство тел восстанавливать свои размеры, форму и объём после прекращения действия внешних сил, вызывающих деформацию. Деформации, которые исчезают после того, как действие внешних сил прекращается, называются упругими. Если деформации сохраняются после удаления нагрузки, то они называются остаточными или пластическими, а способность материалов давать остаточные деформации называется пластичностью. Противоположным пластичности свойством является хрупкость, т. е. способность материала разрушаться при незначительных остаточных деформациях.

К простейшим видам деформации относятся линейное (продольное) растяжение (сжатие) материала и поперечная деформация. Мерой продольной деформации является модуль Юнга (Е), который характеризует способность материала сопротивляться деформированию под воздействием внешней нагрузки. Способность материала к поперечным деформациям характеризует коэффициент Пуассона.

Деформации дентального имплантата и его компонентов должны быть упругими, т. е. предел прочности и упругости материала должен превосходить как величину воздействующей на имплантат внешней силы, так и напряжение, возникающее под её воздействием [Helsen J. A., Breme H.J., 1998].

Кроме того, следует учитывать, что жевательные нагрузки имеют динамический и циклический характер. Частота жевательных циклов составляет около 60–80 в мин. При каждом смыкании на зуб воздействует жевательная сила в течение 0,2–0,3 с. Общее время контактного напряжения зубов – 10–17,5 мин в сутки.

Таким образом, динамическая нагрузка на зубы, их опорный аппарат и окружающую кость чередуется с отдыхом тканей. Аналогичную картину динамических нагрузок можно ожидать и при воздействии на имплантаты.

Динамические нагрузки вызывают механическое напряжение в теле, которое во много раз может превосходить таковое при статической нагрузке. Известно, что многие материалы, упругие и пластичные при статической нагрузке, становятся хрупкими при действии динамической нагрузки. При внезапном приложении нагрузки деформация и напряжение вдвое больше, чем при статическом действии той же нагрузки [Helsen J.A., Breme H.J., 1998].

Таким образом, при жевательной циклической нагрузке можно ожидать увеличения напряжения в материале имплантата до 200 МПа при воздействии силы в 400 N и даже до 500 МПа при 1000 N.

Воздействие многократно повторяющейся переменной нагрузки резко снижает прочность всех материалов. Снижение прочности при действии циклических нагрузок называется усталостью материалов. При циклических нагрузках разрушение материала происходит в результате постепенного развития трещин. Природа усталостного разрушения обусловлена особенностями молекулярного и кристаллического строения вещества. Например, отдельные кристаллиты металлов обладают неодинаковой прочностью в различных направлениях, поэтому при определенном напряжении в некоторых из них возникают пластические деформации, которые при повторных циклических нагрузках повышаю хрупкость в отдельных участках материала. В итоге при большом числе повторений нагрузки на одной из плоскостей скольжения кристаллов появляются микротрещины. Возникшая микротрещина становится сильным концентратором напряжений и местом окончательного разрушения материала, даже в тех случаях, когда величина напряжения меньше предела прочности материала. Поэтому переломы имплантатов могут происходить и под воздействием жевательной силы, не превышающей средний физиологический уровень.

Теоретические расчёты и опытные испытания показали, что под воздействием внешней аксиально-направленной силы, достигающей 800-1100 N, в дентальном имплантате могут возникать механические напряжения от 200 до 250 МПа, а при увеличении этой силы до 1860 N они возрастают до 420 МПа. На основании этих расчётов становится очевидным, что необходимым 2-3-кратным запасом прочности обладают биотолерантные (сталь и кобальтохромовый сплав) и биоинертные материалы – например, титан и его сплавы.

Алюмооксидная керамика, биометаллы и биостекло – достаточно жёсткие материалы менее, чем металлы подвержены упругой деформации; следовательно, они являются более хрупкими и имеют меньший запас прочности. Поэтому керамические дентальные имплантаты в настоящее время используются редко, а имплантаты из биологически активных стёкол применяются в основном для установки в лунки удалённых зубов с целью профилактики резорбции, прогрессирующей атрофии и деформации альвеолярных отростков.


Биофункциональная оценка имплантационных материалов

Согласно закону Гука механическое напряжение прямопропорционально относительной деформации. Исходя из этого закона, можно проследить зависимость величины напряжения в материале имплантата и окружающей его кости от модуля упругости материала: чем выше значения модуля упругости материала, из которого изготовлен имплантат, тем выше уровень напряжения, возникающий при действии окклюзионной нагрузки в окружающей кости.

Поэтому модуль упругости является одним из основных показателей функциональной пригодности имплантационного материала.

Качественная оценка материалов, служащих для изготовления внутрикостных имплантатов, проводится с помощью индекса биофункциональности [Helsen J.A., Breme H.J., 1998]:

BF = o/E,

где о – усталостная прочность материала, Е – модуль Юнга.

На основании расчётов при помощи этой формулы можно сделать вывод о том, что титан и его сплавы, имеющие достаточную усталостную прочность и значения модуля упругости в раза меньшие по сравнению с биотолерантными металлами и почти в раза меньшие, чем у различных видов керамики, обладают более приемлемыми биофункциональными свойствами.


Страницы книги >> Предыдущая | 1 2 3 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации