Текст книги "Наземные и морские экосистемы"
Автор книги: Коллектив Авторов
Жанр: География, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 9 (всего у книги 37 страниц) [доступный отрывок для чтения: 12 страниц]
И.А. Мельников[5]5
Институт океанологии им. П.П. Ширшова РАН, Москва
[Закрыть], Р.М. Гогорев[6]6
Ботанический институт им. В.Л. Комарова РАН, Санкт-Петербург
[Закрыть]
Оценка состояния экосистемы морского льда центрального Арктического бассейна по данным наблюдений в период проведения МПГ
Аннотация
В работе анализируются современные изменения в составе и функционировании экосистемы морского льда в центральном Арктическом бассейне без обсуждения причин природного или антропогенного влияния. Материалом для анализа послужили наблюдения, выполненные в 1970–1980 гг. прошлого века и в период Международного полярного года (2007–2008). Показано, что идет интенсивное перестроение в составе биологических сообществ морского льда в Северном Ледовитом океане. Рассмотрены характерные особенности формирования экосистем многолетнего и сезонного морского льда. Дается прогноз перехода функционирования экосистемы пелагиали СЛО от условий перманентного состояния ледового покрова к условиям сезонного развития.
Введение
В последние два десятилетия в Арктике наблюдается четкий температурный тренд в сторону потепления. Потепление привело к уменьшению ледового покрова в Северном Ледовитом океане (СЛО) как по площади (http://nsidc.org/data/seaice_index/n_plot.html), так и по толщине (Parkinson et al., 1999; Rothrock et al., 1999; и др.), вследствие более интенсивного таяния. В пределах поверхностного 0–30 м слоя происходит накопление талой воды, гидрологические и гидрохимические характеристики которой заметно изменились: вода стала более теплой и более пресной (Carmack et al., 1995; Cavaliere et al., 1997; Serreze, Maslanik, 1997; Morison et al., 1998; McPhee et al., 1998; и др.). Наблюдаемые климатические изменения и связанные с ними изменения ледовой среды привели к заметным изменениям в составе, структуре и функционировании биологических сообществ, населяющих морской лед и поверхностную воду (Melnikov et al., 1998; Melnikov, 2000; Melnikov, Kolosova, 2001, Melnikov et al., 2001). Сравнительный анализ материалов, собранных в антициклональном круговороте СЛО в период дрейфа российских ледовых станций Северный Полюс-22, СП-23 и СП-24 в 1975–1981 гг. и в международном эксперименте SHEBA (Surface Heat Budged in the Arctic Ocean) в 1997–1998 гг., показал, что численность видов ледовых диатомовых водорослей заметно уменьшилась, причем одновременно возросла роль динофитовых водорослей. Резко сократилась численность беспозвоночных животных, таких как нематоды, копеподы, амфиподы, турбеллярии, доминировавших ранее в толще многолетних льдов (Melnikov et al., 2002).
Эти результаты были получены, главным образом, по наблюдениям в Канадском секторе СЛО. Аналогичные данные по центральным районам Арктического бассейна, и особенно в околополюсном районе СЛО до начала проведения Международного полярного года в 2007–2008 гг., были недостаточны, чтобы судить об изменениях в экосистеме арктического морского льда. Вместе с тем, было важно понять, является ли уменьшение площади и толщины многолетнего льда вследствие таяния, а также потепление и распреснение поверхностных вод в Канадском секторе СЛО локальным или имеет глобальный характер, связанный с процессами в целом для всего океана. До настоящего времени информация по данному вопросу была весьма ограничена, поэтому основной целью проекта МПГ «Панарктическая ледовая дрейфующая экспедиция» (ПАЛЭКС) явилась оценка состояния экосистемы морского льда и подледного водного слоя в околополюсном районе СЛО.
В настоящей работе анализируются данные наблюдений в период проведения МПГ (2007–2008 гг.), а также частично данные наблюдений в апреле 2009 г. (Мельников, 2007; 2008; 2009), которые сравниваются с аналогичными данными, полученными три десятилетия назад в центральных районах СЛО.
Район работ, материал и методы наблюдений
Полевые работы по проекту ПАЛЭКС (http://www.paicex.ru) были выполнены в дрейфующих лагерях вблизи ледовой базы «Барнео», которую ежегодно организует российский экспедиционный центр «Полюс» в районе географического полюса СЛО (http://www.barneo.ru). В 2007 г. полевые работы охватили период с 6 по 26 апреля, в течение которого ледовый лагерь дрейфовал от первоначальных позиций на 89°30’ с.ш. сначала к Северному полюсу, а затем строго на юг до 88°57’ с.ш. Научная концепция ПАЛЭКС 2007 г. была сохранена в 2008 и 2009 гг. Полевые работы в 2008 г. были организованы на том же ледовом поле, где располагалась ледовая база «Барнео», и продолжались с 1 по 20 апреля. За это время ледовое поле дрейфовало на юг от 89°01’ с.ш. и 05°01’ в.д. до 88°30’ с.ш. и 11°02’ в.д. В апреле 2009 г. аналогичные исследования в этом районе СЛО были выполнены с 2 по 22 апреля, за этот период дрейф проходил на юг от 89°51’ с.ш. и 71°52’ в.д. до 88°34’ с.ш. и 02°07’ в.д. На рис. 1 показаны дрейфы ПАЛЭКС в 2007, 2008 и 2009 гг., построенные по ежесуточным 09.00 часовым утренним координатам.
Рис. 1. Траектории дрейфа в периоды полевых работ
Важной особенностью экспедиций явилось выполнение наблюдений с использованием единых методов и орудий сбора материала в пределах мезомасштабного полигона. Для сбора ледовых кернов на предмет криобиологического анализа использовали мотобур фирмы «Tanaka» со шнеками фирмы «Kovaks». Записи вертикальных профилей температуры и солености выполняли с помощью СТД-зондов производства компании Sea-Bird Electronics (США) от поверхности до глубины 1000 м. Планктонные ловы выполняли сетью Джеди с входным отверстием 37 см и диаметром фильтрующего конуса 50 см, снаряженной планктонным ситом с размером ячеи 150 мкм; скорость подъема сети в момент лова 20 см/с. Для сбора планктона с нижней поверхности льда в каждой экспедиции ПАЛЭКС выполняли подледные водолазные работы с использованием легководолазного снаряжения. Сборы планктона выполняли с помощью сачка с входным отверстием 20×40 см и планктонным ситом с размером ячеи 150 мкм. Помимо наблюдений в стационарных лагерях, в период экспедиций действовала мобильная группа, целью которой было проведение измерений толщины снежно-ледяного покрова в районах дрейфа. Измерения толщины снега и льда проводили в направлениях на север, юг, восток, запад от базового лагеря через каждые 100 м. Собранные пробы льда и воды обработаны в стационарных условиях лабораторий Института океанологии им. П.П. Ширшова РАН и Ботанического института им. В.Л. Комарова РАН.
Результаты
По данным наблюдений в околополюсном районе СЛО, средняя толщина льда в период максимального развития составила 177.1 см ± 13.2 (n = 133), 181.4 см ± 13.3 (n = 203) и 183,1 ± 12.4 см (n = 40) см соответственно в 2007 г., 2008 г. и 2009 гг. (табл. 1). Отмечено увеличение встречаемости сезонных льдов (группы льдов толщиной 180–200 см) с 37 % в 2007 до 68 % в 2008 г. и уменьшение встречаемости многолетнего льда (группа льдов 240–300 см): так, в 2007 г. керны льда толщиной более 240 см были встречены 6 раз в 133 измерениях, а в 2008 г. совсем не отмечены в 203 измерениях (рис. 2).
Рис. 2. Распределение льдов по размерным группам в период исследований
Таблица 1. Толщина снега и льда в перид наблюдений экспедиций ПАЛЭКС (2007–2009 гг.)
Величины солености отражают типичное вертикальное распределение, характерное для солености сезонного льда в пределах 5–8 ‰ по всей толще в группе 180–200 см и многолетнего льда в группе 240–300 см от значений 0,1–0,5 ‰ в верхних и до 2–3 ‰ в нижних слоях (рис. 3). Содержание минеральных форм кремния и фосфора существенно увеличилось в верхнем 30–40 см слое, что, вероятно, связано с особенностями физических и химических процессов формирования льда в последние годы, когда наблюдается интенсивное таяние ледового покрова (рис. 4). Гидрофизические характеристики поверхностной арктической водной массы заметно изменились за период наблюдений 2007–2009 гг.: соленость в водном слое 40–50 м уменьшилась на 2,5 ‰, а температура увеличилась на 0.2 °С (рис. 5), что свидетельствует о распреснении и потеплении верхнего слоя океана за последние три года, вероятно, из-за наблюдаемого таяния морского льда в центральных районах СЛО.
Рис. 3. Вертикальные профили солености в толще льда
Рис. 4. Вертикальное распределение биогенных элементов в толще льда
Рис. 5. Гидрофизическая структура водной толщи в 2007–2009 гг.
В 2007 г. состав флоры морского льда включал 62 вида водорослей из 3-х отделов, в том числе 51 диатомовых (табл. 2); наиболее разнообразные – роды Thalassiosira (8), Navicula (7), Nitzschia (6) и Chaetoceros (5 видов). Численность клеток водорослей составляла 103–104 клеток в литре, среди них преобладали Nitzschia frigida, N. polaris и Fragilariopsis cylindrus. В 2008 г. в пробах льда было обнаружено 45 видов водорослей из 3-х отделов, в том числе 27 диатомовых. Наиболее разнообразные – роды Chaetoceros (8 видов) и Nitzschia (5). Численность водорослей, среди которых доминировали Rhizosolenia hebetata f. semispinа и Cylindrotheca closterium, составляла 102–104 клеток в литре. В 2009 г. всего был идентифицирован 31 вид из трех отделов. Интересно отметить, что в пробах льда 2009 г. в массе были представлены планктонные формы, характерные для весеннего (частично даже для летнего!) «цветения»: виды родов Pseudo-nitzschia, Nitzschia, Chaetoceros и Thalassiosira. Только виды Fossula arctica, Navicula spp., Fragilariopsis cylindrus, Cylindrotheca closterium и Entomoneis paludosa var. hyperborea относятся к ледовым и планкто-ледовым формам. Весьма любопытно также нахождение мощных включений диатомовых в толще льда, придающих ледовому слою бурую окраску (рис. 6). Положение слоев было различным: в первом случае на расстоянии 30–40 см от верхней (снежной) поверхности льда толщиной 198 см, а во втором, напротив, в 30–40 см от нижней (морской) поверхности льда, толщина которого достигала 200 см. Образование таких слоев во льду, на наш взгляд, происходит следующим образом: толщина остаточного после летнего таяния льда составляла в первом случае 30–40 см, а во втором – около 140–160 см. В период осенней стадии сукцессии водорослей последние могли активно развиваться на нижней морской поверхности льда, что привело к образованию мощного бурого слоя. Как известно, лед растет снизу, поэтому зимой на этот (старый) лед нарастают новые слои, и диатомовые водоросли оказываются включенными (вмерзшими) в его толщу. Существенная разница в численности диатомовых в пробах свидетельствует о неоднородности и случайности сложившихся условий консервации водорослей.
Рис. 6. Диатомовые водоросли в ледовом керне
Обращает на себя внимание заметное уменьшение количества видов за время наблюдений: 62 вида в 2007 г., 45 в 2008 г. и 31 в 2009 г., т. е. разнообразие ледовой флоры уменьшилось за этот период вдвое (табл. 2). Заметно обеднение таксономического состава водорослей: из 62 видов, идентифицированных в 2007 г., только 17 видов являются общими со списком 2008 г. и 9 видов со списком 2009 г. Кроме того, в каждом из исследованных фитоценозов доминируют различные виды: так, в ледовом фитоценозе 2007 г. по численности клеток доминировали Nitzschia frigida, N. polaris и Fragilariopsis cylindrus, в 2008 г. – Rhizosolenia hebetata f. semispinа и Cylindrotheca closterium, а в 2009 г. – Fossula arctica. Отмечено также возрастающая роль динофитовых водорослей.
Таблица 2 (часть 1). Встречаемость видов ледовых водорослей в сборах ПАЛЭКС 2007, 2008 и 2009 гг.
Таблица 2 (часть 2). Встречаемость видов ледовых водорослей в сборах ПАЛЭКС 2007, 2008 и 2009 гг.
Ледовая фауна, обитающая в межкристаллических пространствах, главным образом, в нижних слоях льда, оказалась поразительно бедной: в большинстве просмотренных проб, собранных в период 2007–2009 гг., были отмечены только отдельные особи коловраток (Rotatoria), а такие характерные виды криоинтерстициального биоценоза, как нематоды, турбеллярии, молодь амфипод, копепод, встречавшиеся обильно ранее в центральных районах СЛО, в исследуемый период не были встречены ни разу. Аналогично бедна криопелагическая фауна, связанная с обитанием на нижней (морской) поверхности льда: в пробах, собранных во время водолазных работ подо льдом в период дрейфа ПАЛЭКС в апреле 2007, 2008 и 2009 гг. были идентифицированы молодь амфиподы Apherusa glacialis и единичные особи Oithona similis и Calanus glacialis.
В планктоне, собранном в апреле 2007 г., идентифицировано 25 таксонов, из которых 13 видов приходится на отряд Copepoda. Данные по соотношению численности доминирующих видов зоопланктона (Сalanus glacialis, C. hyperboreus, Metridia longa, Pseudocalanus minutus, Scaphocalanus magnus, S. longicornis, Microcalanus pygmaeus, Oithona similis, Eukrohnia hamata) показывают, что межвидовое соотношение сохраняется на всех станциях, но общая численность в слое 0–300 м различается значительно, что может быть связано с пространственной неоднородностью в распределении зоопланктона по глубине. Данные по слою 0–50 м показывают, что в это время года в поверхностной арктической водной массе доминирует только один вид – Oithona similis (рис. 7). В планктоне ПАЛЭКС-2009 идентифицировано 32 таксона, из которых по численности в слое 0–300 м доминируют Сalanus glacialis, C. hyperboreus, Metridia longa, Pseudocalanus minutus, Spinocalanus longicornis, Microcalanus pygmaeus, Oithona similis, Oncaea notopus. Фауна в слое 0–50 м бедна как по видовому составу, так и по численности: в это время года в поверхностной арктической водной массе доминирует только один вид – Oithona similis, другие виды – Сalanus glacialis, Metridia longa, Microcalanus pygmaeus, Paraeuchaeta glacialis – встречены здесь в единичных экземплярах. Отмечено высокое сходство по численности и видовому составу зоопланктона и криопелагической фауны в сборах 2007 и 2008 гг.
Рис. 7. Видовой состав планктона в поверхностном слое. Численность особей доминирующих видов. Обозначения: Calanus glaciais (C.gl.), Calanus hyperboreus (C. hyp.),Metridia longa (M. lon.), Pseudocalanus minitus (P. min.), Scaphocalanus magnus (Sc. mag.), Spinocalanus longicornis (Sp. lon.), Microcalanus pygmaeus (M. pig.), Oithona simillus (O. sim.), Eukrohnia hamata (E. ham.)
Обсуждение
Исследованиями в последнее десятилетие выявлено заметное изменение качественного и количественного состава биоты морского льда в СЛО по сравнению с составом в середине 70-х годов прошлого столетия. Так, общий список ледовых водорослей, идентифицированных за период 1975–1981 гг., насчитывает 171 вид (Мельников, 1989), в целом для Арктики известно около 570 таксонов только диатомовых водорослей (Ильяш, Житина, 2009), а по наблюдениям в период 2007–2009 гг. выявлено около 60 видов. Преобладание морских диатомовых водорослей было важной особенностью фитоценоза морских льдов в 70-е годы, а в последнее десятилетие их доминирование заметно снижается и возрастает роль других групп. Изменился также и состав ледовой фауны. Такие массовые представители простейших и беспозвоночных, как фораминиферы, тинтинниды, клещи, нематоды, турбеллярии, коловратки, копеподы и амфиподы, связанные с обитанием в толще льда в 70-е годы (Мельников, 1989), в последнее десятилетие встречаются редко или в виде отдельных фрагментов тел этих организмов. Чтобы понять причины выявленных различий, необходимо рассмотреть особенности состава и динамики современного ледового покрова СЛО, а также особенности формирования и функционирования экосистемы многолетнего и сезонного льда.
В середине 70-х годов прошлого века площадь морского льда в СЛО в момент его максимального развития составляла 8,43 млн км2 (Атлас океанов, 1980), и по данным спутниковых наблюдений в 1973–1976 гг. не наблюдалось заметных межгодовых колебаний (Carsey, 1982; NASA, 1987). С начала 80-х в Арктике наблюдается потепление и, как следствие, сокращение площади льда, которое особенно заметно в последнее десятилетие: 7 млн км2 в 2000 г., 5,32 млн км2 в 2005 г. и 4,14 млн км2 в 2007 г. (http://nsidc.org/data/seaice_index/n_plot.html). Приведенные данные отражают площадь льда, остающегося после летнего таяния на акватории океана (сентябрь). Наиболее устойчивой частью ледового покрова являются многолетние льды, поэтому величина 4,14 млн км2 отражает площадь именно многолетнего льда, пережившего активное летнее таяние 2007 г. Если в 70-е годы площадь многолетнего льда в зимний период составляла 70–80 % площади СЛО (Захаров, 1981), то в феврале 2008 г. только 30 %, что на 10 % менее, чем в 2007 г. При этом остаточный лед становится моложе: с середины до конца 80-х, более 20 % арктического морского льда было старше 8 лет, а в феврале 2008 только 6 % льда имело возраст 6 лет (http://nsidc.org/data/seaice_index/n_plot.html). Приводимые здесь данные о сокращении площади морского ледового покрова не означают, что ледовый покров полностью исчезает. Речь идет только об уменьшении площади многолетнего льда, которое приводит к увеличению площади открытой воды, где формируются сезонные льды в зимний период, т. е. в настоящее время идет динамичный процесс перестроения в составе морского ледяного покрова СЛО с доминирования многолетних на доминирование сезонных льдов, физические и биологические характеристики которых принципиально различаются.
Основными физическими показателями различий между многолетними и однолетними льдами являются толщина и соленость. Как известно, чем старше лед, тем он мощнее и преснее, и наоборот (Мальмгрен, 1930). В условиях стабильного климата, многолетний морской лед – это целостная и устойчивая во времени экологическая система с постоянным видовым составом флоры и фауны (Мельников, 1989). Ее устойчивость сохраняется за счет поддержания среднеравновесной толщины вследствие летнего стаивания сверху и зимнего компенсационного нарастания снизу (Зубов, 1945). Это свойство, которое можно определить как гомеостаз ледового покрова – способность сохранять свою среднеравновесную толщину, имеет важное экологическое значение. Оно выражается в том, что вертикальная структура населяющих его биологических сообществ сохраняется в результате действия двух разнонаправленных потоков: первого – движения кристаллической структуры снизу вверх вследствие термодинамических процессов ледотаяния и ледообразования, и второго – встречного пассивного и/или активного движения самих организмов сверху вниз. Зимнее нарастание льда происходит снизу на уже существующий лед, толщина которого после летнего таяния сохраняется до 2 м, и организмы, заселяющие эти растущие снизу слои, находятся в мягких температурных условиях, близких к температуре морской воды (около -2 °С), что способствует их выживанию в зимний период. Наличие сбалансированной связи между районами продуцирования и выноса многолетнего льда из бассейна, особенности его циркуляции в совокупности с механизмами, поддерживающими постоянство видового состава ледовых организмов в пределах вертикальной кристаллической структуры, в целом определяют стабильность экосистемы многолетнего льда в пространстве СЛО.
Напротив, сезонные льды – это зависимая и неустойчивая во времени экосистема, продолжительность существования которой определяется комплексом факторов среды, среди которых наиболее важным считается температура. Формирование сезонных льдов начинается на открытой воде при низкой температуре воздуха. Когда образуются первые слои, то в ледовую кристаллическую структуру нижнего растущего слоя механически захватываются планктонные организмы, находящиеся в данный момент в воде. Поскольку качественный и количественный состав планктона в воде в осенне-зимний период беден, то количество включенных в лед организмов оказывается невелико. Те же организмы, которые оказываются механически включенными в лед, попадают в условия сильного охлаждения, поскольку верхняя поверхность контактирует с воздухом, температура которого в этот период понижается до минус 30–40 °С, и часть из них выживает, а большинство организмов из-за резкого охлаждения погибает. Вероятно, поэтому весной, в период максимального развития льда, в его толще встречаются единичные клетки водорослей, простейших и отдельные экземпляры беспозвоночных организмов, механически включенные в структуру льда в период зимнего роста. В осенний период, при низкой температуре воздуха и интенсивном накоплении снега на льду, могут возникать условия для формирования так называемого инфильтрационного льда (термин Буйницкого В.Х., 1973). Когда лед еще тонкий, и вес снега становится существенным по отношению к весу самого льда, то лед притапливается ниже уровня моря так, что морская вода вместе с клетками планктонных водорослей поднимается по капиллярной системе к границе «лед-снег». Поскольку снег является хорошим теплоизолятором, и света еще достаточно для фотосинтеза, то в этом слое создаются благоприятные условия для развития водорослей. Биомасса водорослей и концентрация синтезируемого ими органического вещества в этом слое многократно превышают такие показатели в воде подо льдом. Такие льды впервые были встречены в период работ экспедиции НЭС «Академик Федоров» в канадском секторе СЛО на 82° с.ш. и 170° з.д. в сентябре 2000 г. Формирование инфильтрационных льдов – явление типично антарктическое (Буйницкий, 1973), и в настоящий момент нет прямых свидетельств дальнейшего развития инфильтрационных льдов в СЛО. Однако можно предполагать, что это явление может найти продолжение в будущем, с учетом возрастающей роли сезонных льдов и увеличения снежных осадков в Арктике.
Сравнивая механизмы формирования этих двух типов морского льда, можно заключить, что главной причиной выявленных различий между составом биологических сообществ морского льда в 70-е годы и последнего десятилетия является то, что рассматривались и сравнивались две разные по структуре и функционированию экосистемы многолетнего и сезонного морского льда. Действительно, в первом случае постоянный видовой состав водорослей и фауны беспозвоночных поддерживался механизмами, формирующих среднеравновесную толщину, и процессами заселения и развития организмов в пределах вертикальной кристаллической структуры льда. В его составе преобладали водоросли бентического типа, адаптированные к обитанию в условиях твердого субстрата и способные к передвижению в узких межкристаллических пространствах льда. Во втором случае видовой состав ледовой флоры формировался непосредственно из воды и представлен, в основном, типичными планктонными формами, образующими длинные цепочки из клеток, и развивающимися преимущественно в нижнем слое льда или на его нижней поверхности (Мельников, 1989).
Таким образом, в современном морском арктическом ледяном покрове сосуществуют две различные по составу и функционированию экологические системы многолетнего и сезонного льда. Поскольку доля первой динамично уменьшается и одновременно возрастает доля последней, то на данном этапе происходит постепенное перестроение в экосистеме пелагиали СЛО. Если такая динамика сохранится, то можно предположить, что со временем морская Арктика будет приобретать черты морской Антарктики. Действительно, в Южном океане ледяной покров исчезает летом и восстанавливается зимой. Сезонные льды доминируют, занимая более 80 % площади ледового покрова в течение 8 месяцев, а многолетние – менее 20 % его площади (NASA, 1983). Сезонный лед в Южном океане развивается на акватории к северу от 70° ю.ш., в этих широтах нет продолжительной полярной ночи, и света зимой достаточно для поддержания фотосинтеза ледовой флоры (Melnikov, 1998). Суммарная органическая продукция Антарктики создается, в основном, фитопланктоном в летний период и частично флорой инфильтрационных льдов зимой. Напротив, весь морской арктический ледовый покров расположен к северу от 70° с.ш., и все биологические сообщества развиваются в более жестких условиях среды. В центральных районах, постоянно занятых морским ледяным покровом, суммарная органическая продукция складывается из продукции, создаваемой водорослями многолетнего льда (более 90 %), и продукции водорослей сезонных льдов и фитопланктона, на долю которых приходится менее 10 % (Мельников, 1989). В районах, где доминируют сезонные льды, например, на акватории арктических морей, вскрывающихся летом ото льда, органическая продукция фитопланктона составляет 97–99 % (Subba Rao, Platt, 1984). В настоящее время в центральных районах СЛО происходит перестроение функционирования экосистемы пелагиали к условиям сезонного цикла развития ледяного покрова, поэтому здесь следует ожидать рост органической продукции, создаваемой фитопланктоном, и уменьшение вклада ледовой флоры многолетних льдов. Такой цикл развития может привести к перестроению всей низшей трофической структуры океана и, возможно, отразится на всех высших звеньях трофической сети, включая рыб, птиц и млекопитающих.
Благодарность
Научные работы по проекту МПГ «ПАЛЭКС» в 2007–2009 гг. были выполнены коллективом сотрудников Института океанологии им. П.П. Ширшова РАН, Арктического и антарктического научно-исследовательского института и Ботанического института им. В.Л. Комарова РАН при финансовой поддержке Росгидромета, Российской Академии наук, Российского фонда фундаментальных исследований (грант РФФИ 08–05–00219) и НО «Полярный Фонд». Логистическая помощь экспедиции была оказана Экспедиционным центром Арктики и Антарктики «Полюс», Агентством ВИКААР, Ассоциацией Полярников России, Сводной Группой «Газпромавиа» и АК «Таймыр», которым выражается глубокая благодарность за содействие в организации и проведении исследований.
Литература
Атлас океанов. Северный Ледовитый океан. 1980. Глав. ред. Атласов океанов Центр. Картогр. Произв. ВМФ СССР, 184 с.
Буйницкий В.Х. 1973. Морские льды и айсберги Антарктики. Л.: ЛГУ, 255 с.
Захаров В.Ф. 1981. Льды Арктики и современные природные процессы. Л.: Гидрометеоиздат, 136 с.
Зубов Н.Н. 1945. Льды Арктики. М.: ГУСМП, 360 с.
Ильяш Л.В., Житина Л.С. 2009. Сравнительный анализ видового состава диатомовых водорослей льдов морей российской Арктики. Ж.: Журнал общей биологии. Т. 70, № 2, с. 143–154.
Мальмгрен Ф.О. 1930. О свойствах морского льда. Пер. с англ. М.: Гидрогр. Упр. Гидрометеокомитета, 90 с.
Мельников И.А. 2007. Панарктическая ледовая дрейфующая экспедиция. Ж.: Океанология. Т. 47(6), с. 952–954.
Мельников И.А. 2008. Исследования на дрейфующей ледовой станции в апреле 2008 г. Ж.: Океанология. Т. 48(6), с. 952–953.
Мельников И.А. 2009. Панарктическая ледовая дрейфующая экспедиция: 2009. Ж.: Океанология, Т. 50 (2). С. 319–320.
Carsey F.D.J. 1982. Arctic sea ice distribution at end of summer 1973–1976 from satellite microwave data. In: Geophys. Res. Vol. 89, pp. 7245–7258.
Carmack E.C., Macdonald R.W., Perkin R.G., McLaughlin F.A., Pearson R.J. 1995. Evidence for warming of Atlantic water in the southern Canadian Basin of the Arctic Ocean: Results from the Larson–93 expedition. In: Geophysical Research Letters. Vol. 22, pp. 1061–1064.
Cavaliere D.J., Gloersen P., Parkinson C.L., Comiso J.C., Zwally H.J. 1997. Observed hemispheric asymmetry in global sea ice changes. In: Science. Vol. 278, pp. 1104–1106.
http://nsidc.org/data/seaice_index/n_plot.html
http://www.paicex.ru
http://www.barneo.ru
McPhee M., Stanton T.P., Morison J.H., Martinson D.G. 1998. Freshening of the upper ocean in the Arctic: is perennial sea ice disappearing. In: Geophysical Research Letters. Vol. 25, pp. 1729–1732.
Melnikov I.A. 1998. Winter production of sea ice algae in the western Weddell Sea. In: J. Mar. Systems. Vol. 17, pp. 195–205.
Melnikov I.A. 2000. The Arctic Sea Ice Ecosystems and Global Warming. In: Ed. Huntington H.P. Impacts of Changes in Sea Ice and Other Environmental Parameters in the Arctic. Report of the Marine Mammal Commission Workshop, 15–17 February 2000, Girdwood, Alaska, pp. 94–110.
Melnikov I.A., Kolosova E.G. 2001. The Canada Basin zooplankton in recent environmental changes in the Arctic Ocean. In: Ed. Semiltov I.P. Proceedings of the Arctic Regional Centre. Vol. 3, pp. 165–176.
Melnikov, I.A., Kolosova, E.G., Welch H.E., L.S. Zhitina. 2002. Sea ice biological communities and nutrient dynamics in the Canadian Basin of the Arctic Ocean. In: Deep-Sea Research, Part 1. Vol. 49, pp. 1623–1649.
Melnikov I.A., Sherr B., Wheeler P., Welch H. 1998. Preliminary biological and chemical oceanographic evidence for a long – term warming trend in the Arctic Ocean (current materials of the SHEBA Ice Camp, Beaufort Sea). In: Proceedings of the Arctic Change Workshop, Seattle, University of Washington, June 1997, Report #8, August 1998, p. 60.
Melnikov I.A., Zhitina L.S., Kolosova E.G. 2001. The Arctic sea ice biological communities in recent environmental changes. In: Mem. Natl. Inst. Polar Res., Spec. Issue. Vol. 54, pp. 409–416.
Morison J., Steele M., Anderson R. 1998. Hydrography of the upper Arctic Ocean measured from the Nuclear Submarine USS Fargo. In: Deep-Sea Res., Part 1. Vol. 45, pp. 15–38.
NASA SP–459. 1983. Antarctic Sea Ice, 1973–1976: Satellite Passive-microwave observations. W.: NASA Sci. Tech. Info. Branch. 206 p.
NASA SP–489. 1987. Arctic Sea Ice, 1973–1976: Satellite Passive – microwave observations. W.: NASA Sci. Tech. Info. Branch. 296 p.
Parkinson C.L., Cavaliere D.J., Gloersen P., J.C. Comiso, Zwally H.J. 1999. Arctic sea ice extents, areas, and trends, 1978–1996. In: J. Geophys. Res. Vol. 104, pp. 20837–20856.
Rothrock D.A., Yu Y., Maykut G.A. 1999. Thinning of the Arctic sea ice cover. In: Geophys. Res. Lett. Vol. 26, pp. 3469–3472.
Serreze M.C., Maslanik J.A. 1997. Polar Processes in Global Climate, 13–15 Nov 1996, Cancum.
Subba Rao D.V., Platt T. 1984. Primary production of arctic waters. In: Polar Biol. Vol. 3, pp. 191–201.
I.A. Melnikov[7]7
Institute of Oceanology of RAS, Moscow
[Закрыть], R.M. Gogorev[8]8
Botanical Institute of RAS, St-Petersburg
[Закрыть]. Assessment of the state of Central Arctic basin sea ice ecosystem by the observation data obtained during the IPY
Аbstract
Data of observations executed in 1970–1980 and during the International Polar Year (2007–2008) have been analyzed. It is shown, that there were intensive changes in structure of sea ice ecosystem at the Arctic Ocean. The reasons of natural or anthropogenous influence of these changes are not discussed. General features in formation of multi-year and seasonal sea ice communities are considered. The transition forecast of arctic pelagic ecosystem dynamic from stage of a permanent ice cover to conditions of seasonal development is given.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?