Электронная библиотека » Наталья Бехтерева » » онлайн чтение - страница 19


  • Текст добавлен: 8 апреля 2014, 13:44


Автор книги: Наталья Бехтерева


Жанр: Медицина, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 19 (всего у книги 28 страниц)

Шрифт:
- 100% +

Большой интерес представляет описанное Оджеманном уменьшение аномии, возникшей при стимуляции левого вентролатерального ядра у больного после инсульта за несколько лет до стереотаксической операции, а также предположение об участии левого вентролатерального таламуса в обеспечении смысловой памяти. При стимуляции медиальной центральной зоны левого вентролатерального ядра таламуса правильное называние предметов нарушалось, причем зона ядра, стимуляция которой приводила к нарушению данного вида долгосрочной памяти, была территориально меньше зоны, стимуляция которой влияла на краткосрочную память. Наряду с этими данными было показано влияние левого вентролатерального ядра на речевую функцию (Ojemann, Ward, 1971; Ojemann, 1977a). При этом области, стимуляция которых влияла на память и речь, перекрывали друг друга, имели и общие и различные зоны (заднелобная, теменная и височная кора у больных эпилепсией). Нарушения называния предметов возникли при стимуляции левой теменно-височной области. Изменения краткосрочной памяти выявлялись при стимуляции зоны теменной и височной коры, прилежащей к речевой области.

О возможности наблюдать изменения памяти при электрической стимуляции тех же зон мозга, которые использовались в качестве лечебных мишеней, пишет и Сем-Якобсен (Sem-Jacobsen, 1968). Он указывает, что в этих условиях возможны явления типа воспроизведения прошлого опыта (подобно тем, которые наблюдал Пенфильд) при стимуляции правой височной доли и области слева от третьего желудочка, передних и задних отделов лобных долей. Очень детально анализируя все эффекты стимуляции, Сем-Якобсен подчеркивает возможность одновременного наблюдения как изолированных реакций, так и их комплекса, в котором изменения памяти сочетались с изменениями речи, настроения, сознания, сердечно-сосудистыми и другими вегетативными реакциями. Эффекты в наблюдениях Сем-Якобсена были воспроизводимыми при повторных стимуляциях тех же зон.

Обобщая опыт исследования различных реакций мозга человека и животных во время точечных электрических стимуляций, Валенштейн (Valenstain, 1973) приходит к важному заключению в отношении, прежде всего, вызванных эмоционально-психических реакций. Видовое сходство анатомического строения мозга не является предпосылкой сходства реакций у разных больных при стимуляции одной и той же анатомической зоны. Что же касается эффектов стимуляции, которые могут расцениваться как связанные с нарушением, активацией или подавлением памяти, то они, по впечатлениям Валенштейна, не воспроизводятся жестко даже у одного и того же больного, а не только у разных больных. При этом Валенштейн рассматривает критически утверждения, по крайней мере, одной группы авторов – Пенфильда и его сотрудников, настаивавших на полной воспроизводимости картин прошлого опыта. Кстати, несмотря на то что по существу Валенштейн, повидимому, прав, его сомнения относительно этих эффектов могут быть проверены лишь в дальнейших исследованиях. Валенштейн полагает, что авторы, настаивавшие на их воспроизводимости, были под гипнозом представлений Зигмунда Фрейда, бо́льшая роль в которых отводится «подавленной памяти о прошлом».

Целенаправленный анализ данных, приводимых Валенштейном, Сем-Якобсеном, Пенфильдом и другими исследователями, показывает, что многие разночтения данных связаны с особенностями методических решений. Так, в работах Пенфильда полная воспроизводимость картин прошлого опыта при стимуляции одной и той же зоны мозга отмечалась при частых стимуляциях. После перерыва в стимуляциях эффект мог возникнуть, но быть отличным от предыдущих. Картина, извлекаемая из прошлого опыта, могла оказаться другой, чем после первых стимуляций. Такие же изменения эффектов во времени, но уже при стимуляции через вживленные электроды наблюдали Стивенс с соавторами (Stevens et al., 1969). Кстати, эту динамичность эффектов интересно и важно, по-видимому, в дальнейшем сопоставить с динамичностью биоэлектрических паттернов-кодов.

Изучение влияний на процессы памяти различных мозговых зон важно само по себе как раздел фундаментальных исследований мозга человека. Оно имеет несомненное значение не только для понимания нормальной психической деятельности и различных проявлений нарушений психонервной памяти в клинике, но и для понимания основы устойчивости патологических состояний при болезнях мозга. И уже сейчас эта проблема важна потому, что, изучая, как именно память влияет на самые различные процессы, можно и нужно разрабатывать на этой основе пути и приемы воздействий, включающих как основной или дополнительный элемент направленную модуляцию процессов памяти.

Что же иллюстрируют приведенные хотя и не полные, но полученные с помощью разных подходов, а отсюда репрезентативные данные о мозговой организации памяти человека? Прежде всего, несомненно, что, хотя существуют зоны мозга, имеющие очень тесную связь с процессами памяти, данные записи физиологических показателей мозга и его электрической стимуляции свидетельствуют об организации памяти по распределенному принципу. Самые разные структуры и зоны этих структур имеют отношение к памяти, причем то обстоятельство, что связь ряда образований мозга с памятью не выявлена, может зависеть и от методической стороны исследования, и от направленности интересов исследователей. Создается впечатление не просто о системном характере организации памяти, а о множестве систем, обеспечивающих различные виды и различные фазы памяти, имеющих общие для всех и различные для каждой из них звенья. Так, несомненно важное значение для памяти имеют медиобазальные отделы височной доли, причем, если отвлечься от того, что больной с двусторонним повреждением этих областей мозга при общении кажется интеллектуально сохранным, можно говорить об этих зонах мозга как важнейших для памяти. Но что значит – кажется интеллектуально сохранным? Это значит, прежде всего, что он владеет индивидуально сформированным и хранящимся в мозгу базисом памяти. Страдает при поражении медиобазальных отделов мозга перевод информации на долгосрочное хранение. Что же, долгосрочная память совсем не подвластна воздействиям? Весь опыт клиники диффузных и прежде всего сосудистых поражений мозга показывает, что и долгосрочная память может существенно нарушаться, или, точнее, нарушается возможность пользования всем этим богатством – считывания из долгосрочной памяти.

Наряду с этим, часто трудно дифференцируемым симптомокомплексом нарушений памяти, данные нейрофизиологических исследований представляют косвенные свидетельства местной активации долгосрочной памяти, почти позволяют «дотронуться» до нее, а воздействие путем электрической стимуляции на некоторые зоны мозга может ее избирательно нарушать. Пересмотр представлений о принципах хранения памяти в мозгу, введение концепции о распределенном ее хранении позволяют непредвзято оценить и эти данные. Стимуляция небольшой зоны в области зрительного бугра вызывает невозможность или ошибочность называния предметов. Долгосрочная память и обязательно механизм считывания из нее страдают. Следовательно, именно эти зоны можно отнести к образованиям мозга, являющимся очень важными для процессов долгосрочной памяти и по крайней мере пользования ею. Стимуляция конвекситальной коры приводила к считыванию из долгосрочной памяти картин прошлого опыта. Но, впрочем, именно эти факты нами уже обсуждались в самых разных аспектах. И далее, наряду с зонами мозга, влияющими на процессы памяти, независимо от ее модальности, описываются зоны, оказывающие на память и модально-специфическое влияние.

Стереотаксическая неврология еще только формируется. Ее дальнейшее развитие приведет, очевидно, по крайней мере к тому, что будут описаны достаточно полно не отдельные реакции, а спектры (синдромы!) реакций, развивающихся при точечных электрических воздействиях. Однако и сейчас не вызывает сомнений положение о том, что зоны, нейронно-глиальные популяции мозга, имеющие отношение к памяти, как правило, связаны – какими-то видами функций, хотя, по-видимому, есть зоны, при стимуляции которых влияние на память является доминирующим. Рассматривая все то, что приведено в настоящей книге, и то, что оставлено за ее пределами для сохранения логики изложения, для того чтобы за деревьями не потерять леса, невольно напрашивается мысль, что память не только очень общее свойство мозга, но и свойство всего мозга. Но для этого, демобилизующего дальнейший поиск вывода сейчас еще, к счастью, нет достаточных оснований (см. данные Ю. Д. Кропотова), а, судя по результатам изучения других базисных механизмов мозга, дело почти наверняка обстоит и не так сложно, и не так просто (рис. 36).

Рис. 36. Результаты статистической обработки тестов по запоминанию цифр у 40 больных паркинсонизмом.

Наверху – два типа динамики импеданса в двух различных структурах мозга (приведены характерные кривые). Внизу – два типа динамики мультиклеточной активности (постстимульные гистограммы). 1-й тип – изменения возникают в начале теста, 2-й тип – отсроченные изменения активности. В центре – на срезе мозга указаны структуры, в которых производились наблюдения. Цифры в знаменателе – общее число исследованных в данной структуре точек мозга, в числителе – число точек мозга, в которых наблюдались воспроизводимые изменения наблюдаемых физиологических процессов.


Что очень важно подчеркнуть сейчас? Кроме связи памяти со структурами мозга очень важным является усиление или ослабление этой связи в зависимости от местного и общего функционального состояния здорового и больного мозга. Процесс памяти, если и организованный в мозгу по полисистемному принципу, характеризуется наличием не только общих, ключевых звеньев для всех систем, но и звеньев более или менее жестких в каждой из систем. И хотя здесь, по-видимому, придется говорить о разных степенях жесткости, не исключено, что в основе положительных клинических эффектов разрушения, в частности, вентролатерального ядра при гиперкинезах (паркинсонизме) лежит не только выключение гиперактивного звена патологической системы и не только перерыв путей, но и выключение важного звена, влияющего на долгосрочную память! В то же время, если по крайней мере ряд звеньев системы (систем!) памяти жестко генетически структурно запрограммирован у человека как представителя вида, в мозгу каждого человека территориальная организация зон, модулирующих память, индивидуальна, а также преимущественно связана (точнее сцеплена) с деятельностью. Так, вентролатеральное ядро зрительного бугра, стимуляция которого влияет и на краткосрочную, и на долгосрочную память, является важным, хотя и компенсируемым при разрушении (гибким?) звеном системы обеспечения движений, эмоций, некоторых видов психической деятельности и т. д. А данные этого рода, в свою очередь, подтверждают высказанное в предыдущей главе положение о местных функциональных перестройках структур, связанных с различными видами деятельности и одновременно с записью, хранением и считыванием памяти.

Было бы неправильным ставить память наравне с другими функциями мозга. Память является базисным механизмом, свойством мозга, и факт ее организации также, по-видимому, по системному принципу не должен как бы низводить ее на уровень других систем. Память – тот основополагающий механизм, который лежит в основе возможности проявления всех онтогенетически формирующихся видов деятельности и соответственно всех обеспечивающих их мозговых систем. И в то же время во всех или во многих звеньях этих мозговых систем присутствуют базисные фиксирующие механизмы, позволяющие формироваться не только системе обеспечения функций, но одновременно и поддерживающей ее матрице памяти. Индивидуальность зон мозга, влияющих на память, существует, но может быть несколько преувеличена. Она может быть связана с индивидуальностью в строении мозга, которая, как известно, приводит к тому, что самые точные стереотаксические расчеты не в состоянии обеспечить применительно к расположению конкретных нейронноглиальных популяций полную сравнимость расположения в мозгу электрода при одномоментных стереотаксических операциях и при использовании метода вживленных электродов. В соответствии с этим уже даже факт получения однотипных результатов при стимуляции предположительно одной и той же зоны мозга, скажем, у двух-трех из десяти больных может расцениваться в пользу наличия не только индивидуальных, но и видовых закономерностей. Однако и исследования по изучению эффектов электрической стимуляции, и исследования нейрофизиологического кодирования психических процессов в мозгу свидетельствуют о значимости индивидуального паттерна (здесь – в широком смысле слова), накладывающегося на видовую принципиальную структурно-функциональную организацию мозга. Если попытаться проанализировать соотношение видового (надвидового) и индивидуального в механизмах мозга, можно было бы построить схему-шкалу: от видового к индивидуально-видовому, от индивидуально-видового к видовому – надвидовому. На этой схеме-шкале к видовому должно быть отнесено само строение мозга, его жесткая структурно-функционально генетически детерминированная организация. Индивидуально-видовой является организация индивидуально формирующихся систем деятельности и нейрофизиологических кодов психической деятельности, а вновь видовыми и надвидовыми – многие, если не все, биохимические и молекулярно-биологические основы функционирования мозга. Значение среднего звена схемы очень велико. Оно лежит в основе индивидуальности, неповторимости индивидуальных возможностей каждого человека. Значение правого звена схемы не только в общем положении единства человека со всеми живыми организмами. Оно и в других, более частных, положениях. Так, например, если данные о строении человеческого мозга могут быть получены только при изучении человека, а эволюционный подход способствует пониманию происхождения особенностей, присущих мозгу этого высшего млекопитающего, если данные о мозговой организации обеспечения индивидуально формирующихся у человека функций и, особенно специально человеческих, возможно получить только при исследовании, проводимом у человека, – при сугубо вспомогательном значении эксперимента, то изучение биохимических и молекулярно-биологических механизмов мозга вполне осуществимо в эксперименте на животных, в том числе и на сравнительно низко организованных. Правда, не исключено, что при исследовании мозга человека будут вскрыты новые стороны вопроса. Именно в данной работе обязательного упоминания заслуживают надвидовые свойства специфических полипептидов, свойства, позволяющие переносить патологические процессы (мозговую память о них?) от человека к животным (Вартанян, Балабанов, 1978) и, может быть, в дальнейшем – корригировать патологическую матрицу памяти человека полипептидами животного происхождения. Приведенные данные о мозговой организации памяти, ее структурном соотношении с деятельностью здорового мозга, лежащем в основе формирования матриц памяти, имеют значение для понимания законов функционирования больного мозга, многоплановых соотношений памяти и болезни.

Хроническое заболевание мозга формирует свой, новый рисунок матрицы памяти, перестраивая не только матрицу в целом, но и меняя удельный вес разных ее звеньев, создавая на самой основе закрепления реакций в памяти важнейшие звенья матрицы патологической памяти. Вероятно, излишне напоминать, что речь здесь идет не только и не столько о психонервной памяти, сколько о памяти как о базисном механизме, явлении и процессе мозга. Болезнь, таким образом, влияет на процессы памяти. В больном мозгу в связи с болезненными утратами и избыточной активностью формируется по тем же принципам, что и в норме, распределенная матрица, поддерживающая устойчивое патологическое состояние, влияющая далее на болезнь также по тем же основным законам, как и память здорового организма влияет на его функции. Так, например, стойкий эпилептогенный очаг, сформировавшись под влиянием постоянного раздражения в эпилептическом мозгу, становится далее важнейшим звеном матрицы памяти, поддерживающей устойчивое патологическое состояние, определяющим в большей мере и общее функциональное состояние мозга, и психонервную память, и эмоционально-психическую деятельность. В лечении хронических болезней мозга приходится использовать приемы воздействия на исходную вредность, на болезненную избыточность и недостаточность активности разных систем и структур, на матрицу памяти и отдельные ее звенья. Способ активного преодоления устойчивого патологического состояния и поддерживающей его матрицы долгосрочной памяти с помощью лечебных точечных электрических стимуляций мозга, предложенный впервые в нашей лаборатории В. М. Смирновым (Смирнов, Сперанский, 1972), затем примененный в Мадриде Дельгадо (Delgado, 1973), был возведен в ранг программных проблем конгрессов по стереотаксической и функциональной нейрохирургии (1979, июль, Париж). Прием для «стирания» памяти о местном эпилептогенезе рассмотрен выше. Успешное лечение фантомно-болевого синдрома оказывается возможным воздействием не только на проводящие болевые импульсы пути, но и на память о болезни: речь идет о наблюдавшейся нами дезинтеграции фантомно-болевого синдрома при лечебной электрической стимуляции подушки таламуса – ядра, активного в отношении памяти и не имеющего прямого отношения к самой боли.

Таким образом, исследование механизмов памяти здорового и больного мозга, вскрыв некоторые общие закономерности, открыло новые перспективы модуляции памяти в интересах больного и больных, еще далеко не до конца используемые. В то же самое время результаты исследования памяти здорового и больного мозга выявили общность принципиальных механизмов здорового и больного мозга, показали возможность понимания механизмов болезни на основе изучения механизмов здорового и целенаправленного управления механизмами больного мозга.

Глава седьмая
Ближайшие перспективы в физиологии мозга человека на основе ее сегодняшних возможностей

Из неявных вещей одни неявны раз навсегда, другие – по природе, третьи – для известного момента.

Секст Эмпирик

В середине 30-х годов был заложен первый камень фундамента диагностики очаговых поражений мозга с помощью электроэнцефалографии. И хотя, по-видимому, электроэнцефалография и далее будет использоваться для локальной диагностики при эпилепсии, для оценки местного и общего функционального состояния мозга при других его заболеваниях, роль этого метода станет несколько иной. То, что было первоначально и наукой, и в большей мере – искусством, результатом личного, обычно не формализуемого и не всегда даже вербализуемого опыта исследователей, постепенно, с созданием совершенных приборов, становится доступным все большему кругу специалистов. С введением компьютерной томографии диагностика не только значительно уточняется, но и упрощается (Ghazy et al., 1978; Верещагин, 1980). Диагностика очаговых поражений мозга в будущем без этого метода, в том числе и при эпилепсии, будет по праву считаться несовершенной и, пожалуй, архаичной. Еще бо́льшие возможности диагностики не только так называемых органических, но и тех заболеваний, которые относятся к функциональным, где изменения в мозгу или частично обратимы, или компенсируемы, сулит использование ядерно-магниторезонансного и позитронно-эмиссионного томографов (Russell, Wolf, 1984; Ingvar, 1985). Что же, развитие техники, таким образом, лишает куска хлеба физиологов, исследующих мозг человека!?

Ничуть не бывало! Развитие техники освобождает физиологов от рутинной работы, вооружает их новыми общими и частными приемами анализа материала и позволяет сегодня решать задачи, сама постановка которых несколько десятилетий назад казалась фантастической. Так, например, благодаря научно-техническому прогрессу, обеспечившему возможности телеметрического наблюдения за больным и использования данных регистрации физиологических показателей, стало возможным выявить те условия возникновения припадка при эпилепсии, те состояния мозга, при которых события еще можно повернуть в желаемое русло, конкретно – не допустить развития припадка со всеми вытекающими из него тяжелыми последствиями для мозга и организма. Достижения в области клинической нейрофизиологии не исчерпываются этим примером. Он приведен только для того, чтобы показать, что научно-технический прогресс, как бы сужая какие-то области использования физиологических методов, не только расширяет другие, но и создает предпосылки к постановке и решению принципиально новых задач. Конкретное проявление научно-технического прогресса в физиологии человека – это и новая техника, и новые методы анализа физиологических данных, и ставшая привычной совместная работа физиологов, физиков, математиков. Комплексные лаборатории становятся рабочими коллективами на основе длительных рабочих контактов, причем время и силы, потраченные на выработку взаимопонимания при достаточно высоком профессиональном и творческом уровне сотрудничающих специалистов, как правило, с лихвой себя окупают, позволяя переходить на новые уровни исследования. Только в условиях рабочего содружества специалистов разного профиля оказалось возможным исследование так называемых местных и дистантных перестроек импульсной активности нейронных популяций мозга человека на разных этапах реализации психической деятельности и влияния долгосрочной памяти на протекание самых различных процессов в мозгу. Дело вновь за техникой: разработанный математический аппарат при достаточно совершенной усилительной технике позволит, по-видимому, извлечь дополнительную информацию из других электрических процессов мозга. Нетворческое содружество физиологов, физиков, математиков, инженеров не самоцель. Оно должно привести к созданию новых стандартизованных методов исследования, с помощью которых физиолог сможет осуществить исследование уже без постоянной посторонней помощи, хотя контакты с физиками и математиками будут для него полезными при решении новых проблем. Физики, математики и инженеры охотно идут в те области физиологии, где они являются полноправными творческими участниками исследований. Рабочее общение с физиологами обогатит не только физиологию. Познание законов работы мозга и, в частности, того, как менее двух килограммов живого вещества с легкостью решают задачи, лишь частично посильные самым совершенным машинам, послужит и развитию точных наук. Прежде всего это поможет созданию новых, более совершенных технических систем, искусственного интеллекта по образу и подобию естественного, но с выигрышем возможностей за счет быстродействия технических систем. Пожалуй, хотя сейчас самая совершенная ЭВМ и прошла от своего прообраза 30-х годов (Turing, 1936) довольно длинный путь, ей еще очень много немеренных верст осталось до мозга человека. Именно поэтому в области технических систем в выигрыше оказываются те специалисты, которые используют не только возможности своего мозга, но и механизмы, лежащие в основе его деятельности (Усов, 1976а, 1976б; Усов и др., 1977).

Механизмы живого мозга, как известно, не делятся на физические, физиологические, биохимические, молекулярно-биологические и т. д. Это исследователи, как правило, вынужденно изучают какой-то определенный аспект, поскольку в биологии аналитический подход все еще более разработан по сравнению с интегративным. Но, изучая одни проявления процесса, мы не только не видим его в целом, но нередко, именно в результате такого подхода, процесс непрерывный превращается в дискретный. Примером является изучение памяти. Примат физиологического подхода к изучению мозговых механизмов памяти до самого последнего времени был оправдан принципиально разными возможностями исследования процессов живого мозга методами физиологии и биохимии. Изучая то, что поддавалось исследованию, физиологи стремились окружать никогда не познаваемые полностью только физиологическими методами механизмы памяти все более тесным «физиологическим кольцом». С помощью физиологических методов удается исследовать процесс восприятия и более или менее короткий след от него: не процесс, а результат считывания из долгосрочной памяти в оперативную, по-видимому, нейрофизиологические корреляты забывания, а также, прямо или косвенно, влияние долгосрочной памяти на различные мозговые механизмы и процессы, в том числе и на психонервную память. Сама же долгосрочная память, ее субстрат и процесс формирования были лишь предметом изучения в специально ориентированных экспериментах, до последнего времени дававших значительно больше отрицательных, чем положительных, результатов. Надо сказать, что и сейчас изучение физиолого-биохимических механизмов памяти не всегда эффективно, несмотря на полученные данные о роли медиаторных систем (Бородкин, Крауз, 1978), пептидов, белков и других биологически активных веществ в ее процессах.

Сказанное относится, естественно, не только к памяти, но и к исследованию различных систем, функций и механизмов головного мозга. И в то же самое время наряду с методическими сложностями и вопросами, во многом сегодня уже решаемыми, нельзя не остановиться вкратце на идейном, проблемном аспекте физиологии здорового и больного мозга человека и главным образом на примере изучения нейрофизиологии психики. Сегодняшний день физиологии отличается от вчерашнего тем, что по многим линиям, в том числе и не намечаемым вчера, уже идет накопление результатов, их анализ, систематизация и обобщение. Получено много новых, в большой мере недостаточно интегрированных (часто даже противоречащих друг другу!) данных в области структурно-функциональной организации мозга. Есть результаты исследования физиологических процессов, позволяющих качественно и количественно оценивать функциональное состояние мозга. Началось и развивается изучение тончайших нейрофизиологических перестроек, тесно связанных с характером деятельности организма. Настало время – и это одна из важных задач завтрашнего дня – вплотную подойти к решению вопроса о механизмах взаимодействия различных зон мозга, звеньев мозговых систем в процессе обеспечения различных, и в том числе наиболее сложных, видов деятельности. Сегодня было бы неправомерно умолчать и о важности широкого изучения роли нейропептидов в обеспечении различных деятельностей мозга человека.

Здесь нет необходимости освещать состояние всех проблем физиологии здорового и больного мозга человека. Выбор проблем в данном случае определяется, прежде всего, их значением для данного научного направления. Вчера, сегодня и завтра, несомненно, важнейшим вопросом физиологии мозга являлась и является проблема соотношения структуры и функции в мозгу человека. Изучение этой проблемы осуществляется сегодня в условиях непрямого, а также, что очень важно, прямого двустороннего контакта с мозгом человека.

Много лет назад при электрической стимуляции височной доли Пенфильд (а позднее и другие исследователи) наблюдал приведенный выше своеобразный феномен типа раздвоения личности с воспроизведением картин прошлого опыта. Возникновение этого эффекта относили за счет активации поверхности конвекситальной или медиобазальной области височной доли. Однако эти результаты, хотя и повторялись в ряде исследований, были и остались скорее уникальными наблюдениями, чем началом систематического изучения структурно-функциональной организации мозга и психических функций в частности. Так же редко, к счастью для врача и больных, наблюдается одномоментное, практически все еще трудно предсказуемое формирование стойких поведенческих реакций при электрической стимуляции отдельных зон в глубоких структурах мозга. (Следует попутно еще раз подчеркнуть, что сейчас также с помощью электрических стимуляций других зон мозга возможно их срочное торможение!)

Сегодня электрическая (диагностическая и лечебная) стимуляция мозга в связи с организацией исследований представляет материалы, которые ложатся в основу знания о том, какие структуры участвуют в мозговых системах обеспечения различных функций. Результаты изменения психических функций при электрической стимуляции мозга приведены выше. Например, изменения речи, в том числе и вполне сопоставимые, могут наблюдаться при стимуляции и коры, и подкорки, причем в подкорке – при стимуляции различных таламических зон и структур стриопаллидарной системы. Они могут отмечаться изолированно или, осторожнее, как основной феномен, или в связи с нарушениями памяти, сознания и другими реакциями. Трактовка этих данных в значительной мере еще субъективна. Так, на основании данных об остановке речи при стимуляции корковой области Оджеманн (Ojemann, 1979) пишет о роли коры как высшего образования для обеспечения речевой функции. Однако остановку речи Сем-Якобсен (Sem-Jacobsen, 1968) и В. М. Смирнов (1976) наблюдали при стимуляции таламических зон и других структур мозга. При стимуляции различных зон конвекситальной коры и таламических ядер показана возможность вызывания и сочетанных, и изолированных нарушений речи и речевой памяти. При стимуляции лобно-височной коры показано, что мозговое обеспечение разных языков – родного и иностранного – может осуществляться не только одними и теми же, но и разными зонами. Эти данные принципиально подтверждают то, что было показано нами ранее на основе анализа физиологических процессов подкорковых зон мозга (Гоголицын, 1976а, 1976б; Бехтерева и др., 1977а).

Результаты электрической стимуляции показывают, что мозговая структурная организация обеспечения речи и формирующихся на ее основе психических функций включает и общие, и различные зоны мозга. При этом данные, полученные в отношении тех же функций при стимуляции коры и подкорки, пока еще скорее сходны, чем отличны. Точечная электрическая стимуляция шаг за шагом пополняет сведения о структурно-функциональном обеспечении различных и в том числе психических функций. Однако было бы существенной методологической ошибкой полагать, что одна электрическая стимуляция, равно как и в общем виде один какой-либо метод, может представить полноценные сведения о физиологии мозга и, конечно, о структурной организации обеспечения психики. В изучении сложнейших проблем психофизиологии монометодический подход особенно противопоказан.

Данные электростимуляции существенно дополняются при сопоставлении с результатами многоканальной регистрации физиологических процессов мозга при выполнении функциональных проб.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | Следующая
  • 4.2 Оценок: 5

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации