Электронная библиотека » Николай Николайкин » » онлайн чтение - страница 9

Текст книги "Экология"


  • Текст добавлен: 28 октября 2013, 19:59


Автор книги: Николай Николайкин


Жанр: Прочая образовательная литература, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 9 (всего у книги 42 страниц) [доступный отрывок для чтения: 11 страниц]

Шрифт:
- 100% +
Контрольные вопросы и задания

4.1. Дайте определение популяции и ее свойств.

4.2. Почему элементарной частицей эволюции является популяция?

4.3. Сформулируйте правило Ю. Одума и теорию К. Фридерихса.

4.4. Каково место популяции на Земле?

4.5. Что отражают статистические показатели популяции?

4.6. Почему толерантность популяции к факторам среды значительно шире, чем у особи, и каково экологическое значение этого явления?

4.7. Каковы экологические причины, вызывающие рост численности популяций по экспоненте и логистической кривой?

4.8. В чем суть экологической стратегии выживания?

4.9. Какие экологические факторы вызывают саморегуляцию плотности популяции?

4.10. Что такое синантропные виды? Почему они являются «опасными» видами для человека?

ГЛАВА 5
ЭКОЛОГИЯ СООБЩЕСТВ (СИНЭКОЛОГИЯ)

Популяции разных видов в природных условиях объединяются в системы более высокого ранга – сообщества и биоценоз.[25]25
  Сообщество и биоценоз в научном смысле не являются синонимами. Биоценоз населяет строго определенный биотоп, а потому более или менее четко ограничен в пространстве. Он обязательно состоит из продуцентов, консументов и редуцентов. Сообщество – также система популяций видов, конкурирующих между собой и формирующих экологические ниши, но совершенно не обязательно состоящая из всех трех биотических экологических компонентов. Можно, например, выделить сообщества только растений, однако сказать «биоценоз растений» нельзя. Тем не менее в одних строго научных изданиях, например известных американских экологов, понятия «биотическое сообщество» и «биоценоз» совпадают как живая часть природной системы (экосистемы, гл. 6), в других же изданиях под термином «сообщество» понимают биоценоз, а для обозначения сообществ растений, насекомых и т. п. вводят термин «ассамблея».


[Закрыть]

Термин «биоценоз» был предложен немецким зоологом К. Мебиусом и обозначает организованную группу популяций растений, животных и микроорганизмов, приспособленных к совместному обитанию в пределах определенного объема пространства.

Любой биоценоз занимает определенный участок абиотической среды. Биотоп пространство с более или менее однородными условиями, заселенное тем или иным сообществом организмов.

Размеры биоценотических группировок организмов чрезвычайно разнообразны – от сообществ на стволе дерева или на болотной моховой кочке до биоценоза ковыльной степи. Биоценоз (сообщество) – не просто сумма образующих его видов, но и совокупность взаимодействий между ними. Экология сообществ (синэкология)[26]26
  Термин «синэкология» предложен в 1902 г. швейцарским ботаником К. Шретером. Синэкология формально выделена как раздел экологии на Международном ботаническом конгрессе в 1910 г.


[Закрыть]
– это также научный подход в экологии, в соответствии с которым прежде всего исследуют комплекс отношений и господствующие взаимосвязи в биоценозе. Синэкология занимается преимущественно биотическими экологическими факторами среды.

В пределах биоценоза различают фитоценоз – устойчивое сообщество растительных организмов, зооценоз – совокупность взаимосвязанных видов животных и микробиоценоз – сообщество микроорганизмов:

ФИТОЦЕНОЗ + ЗООЦЕНОЗ + МИКРОБИОЦЕНОЗ = БИОЦЕНОЗ.

При этом в чистом виде ни фитоценоз, ни зооценоз, ни микробиоценоз в природе не встречаются, как и биоценоз в отрыве от биотопа.

Биоценоз формируют межвидовые связи, обеспечивающие структуру биоценоза – численность особей, распределение их в пространстве, видовой состав и тому подобное, а также структуру пищевой сети, продуктивность и биомассу. Для оценки роли отдельного вида в видовой структуре биоценоза используют обилие вида – показатель, равный числу особей на единицу площади или объема занимаемого пространства.

5.1. Трофическая структура биоценозов

Важнейший вид взаимоотношений между организмами в биоценозе, фактически формирующими его структуру, – это пищевые связи хищника и жертвы: одни – поедающие, другие – поедаемые. При этом все организмы, живые и мертвые, являются пищей для других организмов: заяц ест траву, лиса и волк охотятся на зайцев, хищные птицы (ястребы, орлы и т. п.) способны утащить и съесть как лисенка, так и волчонка. Погибшие растения, зайцы, лисы, волки, птицы становятся пищей для детритофагов (редуцентов или иначе деструкторов).

5.1.1. Пищевые цепи и сети

Пищевая цепь – это последовательность организмов, в которой каждый из них съедает или разлагает другой. Она представляет собой путь движущегося через живые организмы однонаправленного потока поглощенной при фотосинтезе малой части высокоэффективной солнечной энергии, поступившей на Землю. В конечном итоге эта цепь возвращается в окружающую природную среду в виде низкоэффективной тепловой энергии. По ней также движутся питательные вещества от продуцентов к консументам и далее к редуцентам, а затем обратно к продуцентам.

Каждое звено пищевой цепи называют трофическим уровнем. Первый трофический уровень занимают автотрофы, иначе именуемые первичными продуцентами. Организмы второго трофического уровня называют первичными консументами, третьего – вторичными консументами и т. д. Обычно бывают четыре или пять трофических уровней и редко более шести (рис. 5.1).

Существуют два главных типа пищевых цепей – пастбищные (или «выедания») и детритные (или «разложения»).

Рис. 5.1. Пищевые цепи биоценоза по Н. Ф. Реймерсу: обобщенная (а) и реальная (б). Стрелками показано направление перемещения энергии, а цифрами – относительное количество энергии, приходящей на трофический уровень

В пастбищных пищевых цепях первый трофический уровень занимают зеленые растения, второй – пастбищные животные (термин «пастбищные» охватывает все организмы, питающиеся растениями), а третий – хищники. Так, пастбищными пищевыми цепями являются:

Детритная пищевая цепь начинается с детрита по схеме:

ДЕТРИТ → ДЕТРИТОФАГ → ХИЩНИК

Характерными детритными пищевыми цепями являются:

Концепция пищевых цепей позволяет в дальнейшем проследить круговорот химических элементов в природе, хотя простые пищевые цепи, подобные изображенным ранее, где каждый организм представлен как питающийся организмами только какого-то одного типа, в природе встречаются редко. Реальные пищевые связи намного сложнее, ибо животное может питаться организмами разных типов, входящих в одну и ту же пищевую цепь или в различные цепи, что особенно характерно для хищников (консументов) высших трофических уровней. Связь между пастбищной и детритной пищевыми цепями иллюстрирует предложенная Ю. Одумом модель потока энергии (рис. 5.2).

Всеядные животные (в частности, человек) питаются и консументами, и продуцентами. Таким образом, в природе пищевые цепи переплетаются, образуют пищевые (трофические) сети.

5.1.2. Экологические пирамиды

Для наглядности представления взаимоотношений между организмами различных видов в биоценозе принято использовать экологические пирамиды, различая пирамиды численности, биомасс и энергии.

Рис. 5.2. Схема пастбищной и детритной пищевых цепей (по Ю. Одуму)

5.1.2.1. Пирамида численности

Для построения пирамиды численности подсчитывают число организмов на некоторой территории, группируя их по трофическим уровням:

• продуценты – зеленые растения;

• первичные консументы – травоядные животные;

• вторичные консументы – плотоядные животные;

• третичные консументы – плотоядные животные;

• n-е консументы («конечные хищники») – плотоядные животные;

• редуценты – деструкторы.

Консументы второго, третьего и более высоких порядков могут быть хищниками (охотиться, схватывая и убивая жертву), могут питаться падалью или быть паразитами. В последнем случае они по величине меньше своих хозяев, в результате чего пищевые цепи паразитов необычны по ряду параметров. В типичных пищевых цепях хищников плотоядные животные становятся крупнее на каждом трофическом уровне.

Рис. 5.3. Экологическая пирамида численности для луга, поросшего злаками: цифры – число особей

Рис. 5.4. Нарушенная (а) и перевернутая (б) пирамиды численности

Каждый уровень изображается условно в виде прямоугольника, длина или площадь которого соответствуют численному значению количества особей. Расположив эти прямоугольники в соподчиненной последовательности, получают экологическую пирамиду численности (рис. 5.3), основной принцип построения которой впервые сформулировал американский эколог Ч. Элтон.

Данные для пирамид численности получают достаточно легко путем прямого сбора образцов, однако существуют и некоторые трудности:

• продуценты сильно различаются по размерам, хотя один экземпляр злака или водоросли имеет одинаковый статус с одним деревом. Это порой нарушает правильную пирамидальную форму, иногда давая даже перевернутые пирамиды (рис. 5.4);

• диапазон численности различных видов настолько широк, что при графическом изображении затрудняет соблюдение масштаба, однако в таких случаях можно использовать логарифмическую шкалу.

5.1.2.2. Пирамида биомасс

Экологическую пирамиду биомасс строят аналогично пирамиде численности. Ее основное значение состоит в том, чтобы показывать количество живого вещества (биомассу – суммарную массу организмов) на каждом трофическом уровне. Это позволяет избежать неудобств, характерных для пирамид численности. В этом случае размер прямоугольников пропорционален массе живого вещества соответствующего уровня, отнесенной к единице площади или объема (рис. 5.5, а, б). Термин «пирамида биомасс» возник в связи с тем, что в абсолютном большинстве случаев масса первичных консументов, живущих за счет продуцентов, значительно меньше массы этих продуцентов, а масса вторичных консументов значительно меньше массы первичных консументов. Биомассу деструкторов принято показывать отдельно.

При отборе образцов определяют биомассу на корню или урожай на корню (т. е. в данный момент времени), которая не содержит никакой информации о скорости образования или потребления биомассы.

Рис. 5.5. Пирамиды биомасс биоценозов кораллового рифа (а) и пролива Ла-Манш (б): цифры – биомасса в граммах сухого вещества, приходящегося на 1 м2

Скорость создания органического вещества не определяет его суммарные запасы, т. е. общую биомассу всех организмов каждого трофического уровня. Поэтому при дальнейшем анализе могут возникнуть ошибки, если не учитывать следующее:

• во-первых, при равенстве скорости потребления биомассы (потеря из-за поедания) и скорости ее образования урожай на корню не свидетельствует о продуктивности, т. е. о количестве энергии и вещества, переходящих с одного трофического уровня на другой, более высокий, за некоторый период времени (например, за год). Так, на плодородном, интенсивно используемом пастбище урожай трав на корню может быть ниже, а продуктивность выше, чем на менее плодородном, но мало используемом для выпаса;

• во-вторых, продуцентам небольших размеров, например водорослям, свойственна высокая скорость роста и размножения, уравновешиваемая интенсивным потреблением их в пищу другими организмами и естественной гибелью. Поэтому продуктивность их может быть не меньше чем у крупных продуцентов (например, деревьев), хотя на корню биомасса может быть мала. Иными словами, фитопланктон с такой же продуктивностью, как у дерева, будет иметь намного меньшую биомассу, хотя мог бы поддерживать жизнь животных такой же массы.

Одним из следствий описанного являются «перевернутые пирамиды» (рис. 5.5, б). Зоопланктон биоценозов озер и морей чаще всего обладает большей биомассой, чем его пища – фитопланктон, однако скорость размножения зеленых водорослей настолько велика, что в течение суток они восстанавливают всю съеденную зоопланктоном биомассу. Тем не менее в определенные периоды года (во время весеннего цветения) наблюдают обычное соотношение их биомасс (рис. 5.6).

Рис. 5.6. Сезонные изменения в пирамидах биомассы озера (на примере одного из озер Италии): цифры – биомасса в граммах сухого вещества, приходящегося на 1 м3

Кажущихся аномалий лишены пирамиды энергий, рассматриваемые далее.

5.1.2.3. Пирамида энергий

Самым фундаментальным способом отражения связей между организмами разных трофических уровней и функциональной организации биоценозов является п и р а м и д а энергий, в которой размер прямоугольников пропорционален энергетическому эквиваленту в единицу времени, т. е. количеству энергии (на единицу площади или объема), прошедшей через определенный трофический уровень за принятый период (рис. 5.7). К основанию пирамиды энергии можно обоснованно добавить снизу еще один прямоугольник, отражающий поступление энергии Солнца.

Пирамида энергий отражает динамику прохождения массы пищи через пищевую (трофическую) цепь, что принципиально отличает ее от пирамид численности и биомасс, отражающих статику системы (количество организмов в данный момент). На форму этой пирамиды не влияют изменения размеров и интенсивности метаболизма особей. Если учтены все источники энергии, то пирамида всегда будет иметь типичный вид (в виде пирамиды вершиной вверх), согласно второму закону термодинамики.

Рис. 5.7. Пирамида энергии: цифры – количество энергии, кДж-м -2r-1

Рис. 5.8. Экологические пирамиды (по Ю. Одуму). Без соблюдения масштаба

Пирамиды энергий позволяют не только сравнивать различные биоценозы, но и выявлять относительную значимость популяций в пределах одного сообщества. Они являются наиболее полезными из трех типов экологических пирамид, однако получить данные для их построения труднее всего.

Одним из наиболее удачных и наглядных примеров классических экологических пирамид служат пирамиды, изображенные на рис. 5.8. Они иллюстрируют условный биоценоз, предложенный американским экологом Ю. Одумом. «Биоценоз» состоит из мальчика, питающегося только телятиной, и телят, которые едят исключительно люцерну.

5.1.3. Закономерности трофического оборота в биоценозе

Живые организмы для своего существования должны постоянно пополнять и расходовать энергию. В пищевой (трофической) цепи, сети и экологических пирамидах каждый последующий уровень, условно говоря, поедает предыдущее звено, используя его для построения своего тела. Трофоэнергетические связи сообщества растений и животных в виде упрощенной схемы потоков на примере биоценоза Рыбинского водохранилища приведены на рис. 5.9.

Главный источник энергии для всего живого на Земле – Солнце. Из всего спектра солнечного излучения, достигающего земной поверхности, только около 40 % составляет фотосинтетически активная радиация (ФАР), имеющая длину волны 380–710 нм. Растения в процессе фотосинтеза усваивают лишь небольшую часть ФАР. Ниже приведены доли усваиваемой ФАР (в %) для различных экосистем.

Рис. 5.9. Схема потоков энергии в трофической сети биоценоза (по Н. В. Бутурину, А. Г. Поддубному): цифры – годичная продукция популяций, кДж/м2

Океан……………………………………до 1,2

Тропические леса…………………………..до 3,4

Плантации сахарного тростника и кукурузы

(в оптимальных условиях) …………………….. 3—5

Опытные системы с кондиционированными условиями среды по всем показателям (за короткие

периоды времени)…………………………..8—10

В среднем растительность всей планеты…………0,8–1,0

Первичными поставщиками энергии для всех других организмов в цепях питания являются растения. При дальнейших переходах энергии и вещества с одного трофического уровня на другой существуют определенные закономерности.

5.1.3.1. Правило десяти процентов

Р. Линдеман (1942) сформулировал закон пирамиды энергий, или правило 10 %:

с одного трофического уровня экологической пирамиды переходит на другой, более высокий ее уровень (по «лестнице» продуцент – консумент – редуцент), в среднем около 10 % энергии, поступившей на предыдущий уровень экологической пирамиды.

На самом деле потеря бывает либо несколько меньшей, либо несколько большей, но порядок чисел сохраняется.

Обратный поток, связанный с потреблением веществ и продуцируемым верхним уровнем экологической пирамиды энергии более низкими ее уровнями, например, от животных к растениям, намного слабее – не более 0,5 % (и даже 0,25 %) от общего ее потока, поэтому говорить о круговороте энергии в биоценозе не приходится.

5.1.3.2. Правило биологического усиления

Вместе с полезными веществами с одного трофического уровня на другой поступают и «вредные» вещества. Однако если полезное вещество при его излишке легко выводится из организма, то вредное не только плохо выводится, но и накапливается в пищевой цепи. Таков закон природы, называемый правилом накопления токсических веществ (биотического усиления) в пищевой цепи и справедливый для всех биоценозов.

Иначе говоря, если энергия при переходе на более высокий уровень экологической пирамиды десятикратно теряется, то накопление ряда веществ, в том числе токсичных и радиоактивных, примерно в такой же пропорции увеличивается, что впервые было обнаружено в 50-х годах на одном из заводов комиссией по атомной энергии в штате Вашингтон. Явление биотического накопления нагляднее всего демонстрируют устойчивые радионуклиды и пестициды. В водных биоценозах накопление многих токсичных веществ, в том числе хлорорганических пестицидов, коррелируется с массой жиров (липидов), т. е. явно имеет энергетическую подоснову.

В середине 60-х годов появилось, казалось бы, неожиданное сообщение о том, что пестицид дихлордифенилтрихлорэтан (ДДТ) обнаружен в печени пингвинов в Антарктиде – месте, чрезвычайно удаленном от районов его возможного применения. От отравления ДДТ сильно страдают конечные хищники, особенно птицы, так на востоке США полностью исчез сапсан. Птицы оказались наиболее уязвимы в связи с вызываемыми ДДТ гормональными изменениями, влияющими на обмен кальция. Это приводит к утончению скорлупы яиц, и они чаще разбиваются.

Биотическое накопление происходит очень стремительно, например, в случае с пестицидом ДДТ, попавшим в воду болот при многолетнем их опылении с целью сокращения численности нежелательных человеку насекомых на Лонг-Айленде. Для данного случая содержание ДДТ в ррт[27]27
  ррт (parts per million) – частиц на миллион, или млн-1 – единица измерения концентрации. Для газов 1 % (об.) = 104 млн-1 = 104 ррт.


[Закрыть]
(по Ю. Одуму) приведено ниже для следующих объектов:

вода…………………………………0,00005

планктон ……………………………….. 0,04

планктоноядные организмы………………….0,23

щука (хищная рыба)………………………..1,33

рыба-игла (хищная рыба)…………………….2,07

цапля (питается мелкими животными)………… 3,57

крачка (питается мелкими животными)………… 3,91

серебристая чайка (падальщик)………………..6,00

крохаль (птица, питается мелкой рыбой)……….. 22,8

баклан (питается крупной рыбой) ……………… 26,4

Специалисты по борьбе с насекомыми «благоразумно» не применяли такие концентрации, которые могли бы быть непосредственно летальны для рыб и других животных. Тем не менее со временем было установлено, что в тканях рыбоядных животных концентрация ДДТ почти в 500 тыс. раз выше, чем в воде. В среднем, как и в приведенном примере, концентрация вредного вещества в каждом последующем звене экологической пирамиды примерно в 10 раз выше, чем в предыдущем.

Принцип биотического усиления (накопления) должен быть принят во внимание при любых решениях, связанных с поступлением соответствующих загрязнений в природную среду. Следует учитывать, что скорость изменения концентрации может увеличиваться или уменьшаться под действием некоторых факторов. Так, человек получит меньше ДДТ, чем птица, питающаяся рыбой. Это частично объясняется удалением пестицидов при обработке и варке рыбы. Кроме того, рыба находится в более опасном положении, ибо получает ДДТ не только через пищу, но и непосредственно из воды.

5.2. Видовая структура биоценозов

Видовая структура – это количество видов, образующих биоценоз, и соотношение их численностей. Точные сведения о числе видов, входящих в тот или иной биоценоз, получить чрезвычайно трудно из-за микроорганизмов, практически не поддающихся учету.

Видовой состав и насыщенность биоценоза зависят от условий среды. На Земле существуют как резко обедненные сообщества полярных пустынь, так и богатейшие сообщества тропических лесов, коралловых рифов и т. п. Самыми богатыми по видовому разнообразию являются биоценозы влажных тропических лесов, в которых одних растений фитоценоза насчитываются сотни видов.

Виды, преобладающие по численности, массе и развитию, называют доминантными (от лат. dominantis – господствующий). Однако среди них выделяют эдификаторы (от лат. edifikator – строитель) – виды, которые своей жизнедеятельностью в наибольшей степени формируют среду обитания, предопределяя существование других организмов. Именно они порождают спектр разнообразия в биоценозе. Так, в еловом лесу доминирует ель, в смешанном – ель, береза и осина, в степи – ковыль и типчак. При этом ель в еловом лесу наряду с доминантностью обладает сильными эдификаторными свойствами, выражающимися в способности затенять почву, создавать кислую среду своими корнями и образовывать специфические подзолистые почвы. Вследствие этого под пологом ели могут жить только тенелюбивые растения. Одновременно с этим в нижнем ярусе елового леса доминантой может быть, например, черника, но эдификатором она не является.

Предворяя обсуждение видовой структуры биоценоза, следует обратить внимание на принцип Л. Г. Раменского (1924) – Г. А. Глизона (1926) или принцип континуума:[28]28
  Континуум – непрерывное единство, в биологии – представление о «пленке жизни» Земли как о непрерывном целом, не распадающемся на отдельные биологические системы.


[Закрыть]

широкое перекрытие экологических амплитуд и рассредоточенность центров распределения популяций вдоль градиента среды приводят к плавному переходу одного сообщества в другое, поэтому, как правило, не образуют строго фиксированные сообщества.

Принципу континуума Н. Ф. Реймерс противопоставляет принцип биоценотической прерывности:

виды формируют экологически определенные системные совокупности – сообщества и биоценозы, отличающиеся от соседних, хотя и сравнительно постепенно в них переходящие.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 | Следующая
  • 4.5 Оценок: 6

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации