Электронная библиотека » Николай Николайкин » » онлайн чтение - страница 3

Текст книги "Экология"


  • Текст добавлен: 28 октября 2013, 19:59


Автор книги: Николай Николайкин


Жанр: Прочая образовательная литература, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 3 (всего у книги 42 страниц) [доступный отрывок для чтения: 11 страниц]

Шрифт:
- 100% +
Контрольные вопросы и задания

1.1. Что такое экология? Кто ввел в науку термин «экология»?

1.2. Перечислите этапы исторического развития экологии как науки. Какова роль отечественных ученых в ее становлении и развитии?

1.3. Кто был основателем научной систематики растений и животных?

1.4. В чем особенности современных представлений об экологии?

1.5. Какой вклад в развитие экологии внесли ученые древнего мира?

1.6. Когда впервые люди получили мощный рычаг воздействия на природу?

1.7. Почему каждому члену общества необходима экологическая культура и экологическое образование?

1.8. Чем отличается биоцентрическое и антропоцентрическое мировоззрения в экологии?

1.9. Каковы основные причины конфликта между обществом и природой в современных условиях?

1.10. Почему возрос общественный интерес к экологии в конце XX в.?

ГЛАВА 2
ОРГАНИЗМ И СРЕДА ОБИТАНИЯ

Жизнь – активное поддержание и самовоспроизведение специфической структуры, идущее с затратой полученной извне энергии. Жизнь на Земле существует в виде отдельных организмов, и независимо от строения и размеров организмы всегда обособлены от окружающей их среды, при этом постоянно находятся во взаимодействии с ней.

Для живого характерен ряд свойств, которые в совокупности «делают» живое живым. Такими свойствами являются самовоспроизведение, целостность и дискретность, рост и развитие, обмен веществ и энергии, наследственность и изменчивость, раздражимость, движение, внутренняя регуляция, специфичность взаимоотношений со средой.

Живой организм целая биологическая система, состоящая из взаимозависимых и соподчиненных элементов, взаимоотношения и особенности строения которых определены их функционированием как целого. Главные отличия живых организмов – способность к саморегуляции (сохранению строения, состава и свойств) и способность к самовоспроизведению (многократному повторению своих характеристик в поколениях). По определению акад. М. В. Волькенштейна «Живые тела, существующие на Земле, представляют собой открытые, саморегулирующиеся и самовоспроизводящиеся системы, построенные из биополимеров – белков и нуклеиновых кислот».

Клетка основная структурно-функциональная единица всех живых организмов, элементарная живая система. Она может существовать как отдельный организм (бактерии, простейшие, некоторые водоросли и грибы), так и в составе тканей многоклеточных организмов. Лишь вирусы представляют собой неклеточные формы жизни.

Со времен Аристотеля организмы прежде всего подразделяют на растения и животных, клетки которых принципиально одинаковы. В современной науке – систематике, описывающей все разнообразие живой природы, выделяют ряд таксонов,[8]8
  Таксон – группа организмов, связанных той или иной степенью родства и достаточно обособленная, чтобы ей можно было присвоить определенную таксономическую категорию какого-либо ранга (вид, род, семейство и т. д.).


[Закрыть]
наиболее крупные из которых – бактерии, простейшие, грибы, растения и животные; в пределах каждого царства – типы, классы и более мелкие таксоны – группы организмов, различающихся по структуре тела и органов и по способам осуществления жизненных функций.

Тем не менее большинство современных ученых признает необходимость выделения таксона более высокого ранга. Это, во-первых, прокариоты (от лат. pro – перед, раньше, вместо и греч. karyon – ядро) – только одноклеточные организмы, не имеющие истинного ядра, ограниченного мембраной. К ним относятся бактерии, включая архе-и цианобактерии. Аналогом ядра служит структура, состоящая из белков, дезоксирибонуклеиновой (ДНК) и рибонуклеиновой (РНК) кислот. Они лишены хлоропластов, митохондрий и аппарата Гольджи. Во-вторых, это эукариоты – одно-и многоклеточные организмы, имеющие в клетках истинное ядро. К ним относятся все остальные организмы. Деление на прокариотов и эукариотов характерно и для самых древних организмов.

2.1. Состав клетки

Живые тела наряду с веществами, распространенными в неживой природе, содержат множество веществ, характерных только для живых организмов (табл. 2.1).

Таблица 2. 1

Химический состав клетки (%)

АТФ – аденозинтрифосфорная кислота.

Из числа существующих на Земле химических элементов всеми необходимыми свойствами для того, чтобы быть структурными компонентами живого вещества, обладают лишь соединения углерода. Уникальная способность углерода создавать углерод-углеродные связи, составлять полимерные цепи и кольца, содержащие как одинарные, так и кратные углерод-углеродные химические связи, позволяет образовывать огромное количество разнообразных органических соединений.

Подобным свойством образовывать химические связи с самим собой обладают еще два элемента – сера и кремний, однако они сильно уступают углероду. В результате построение живого вещества на основе преимущественно серы или кремния невозможно. Тем не менее кремний-и серосодержащие органические соединения в живой природе многочисленны и играют важную роль.

Среди неорганических веществ, входящих в состав клетки, первое место занимает вода. Ее роль чрезвычайно велика: большинство химических процессов протекает только в водных растворах, вода обеспечивает терморегуляцию, многие вещества поступают в клетку и выводятся из нее в виде водных растворов.

Биогенные элементы химические элементы, постоянно входящие в состав организмов и необходимые им для жизнедеятельности. В составе живого вещества более 70 элементов периодической системы Д. И. Менделеева, причем больше всего (около 98 % по массе) в клетках кислорода, водорода и углерода. К числу так называемых «универсальных» элементов (присутствующих в клетках всех организмов) относятся азот, кальций, калий, фосфор, магний, сера, хлор, натрий.

Свыше 30 металлов (Al, Fe, Cu, Mn, Zn, Mo, Co, Ni, Sr, Se, As и др.) и неметаллов (I, Br, F, B), содержащихся в клетках в малых количествах (обычно тысячные доли процента и ниже) и исключительно необходимых для жизнедеятельности клеток (см. закон Ю. Либиха в разд. 3.2.1), называют микроэлементами.

Сравнение химического состава живого и косного вещества Земли– земной коры и вод Мирового океана показывает несоответствие распространенности химических элементов в косных компонентах и живом веществе (рис. 2.1, а—г). Так, в земной коре содержание углерода в 70 раз ниже, чем в живом веществе, а кремния, наоборот, намного больше.

Рис. 2.1. Распространенность химических элементов в живом веществе (а), атмосфере (б), гидросфере (б), литосфере (г) (по В. Лархеру)

Недостаток или недоступная для усвоения организмом форма в окружающей природной среде какого-либо необходимого для жизнедеятельности химического элемента ограничивает рост и размножение живых организмов.

В живых клетках обнаруживают следы практически всех элементов, присутствующих в ОС. Различия в ходе геологической истории и почвообразующих процессов в отдельных областях Земли привели к формированию биогеохимических провинций – областей на поверхности Земли, резко отличающихся по содержанию каких-либо химических элементов, например урановые и ториевые провинции (см. разд. 3.1.1.1). Значительная недостаточность или избыточность содержания химического элемента в среде вызывает в пределах данной биогеохимической провинции соответствующие эндемии – специфические заболевания растений, животных и человека (см. разд. 8.1.5).

2.2. Обмен веществ

Во всех клетках происходит интенсивное обновление веществ и структур. Так, некоторые клетки человека живут всего один-два дня (клетки кишечного эпителия). Поэтому непременным условием жизни является связь клетки с ОС. Из среды клетка получает различные вещества, которые затем подвергаются превращениям, ведущим к высвобождению энергии, необходимой для клеточной активности. Из поступающих в клетку веществ синтезируются органические соединения, необходимые для построения структур клетки. Во внешнюю среду выводятся не нужные клетке вещества – продукты разложения органических веществ.

Пластический обмен (или ассимиляция) – совокупность реакций синтеза органических молекул, идущих на построение тела клетки. В клетках зеленых растений органические вещества могут синтезироваться из неорганических с использованием энергии света или химической энергии. В клетках животных ассимиляция может идти только за счет использования для синтеза собственных веществ (готовых органических соединений). Процессы ассимиляции протекают с поглощением энергии.

Энергетический обмен (или диссимиляция) – совокупность реакций, в результате которых освобождается необходимая для клетки энергия.

Совокупность процессов диссимиляции и ассимиляции, в ходе которых реализуется связь клетки с окружающей средой, называют обменом веществ или метаболизмом:

Обмен веществ – фундаментальное свойство живых организмов.

2.2.1. Пластический обмен2.2.1.1. Биосинтез белков

Любая клетка организма способна синтезировать свои специфические белки. Эта способность обусловлена генетически и передается из поколения в поколение. Информация о структуре белков содержится в ДНК. Участок молекулы ДНК, содержащий информацию о первичной структуре конкретного белка, называется геном.

Синтез белка начинается с транскрипции – процесса списывания информации о структуре белка с участка ДНК (гена) на информационную РНК. В ядре клетки находятся ДНК, а синтез белка обычно протекает в цитоплазме на рибосомах. Перенос информации о первичной структуре белка к месту синтеза обеспечивает РНК. Аминокислоты, необходимые для сборки белковых молекул, доставляются к рибосомам цитоплазмы транспортными РНК. Биосинтез протекает в присутствии множества ферментов, катализаторов всех реакций процесса. Процесс идет с участием АТФ, при распаде которой освобождается энергия, необходимая для его осуществления.

Мутация (от лат. mutatio – перемена) – качественные, внезапно появляющиеся изменения генов, передаваемые далее из поколения в поколение. Эта форма наследственной изменчивости заключается в изменении строения или количества единиц наследственности – генов или их носителей – хромосом. В ряде случаев мутации связаны с изменениями во внешней среде.

2.2.1.2. Фотосинтез

Фотосинтез процесс синтеза органических соединений из неорганических веществ, идущий за счет энергии света (рис. 2.2).

Все живое современной биосферы зависит от этого процесса. Фотосинтез делает энергию Солнца и углерод доступными для живых организмов и обеспечивает обогащение кислородом атмосферы Земли. Процесс фотосинтеза описывается суммарным уравнением

6CO2 + 6H2O + солнечная энергия → C6H12O6 + 6O2

Русский ученый К. А. Тимирязев показал, что для осуществления фотосинтеза необходим хлорофилл – вещество зеленого цвета, поглощающее солнечные лучи в красной и сине-фиолетовой частях спектра. У высших растений хлорофилл находится во внутренних мембранах хлоропластов – специализированных органелл растительной клетки, где происходят реакции фотосинтеза.

Рис. 2.2. Процесс фотосинтеза (по С. Г. Мамонтову)

Фотосинтез протекает в две фазы – световую и темновую. Световая фаза идет только на свету, при этом под действием света молекулы хлорофилла теряют электроны и переходят в возбужденное состояние. Под влиянием положительно заряженных молекул хлорофилла по уравнению

2О → 4Н+ + O2 ↑ + 4е

происходит фотолиз воды с образованием молекулярного кислорода, электронов и протонов. Энергия солнечного излучения в световой фазе фотосинтеза используется хлоропластами для синтеза АТФ из аденозиндифосфата (АДФ) и фосфата, а также для восстановления НАДФ (никотинамидадениндинуклеотидфосфата) до НАДФ · Н2.

В темновой фазе в присутствии АТФ и НАДФ · Н2 при участии ферментов из диоксида углерода и водорода образуется глюкоза:

Углеводы, получавшиеся в процессе фотосинтеза, используются далее как исходный материал для синтеза других органических соединений.

2.2.1.3. Хемосинтез

Хемосинтез синтез органических соединений из неорганических веществ с использованием химической энергии, выделяющейся в реакциях окисления неорганических веществ.

Процесс хемосинтеза открыт русским ученым-микробиологом С. Н. Виноградским в 1887 г. Некоторые группы бактерий – нитрифицирующие, железобактерии, серобактерии способны накапливать освобождающуюся в процессах окисления энергию и затем использовать ее для синтеза органических веществ. Процесс хемосинтеза протекает без участия хлорофилла, для его осуществления не обязательно наличие света.

Например, нитрифицирующие бактерии окисляют аммиак до азотистой кислоты:

NH4+ + кислород → NO2- + Энергия или по уравнению реакции

2NH3 + 3O2 → 2НNO2 + 2Н2О + Энергия

Освобождающаяся энергия накапливается в молекулах АТФ и используется для синтеза органических веществ, протекающего по типу реакций темновой фазы фотосинтеза. Хемо-синтезирующие бактерии играют важную роль в круговороте веществ. Нитрифицирующие бактерии способствуют накоплению в почве нитратов.

2.2.2. Энергетический обмен

Энергия существует в природе в различных формах. Это прежде всего энергия солнечного света, а также химическая, тепловая и электрическая. Организмам энергия необходима для активного транспортирования веществ, для синтеза белков и иных биомолекул, для мышечных сокращений при перемещении в пространстве, для клеточного деления и т. д. Осуществление этих процессов и восполнение неизбежных потерь в ОС в соответствии с классическими законами термодинамики (см. разд. 6.3.5) возможны только при постоянном притоке энергии в организм из среды обитания.

Первоисточником энергии в природе является Солнце, но его энергию могут использовать только фотосинтетики, а все остальные организмы могут получать эту энергию лишь опосредовано, т. е. в форме энергии химических связей между атомами органических соединений. При разрыве связей энергия может высвобождаться, но чаще всего она временно запасается в виде особо богатого энергией нуклеотида – аденозинтрифосфорной кислоты (АТФ) – используемого клеткой для всех дальнейших процессов жизнедеятельности.

Главная роль в энергетическом обмене клеток животных принадлежит дыхательному обмену или клеточному дыханию. Клеточное дыхание представляет собой процесс, в котором высокомолекулярные высокоэнергетические органические соединения, окисляясь, распадаются на низкомолекулярные или неорганические соединения, бедные энергией. При окислении с участием кислорода дыхание называют аэробным, а без его участия – анаэробным.

Процесс потребления кислорода из среды обитания и возвращения в эту среду диоксида углерода называется газообменом организма с окружающей средой. Это иной процесс, отличный от клеточного дыхания; путать их нельзя.

Более половины энергии, ежедневно расходуемой человеком, затрачивается на мышечную работу. Запасы одних только углеводов могут удовлетворить энергетические потребности нашего организма в течение примерно 12 ч, тогда как человек среднего телосложения может обходиться без пищи, по крайней мере, в течение шести недель.

Животным, впадающим в зимнюю спячку и снижающим скорость метаболизма, накопленных летом запасов жира хватает на долгие месяцы. Последовательность расходования высокомолекулярных соединений в организме (на примере человека, рис. 2.3) следующая: прежде всего углеводы, затем жиры (у животных) или масла (у растений), и в последнюю очередь белки.

Выделение энергии, необходимой для любого процесса жизнедеятельности клетки, происходит при отщеплении от аденозинтрифосфорной кислоты, называемой также аденозинтрифосфатом (АТФ), одной фосфатной группы (фосфата) с образованием аденозиндифосфата (АДФ) в соответствии с уравнением

АТФ + Н2О – АДФ + Фосфат + Энергия.



Рис. 2.3. Расходование запасов питательных веществ при голодании (по П. Кэмпу, К.Армсу): вначале жиры составляли 15 % веса тела: – углеводы; 2 – жиры; 3 – белки


Структура строения аденозинфосфатов и схема процессов, протекающих при энергетическом обмене, показаны на рис. 2.4, где знаком «~» обозначены так называемые «богатые энергией» связи. При отщеплении от АДФ еще одной фосфатной группы образуется аденозинмонофосфат (АМФ).

Существенную роль в поддержании равновесия между

разновидностями аденозинфосфорных кислот играет обратимая ферментативная реакция

АТФ + АМФ ↔ 2АДФ

Энергетический обмен клетки осуществляется в три этапа.

Подготобительный этап – сложные органические соединения распадаются на более простые: белки на аминокислоты, полисахариды на моносахариды и т. п.

Этап неполного окисления (анаэробное дыхание или брожение). Неполному окислению могут подвергаться глюкоза, жирные кислоты, аминокислоты. При этом главным источником энергии в клетке является глюкоза. При бескислородном окислении одной молекулы глюкозы (процесс гликолиза) из двух молекул АДФ и при участии неорганического фосфата образуются две молекулы АТФ. В процессе гликолиза для нужд клетки извлекается не более 10 % энергии.

Этап полного расщепления (аэробное дыхание) протекает с обязательным участием кислорода. При дыхании последовательно проходит ряд ферментативных реакций. В условиях полного окисления, сопряженного с фосфорилированием АДФ до АТФ, недоокисленные продукты гликолиза отдают для нужд клетки оставшуюся в их химических связях энергию, которая аккумулируется в АТФ. Энергия АТФ превышает энергию АДФ на 30,6 кДж/моль, а энергию АМФ – на 2·30,6 = 61,2 кДж/моль.



Рис. 2.4. Структуры АТФ и АДФ (а), гидролиз АТФ (б) и рефосфорирование АДФ в результате дыхательной активности (в): Ф – фосфатная группа


Запас АТФ в клетке невелик. Так, в мышце запаса АТФ хватает на 20–30 сокращений. Для нескольких тысяч сокращений и работы мышцы часами необходим непрерывный синтез АТФ. Один из способов образования АТФ в клетке заключается в переносе под действием ферментов высокоэнергетической фосфатной группы от какой-нибудь другой молекулы (например от дифосфоглицерата) на АДФ.

Для восполнения израсходованной АТФ используют энергию, освобождаемую в результате расщепления питательных веществ.

АТФ – единый и универсальный источник энергообеспечения клетки.

2.3. Экологические категории организмов

Поскольку внешняя среда служит для организма источником энергии и материала для построения собственного тела, а отходы метаболизма, уже не пригодные для использования, выводятся обратно в среду обитания, то любой организм или группа одинаковых организмов в процессе жизнедеятельности будут неизбежно изменять внешнюю среду, истощая ее ресурсы и перегружая отходами. В силу этого постоянство состава среды возможно лишь при наличии большого разнообразия организмов, населяющих общую территорию.

Физиологическая разнокачественность организмов, т. е. способность использовать для своей жизнедеятельности различные источники энергии и химические субстраты, является необходимым условием жизни на Земле.

Многообразие биологических видов рассмотрено в гл. 5. Остановимся на самых общих особенностях обмена веществ и пищевой специализации основных категорий организмов, каждая из которых в свою очередь состоит из множества разнообразных групп, взаимно дополняющих друг друга так, что их совместная жизнедеятельность обеспечивает последовательное использование выделяемых в среду продуктов метаболизма и поддержание постоянства состава и свойств среды.

В общем виде набор взаимодополняющих категорий представлен продуцентами, консументами и редуцентами.

Продуценты – организмы, способные синтезировать органические вещества из неорганических с использованием внешних источников энергии. Так как продуценты сами производят органическое вещество, их называют автотрофами – самопитающимися, в отличие от всех остальных организмов, которые называют гетеротрофами – питаемыми другими.

В соответствии с источниками энергии, используемыми для синтеза органического вещества, автотрофы подразделяются на фототрофов (использующих энергию Солнца) и хемотрофов (использующих энергию химических связей, высвобождающуюся в процессе окисления минеральных веществ).

Основную массу фототрофов составляют зеленые растения, в клетках которых содержится хлорофилл и происходит процесс фотосинтеза. К этой категории также относятся цианобактерии и некоторые другие бактерии, проводящие фотосинтез не в хлорофилле, а в иных специализированных пигментах.

К хемотрофам относятся только бактерии, окисляющие различные минеральные вещества (нитрифицирующие бактерии, железобактерии, серобактерии и др.).

В природных сообществах продуценты играют важную роль: усваивая энергию Солнца или химических реакций и создавая органическое вещество, они как бы образуют запасы энергии, которая затем в виде пищи передается другим организмам.

Консументы (от лат. konsumo – потребляю) – организмы, не способные строить свои организмы из неорганических веществ и нуждающиеся в готовой органической пище. Это органическое вещество создается автотрофами. Пища используется консументами и как источник энергии, и как материал для построения их тела. К консументам относятся все животные от мельчайших примитивных до самых совершенных, включая человека. Есть консументы и среди растений: это виды, паразитирующие на других растениях. Существуют также растения со смешанным типом питания, например росянки.

Среди консументов-животных выделяют растительноядных животных (консументы первого порядка), мелких и крупных хищников (консументов второго, третьего порядка и др.). Роль консументов-животных в сообществах определяется их подвижностью и относительно быстрой адаптацией, что способствует распространению жизни на планете. Кроме того, животные активно регулируют биомассу и рост растений.

Консументы также подразделяют на сапрофагов (питающихся мертвыми растительными остатками), фитофагов (потребителей живых растений), зоофагов (нуждающихся в живой пище) и некрофагов (трупоядных животных). Кроме того, организмы, питающиеся мертвыми остатками растений и животных – детритом, дополнительно выделяют в группу детритофагов.

Редуценты (от лат. reducere – возвращать) – организмы, использующие в качестве пищи органическое вещество и подвергающие его минерализации. Поэтому данная категория организмов также называется деструкторами, ибо они окончательно разрушают органические вещества до относительно простых неорганических соединений, используемых консументами в качестве пищи. Тем самым осуществляется возврат вещества в начало природной цепи питания.

К редуцентам относятся многие виды бактерий и грибов, разлагающих в процессе метаболизма мертвое органическое вещество (трупы животных, гниющие растения, фекалии) до минеральных составляющих. Именно они (редуценты) завершают биологические циклы вещества в биосфере, возвращая в почву, воду и воздух биогены (СО2, минеральные соли, воду, сероводород, азот и др.), которые вновь могут быть использованы растениями. Таким образом поддерживается непрерывное течение жизни при ограниченном количестве, но многократном использовании биогенных элементов.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 | Следующая
  • 4.5 Оценок: 6

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации