Текст книги "Восхождение на гору Невероятности"
Автор книги: Ричард Докинз
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 9 (всего у книги 20 страниц)
Пятьдесят миллионов лет назад предки китов и морских коров (дюгоней и ламантинов) были сухопутными млекопитающими; наверное, у китов предки были хищниками, а у морских коров – травоядными. В еще более давние времена их собственные предки, как и предки других сухопутных млекопитающих, обитали в море – были рыбами. Вернувшись в океан, киты и морские коровы попали в родную стихию. Мы точно знаем, что переход происходил постепенно. Вероятно, сначала они, как знакомые нам выдры, просто искали в воде пищу. Должно быть, они проводили на суше все меньше и меньше времени, и не исключено, что на определенном этапе киты и морские коровы напоминали знакомых нам морских котиков. Теперь они уже не вылезали из воды и на берегу были абсолютно беспомощны. Тем не менее они сохранили многие признаки своих сухопутных предшественников, а кроме того, как и все млекопитающие, – рудименты прежнего, совсем уж далекого морского прошлого. Киты вдыхают воздух, так как их вышедшие на сушу предки перестали использовать для дыхания жабры. Однако эмбрионы всех млекопитающих, включая китов и морских коров, имеют зачатки жабр – бесспорно, память о далеких водных предках. Пресноводные улитки, пожив на берегу, тоже вернулись в воду и теперь дышат воздухом. Еще раньше их предки жили в море, как большинство современных брюхоногих. Судя по всему, улитки перебрались из соленых вод в пресные по “земляному мостику” – наверное, что‐то, что они приобрели во время их сухопутной жизни, облегчило этот переход. Можно вспомнить и других обитателей суши, удалившихся обратно в воду, среди них черепахи, жуки-плавунцы, паук-серебрянка, а также вымершие ихтиозавры и плезиозавры. Черепахи могут извлекать из воды кислород, но не жабрами, а через слизистый эпителий в ротовой полости (у некоторых видов – в задней кишке); мягкотелые черепахи дышат через кожу, покрывающую панцирь. Жуки-плавунцы и пауки захватывают под воду воздушный пузырь. Все эти животные возвращаются в привычную для их древних предков водную среду, но под влиянием эволюционной истории, накопленной во время наземной жизни, приспосабливаются к этой среде совсем иначе.
Рис. 4.6. Киты и морские коровы вернулись в море после сотен миллионов лет сухопутной жизни; сверху вниз: дюгонь, Dugong dugon; ламантин, Trichechus senegalensis; горбатый кит, Megaptera novaeangliae; косатка, Orcinus orca.
Почему сухопутные животные, вернувшись в водную среду, не открывают заново прежний набор приспособлений к водной жизни? Почему киты и морские коровы не сменили легкие на жабры? Сейчас гора Невероятности преподнесет нам еще один ценный урок. В частности, важно понимать, откуда мы стартуем, как в анекдоте о том, как один человек на вопрос, как пройти в Дублин, ответил: “Э-э, я пошел бы не отсюда”. На горе Невероятности много пиков. Свою жизнь в воде можно устраивать по‐разному. Можно извлекать кислород из воды с помощью жабр, а можно высунуть голову наружу и глотнуть воздуха. Казалось бы, утомительно постоянно выныривать. Может, и так, но вспомните: предки китов и морских коров начинали недалеко от пика Вдыхания воздуха. Все их внутренние органы были адаптированы к вдыханию атмосферного воздуха. Наверное, они могли как‐то преобразовать их, оживить зародышевые рудименты древних жабр и стать ближе к рыбам. Но это должно было повлечь за собой тотальную перестройку всех систем организма. Представьте себе, что вы спускаетесь в глубокое ущелье, чтобы подняться оттуда на более высокий пик. Нелишне будет еще раз вспомнить, что дарвинизм не допускает временного ухудшения ради отсроченного выигрыша.
Даже если бы киты и морские коровы спустились в долину, пик Жабр, куда они в конце концов взобрались бы, вовсе не обязательно был бы выше. В морских глубинах жабры не всегда лучше легких. Безусловно, всегда удобнее иметь возможность дышать непрерывно, а не быть обреченным то и дело всплывать на поверхность. Однако мы смотрим со своей колокольни – мы сами вынуждены делать вдох каждые несколько секунд, и даже кратковременная нехватка воздуха ввергает нас в панику. Кашалоты, которые за миллионы поколений, проживших в море, прошли естественный отбор, могут оставаться под водой пятьдесят минут, прежде чем им понадобится новый глоток воздуха. Наверное, для кита всплыть, чтобы вдохнуть, – все равно что человеку выйти на минутку в туалет. Или поесть. Если рассматривать дыхание не как жизненно необходимый непрерывный процесс, а как что‐то вроде приема пищи, то станет ясно, что обитателю подводного мира гораздо лучше без жабр. Скажем, колибри едят более или менее постоянно. Для колибри, которые должны всасывать порцию нектара каждые несколько секунд, если только они не спят, перелетать с цветка на цветок так же важно, как дышать. Асцидии, похожие на мешочек морские хордовые, весьма дальние родственники позвоночных, неустанно прокачивают сквозь себя воду, отфильтровывая микроскопические частицы пищи. Эти фильтраторы едят явно без всякого удовольствия. Пожалуй, одна мысль о том, что им придется где‐то искать новую порцию, привела бы асцидий в ужас. Им было бы невдомек, зачем самые разные животные добывают себе пропитание с риском для жизни и далеко не всегда успешно, вместо того чтобы сидеть спокойно и буквально дышать пищей весь день напролет.
Даже если это было бы так, по одному только внешнему виду китов и морских коров можно судить об их сухопутной истории. Будь они изначально созданы для жизни в море, это были бы другие существа, и у них было бы гораздо больше общего с рыбами. Животные, чья история читается по их виду и повадкам, служат для нас самыми наглядными доказательствами того, что живые существа не были созданы для их нынешнего образа жизни, а эволюционировали от весьма не похожих на них предков.
История камбаловых рыб, прямо‐таки абсурдная, тоже написана у них на лбу. Только безумный дизайнер, решив создать плоскотелую рыбу и приступив к эскизу, изобразил бы на листе ватмана нелепую фигуру с такой головой, что оба глаза неизбежно должны были разместиться на одной ее стороне. Конечно, если бы он задумал “сконструировать” ската – рыбу, которая лежит на животе и глаза которой расположены симметрично на верхней части головы (рис. 4.7), – это была бы хорошая идея. Камбаловых перекосило из‐за собственного прошлого: их предки лежали на одном боку. Скатам досталась совсем другая история – когда их предки перешли к жизни на морском дне, они лежали не на боку, а на животе, поэтому скаты получились такие изящные и симметричные. Я вовсе не имею в виду, что у них не было никаких реальных причин для того, чтобы стать другими. Скаты ведут свой род от акул, а по сравнению с высокотелыми рыбами, по форме напоминающими лопасть весла, туловище акулы уже несколько сплющенное. Высокотелая рыба-“весло” на брюхе лежать не сможет – обязательно завалится набок. Угнездившись на дне, предки камбаловых взобрались на ближайшую горку в массиве Невероятности, хотя если бы им посчастливилось найти путь в маленькую долину, к подножию более высокой горы, до пика Симметричных скатов оставалось бы всего пару раз хвостом вильнуть. Повторяю: естественный отбор запрещает спускаться с горы Невероятности, и у этих рыб просто не было выбора – им пришлось за неимением лучшего перестроить органы зрения и сместить один глаз на противоположную сторону тела. Предки скатов тоже не замедлили занять ближайшую к ним высоту Плоских рыб – и обрели красивую симметричность. Когда я говорю “не было выбора” или “не замедлили занять высоту”, вы, конечно, понимаете, что речь, как обычно, не идет об отдельно взятых особях. Имеются в виду эволюционные линии, “выбор” означает возможность развиваться по альтернативным эволюционным траекториям.
Рис. 4.7. Две плоскости для рыб: скат, Raia batis (вверху), лежит на животе, а камбала, Bothus lunatus, на боку.
Я говорил, что нельзя спускаться с горы – но кто наложил этот запрет? Возможно ли такое, что его ни разу не нарушили? А кто “запрещает” реке течь не в ту сторону, куда направляет ее уже имеющееся русло? На все эти вопросы ответ примерно один и тот же. В реальности никто не давал реке команды оставаться в своих берегах, но, по вполне понятным причинам, река течет по своему руслу. Однако она может выйти из берегов и даже размыть их, и тогда все увидят, что курс реки изменился.
Что могло бы ненадолго повернуть вспять эволюционную линию и привести ее к точке, откуда открывается путь на ранее неприступную вершину горы Невероятности? Великий генетик Сьюалл Райт задался этим вопросом и, кстати, стал первым, кто применил к эволюции язык географии – можно сказать, заложил фундамент моей горы Невероятности. Райт представлял Америку в воинственно настроенной тройке запальчивых ученых, которые в 1920‐х и 1930‐х годах создали направление в науке, известное нам сейчас как неодарвинизм. Еще двое ее членов – англичане, не имеющие себе равных, но крайне несговорчивые гении – Р. Э. Фишер и Дж. Б. С. Холдейн, и справедливости ради надо добавить, что вся агрессия исходила в основном от них, а вовсе не от Райта. Райт понял, что естественный отбор, как ни странно, иногда противодействует стремлению к совершенству. Ровно по той самой причине, о которой мы только что говорили. Естественный отбор не пускает вниз. Если он с небольшого холма заарканил какой‐то вид у подножия более высокого пика, этому виду не вырваться и на высокий пик уже не попасть. Разве что естественный отбор ненадолго ослабит хватку и вид сумеет как‐нибудь незаметно слезть пониже, чтобы пересечь долину и подобраться к пологому склону более высокой горы. И если естественный отбор снова попытается его цапнуть, он будет уже в такой точке, откуда сможет быстренько эволюционировать по уходящим вверх тропам. Таким образом, с глобальной точки зрения, чередование периодов жесткого отбора с краткими передышками могло бы пойти на пользу эволюции. Возможно, релаксация такого рода действительно играет важную роль в реальном эволюционном процессе. Когда можно было бы рассчитывать на послабление? Например, если надо “заполнить вакуум”. В частности, когда популяция не использует все возможности своего ареала и поэтому начинает расти. Когда животные заселяют девственно чистый после природной катастрофы континент, перед ними открываются безграничные возможности, и естественный отбор берет паузу. Может быть, после того как вымерли динозавры, выжившие млекопитающие получили такую свободу действий, что некоторые эволюционные линии “потеряли контроль над собой” и на короткий промежуток времени спустились вниз, обнаружив затем более высокие пики горы Невероятности, куда в обычной жизни они не попали бы.
Еще один вариант – приток свежих вариантов генов из других источников. Во второй главе, в разговоре о пауках, я обещал к этому вернуться. В компьютерной модели паутин (NetSpinner) параллельно эволюционировали сразу три “дема”, а не одна размножающаяся половым путем популяция пауков-“ткачей”. Они как бы развивались независимо в трех различных географических зонах. Но – и это важно – не совсем независимо. Из одной локальной популяции в другую идет слабая миграция генов – случайное перемещение отдельных особей. Эта миграция генов сродни вливанию свежей “крови” в другую популяцию – как я говорил, “успешная подгруппа отдает свои гены той, что послабее, тем самым ‘подсказывая’ ей более выгодный способ создания ловчей сети”. Словно открывается незаконный путь на более высокий пик метафорической горы.
Мы приближаемся к излюбленному объекту внимания креационистов и главному камню преткновения для потенциальных сторонников эволюции, который непрочно держится на самой макушке наиболее труднодоступного утеса горы Невероятности, – к глазу.
Примечание: Когда эта книга уже ушла в печать, Дж. Марден и М. Дж. Крамер опубликовали интереснейшую работу о веснянках, где указывается еще одна дорожка на вершину Полетов с машущим крылом (Marden, J. H., & Kramer, M. G. (1995) Locomotor performance of insects with rudimentary wings [“Локомоторная активность насекомых со слаборазвитыми крыльями”]. Nature, 377, 332–4). Веснянок можно отнести к первичным насекомым в том смысле, что этот вид, хотя и ныне существующий, как полагают, имеет больше сходства с предками, чем другие современные насекомые. Вид, который изучали Марден и Крамер, Allocapnia vivipara, расправляет крылышки по ветру, точно паруса, и скользит по водной глади ручья. Скорость живого “парусника” примерно пропорциональна длине крыла. Даже с самыми крохотными крылышками насекомое движется быстрее, чем совсем без них. По величине они примерно такие же, как жаберные пластины древних ископаемых насекомых. Возможно, бескрылые предки обитали на водоемах и наращивали жаберные пластины, чтобы использовать их в качестве парусов. В таком случае развившиеся жаберные пластины стали работать более эффективно и, вероятно, открыли достаточно удобный путь на гору Невероятности. Что же до следующего шага к полетам с машущим крылом, с ним связано еще одно наблюдение, которое сделали Марден и Крамер. Насекомые другого вида, Taeniopteryx burksi, тоже скользят по воде, но машут при этом крыльями. Возможно, на пути к пику Полетов насекомые, как и Allocapnia, сначала прошли стадию движения под парусом, а потом – с машущими крыльями, как Taeniopteryx. Вполне вероятно, что в один прекрасный день порыв ветра подхватил невесомых мушек, машущих крылышками и роящихся над водой. Трепещущие крылышки позволяли им все дольше и дольше держаться в воздухе, и это могло бы стать следующим пролетом пандуса, который ведет к вершине.
Глава 5
Сорокаполосный путь к просветлению
Животным приходится иметь дело с окружающей средой и с другими живыми и неживыми телами. Они ходят по ним, ползают под ними, стараются избежать контакта или спариться с ними, ловят их и едят, убегают от них. На заре геологической истории и эволюции животные вступали в физический контакт с другими телами раньше, чем догадывались о том, что рядом есть кто‐то или что‐то. Перед тем первым счастливчиком, у которого выработалось дистанционное сенсорное восприятие, открывались огромные перспективы – он мог заметить препятствие раньше, чем налетал на него, увидеть хищника раньше, чем тот успевал его схватить, раздобыть где‐то еду, даже если ее не оказывалось в непосредственной близости. Какие же высокие технологии могли дать ему подобный бонус?
Не только химические шестеренки живой природы пришли в движение от энергии солнца. Она запустила и процесс дистанционного поиска. Каждый квадратный миллиметр нашей планеты подвергся бомбардировке лавиной фотонов – элементарных частиц, которые с максимально возможной в нашем мире скоростью разлетаются по прямым траекториям во все стороны, проникая во все щели и дырочки, не пропуская ни одного уголка и закоулка во вселенной. Стремительные и прямолинейные потоки фотонов, различия в поглощении и отражении фотонов разными веществами, а также высокая проникающая способность света – все это делает возможным развитие мощных и высокоточных технологий дистанционного слежения. Надо только зарегистрировать фотоны и, что труднее, выяснить, откуда они прилетели. Был ли использован этот шанс? Раз вы читаете мой текст, значит, спустя три миллиарда лет можете ответить на этот вопрос.
Известно, что раздел “Органы крайней степени совершенства и сложности” Чарльз Дарвин начал со слов о глазе:
В высшей степени абсурдным, откровенно говоря, может показаться предположение, что путем естественного отбора мог образоваться глаз со всеми его неподражаемыми изобретениями для регуляции фокусного расстояния, для регулирования количества проникающего света, для поправки на сферическую и хроматическую аберрацию[8]8
Дарвин Ч. Происхождение видов путем естественного отбора, или Сохранение благоприятных рас в борьбе за жизнь / пер. с 6 издания (Лондон, 1872 г.) под ред. К. А. Тимирязева. АСТ, 2017.
[Закрыть].
Возможно, на Дарвина повлияло мнение его жены Эммы по этому вопросу. За пятнадцать лет до “Происхождения видов” он написал длинное эссе, где в общих чертах обрисовал свою теорию эволюции путем естественного отбора. Он хотел, чтобы Эмма опубликовала эту работу, если он умрет, и дал ей ее почитать. Сохранились ее заметки на полях, и любопытно, что ее внимание привлекло предположение Дарвина о том, что глаз, “с некоторой вероятностью мог сформироваться в ходе постепенного отбора незначительных, но непременно полезных отклонений в развитии”. “Прекрасное предположение / Э. Д.”, – прокомментировала Эмма. Много позже выхода в свет “Происхождения видов” Дарвин признался в письме американскому коллеге: “Меня по сей день из‐за глаза дрожь пробирает, но когда я вспоминаю о том, сколько удивительных превращений он претерпел на пути развития, мой разум велит мне унять дрожь”. Наверное, временные колебания Дарвина имели нечто общее с сомнениями того физика, которого я цитировал в начале 3 главы. Но для Дарвина сомнения стали поводом не отступиться от своих идей, а размышлять дальше.
Надо сказать, что, говоря о некоем глазе, мы недооцениваем глубину проблемы. По достоверным оценкам ученых, глаза эволюционировали не менее сорока, а возможно и больше шестидесяти раз, независимо в разных филогенетических группах царства животных. В конструкции разных типов глаз часто используются совершенно различные принципы. Если анализировать те самые сорок или шестьдесят независимо эволюционировавших глаз, можно обнаружить девять принципиально разных схем строения. Далее я расскажу о некоторых из девяти типов строения глаза – мы будем рассматривать это как девять отдельных пиков в разных частях горного массива Невероятности.
Кстати, откуда мы вообще знаем, что у двух разных групп животных какая‐либо структура эволюционировала независимо? Скажем, откуда нам знать, что у летучих мышей и птиц крылья развивались независимо? Среди млекопитающих настоящие крылья есть только у летучих мышей. Теоретически древние млекопитающие могли иметь крылья, однако все, кроме летучих мышей, их потеряли. Но для этого должно было реализоваться невообразимое множество не связанных друг с другом сценариев исчезновения крыльев, чего, как подсказывает здравый смысл – и что подкреплено массой доказательств, – не произошло. Древним млекопитающим, как и большинству их потомков, передние конечности служили не для полетов, а для передвижения по земле. Следуя той же логике, мы можем предположить, что и глаза не раз заново возникали в животном мире, и каждый случай был уникальным. Мы владеем и другой информацией – нам известны детали развития глаза у эмбрионов различных животных. Например, и у лягушек, и у головоногих моллюсков имеются полноценные глаза камерного типа, но у их эмбрионов эти органы образуются настолько по‐разному, что мы можем быть абсолютно уверены – эти глаза эволюционировали независимо. Отсюда не следует, что у общего предка лягушки и кальмара вовсе отсутствовали глаза. Не удивлюсь, если выяснится, что еще миллиард лет назад общий предок всех выживших животных был зрячим. Возможно, у него были какие‐то точечные скопления светочувствительного пигмента и он отличал день от ночи. Но глаза как высокотехнологичные приборы, способные формировать изображение, независимо прошли множество стадий эволюции. Иногда глаза разных животных конвергировали к какой‐то одной схеме строения, а иногда приходили к абсолютно уникальному дизайну. Совсем недавно появились новые, впечатляющие факты, касающиеся независимой эволюции глаза в разных группах животных. Мы еще вернемся к ним в конце главы.
Анализируя глаза животных, я во многих случаях буду указывать, на каком склоне горы Невероятности следует искать тот или иной тип глаз. Но не забывайте о том, что речь идет о современных животных, а не об их далеких предках. Разумно предположить, что по ним можно судить о строении глаз древних животных. По крайней мере, это свидетельствует о том, что те глаза, которые мы оставляем на полпути к вершине горы Невероятности, могли выполнять свои функции. Это важно, так как, повторяю, ни одно животное ни в одной ветви эволюции не имело статуса промежуточного звена. То, что мы принимаем за краткий привал во время восхождения к вершине более развитого глаза, для самого животного могло быть жизненно важным органом, и скорее всего, при его образе жизни лучшего и не требовалось. Например, совсем крохотному существу ни к чему глаза, способные формировать изображение высокой четкости. Глаза высшего качества должны быть не меньше определенного размера, чем больше – тем лучше, и не относительно размеров самого животного, а в абсолютном выражении. Крошечному существу, наверное, слишком дорого далось бы развитие таких глаз, да и не под силу было бы носить массивный, объемистый орган зрения. Если бы улитке достались такие же зоркие глаза, как у человека, вид у нее был бы весьма несуразный (рис. 5.1). Может статься, улитки с глазами хоть капельку крупнее средних будут видеть лучше своих конкуренток. Но они и поплатятся за это – придется таскать на себе более тяжелую ношу, и, следовательно, их шансы на выживание станут меньше. Диаметр самого большого глаза, известного науке, равен аж 37 см. Тот могучий великан, которому принадлежит этот рекорд, – гигантский кальмар с десятиметровыми щупальцами.
Давайте спустимся вниз по склону Зрения, не забывая об ограничениях, принятых в концепции горы Невероятности. Мы обнаружим там глаза до того примитивные, что они даже не заслуживают права так называться. Собственно, поверхность всего тела слабо реагирует на свет. Например, некоторые одноклеточные, медузы, морские звезды, пиявки и разные виды червей не способны формировать изображение или хотя бы распознавать, откуда идет свет. Они лишь чувствуют, и то смутно, что где‐то поблизости есть источник света – яркого света. Вы не поверите, но есть неопровержимые доказательства наличия чувствительных к свету клеток на гениталиях бабочек, как самцов, так и самок. Это не глаза, которые формируют изображение, но разницу между светом и темнотой они ощущают – и могут послужить той самой отправной точкой, которую мы имеем в виду, когда говорим о начале эволюции глаза в древности. Никто не знает, как бабочки оперируют этим органом, даже Уильям Эберхард, из чьей очень занимательной книги под названием “Половой отбор и половые аппараты животных” (Sexual Selection and Animal Genitalia) я почерпнул эти сведения.
Рис. 5.1. Фантастическая улитка видела бы так же хорошо, как человек, если бы у нее были такие огромные глаза.
Если допустить, что в долине у подножия горы Невероятности обитают предшественники животных, абсолютно не восприимчивые к свету, то светочувствительные, но не способные определить источник света кожные покровы морских звезд и пиявок, равно как и половой аппарат бабочек, уже ведут нас чуть выше по склону, к началу горной тропы. Найти тропу легко. И впрямь, долина Абсолютной невосприимчивости к свету, возможно, никогда и не была такой уж необъятной. Может быть, все живые клетки в той или иной степени могут реагировать на свет – и тогда светочувствительные половые органы бабочек уже не должны вызывать недоумение. Луч света – это прямолинейный поток фотонов. В результате соударения с молекулой окрашенного вещества фотон может прекратить свой полет, а молекула пигмента может перейти в другое состояние, хотя останется той же молекулой. При этом выделяется энергия. Зеленые растения и бактерии используют эту энергию в серии реакций – фотосинтезе – для производства молекул, которыми они питаются. У животных эта энергия может спровоцировать реакцию в нервной клетке, и это можно считать первой стадией процесса, который мы и называем “зрение”, даже если у животного нет глаз в нашем понимании. На начальном уровне сгодится любой из широчайшей палитры пигментов (окрашенных веществ). Существует огромное множество таких пигментов, которые используются далеко не только для поглощения света. Вероятно, постепенное усовершенствование молекул пигментов позволило сделать первые робкие шаги вверх на гору Невероятности. Это пологий склон непрерывных усовершенствований, по нему легко подниматься маленькими шажками.
Низинный пандус ускорил путь к эволюции живого аналога фоторецептора – клетки, специализирующейся на улавливании фотонов пигментом и преобразующей выделяющуюся энергию в нервные импульсы. Клетки сетчатки (у нас это палочки и колбочки), которые специализированы для улавливания фотонов, я буду впредь называть фоторецепторами. Все они используют один мудрый прием – увеличение числа слоев пигмента, способного улавливать фотоны. Это существенно, ибо очень вероятно, что через один слой фотон пролетит, не претерпев ни малейших изменений. Чем больше пигментных слоев, тем больше шансов изловить хотя бы один фотон. Какая разница, сколько фотонов будет поймано, а сколько проскочит насквозь? Разве нет у нас достаточного их запаса? Нет, и это ключевой момент для понимания того, как устроены глаза. В своего рода “экономике” фотонов действуют те же монетарные отношения, основанные на стремлении хапнуть побольше и отдать поменьше, с такими же неизбежными потерями и компромиссами, как в нашем обществе.
Даже не вдаваясь в нюансы экономических выгод и потерь, мы точно знаем, что иногда фотонов попросту не хватает. Однажды звездной, холодной ночью 1986 года я разбудил свою двухлетнюю дочь Джульет, укутал ее в одеяло, вынес в сад и повернул сонным личиком туда, где, как сообщалось, должна была пролетать комета Галлея. Она не понимала моей речи, но я упорно шептал ей на ушко про комету и про то, что мне уже точно не доведется увидеть ее во второй раз, а вот самой Джульет еще выпадет шанс, когда ей будет семьдесят восемь лет. Я разбудил ее, объяснял я дочке, чтобы в 2062 году она могла сказать внукам, что видала эту комету раньше, а может, и вспомнила бы своего папу с его восторженной блажью, который потащил ее в ночной сад любоваться кометой Галлея. Кажется, я так и сказал – восторженная блажь, – потому что маленьким детям нравятся непонятные слова, если их четко произнести.
Наверное, тогда, в 1986 году, какие‐то фотоны достигли сетчатки Джульет, но, честно говоря, мне и себя‐то нелегко было убедить, что я видел комету. Иногда мне мерещилось какое‐то едва различимое сероватое облачко примерно там, где она должна была пролетать. Потом оно исчезало. Беда в том, что на сетчатки наших глаз попадало близкое к нулю количество фотонов.
Фотоны долетают до нас спорадически, как капли дождя. Если дождь льет вовсю, мы точно это видим и уповаем на то, что никто не прихватил с собой наш зонтик. Но когда он только-только начинается, как определить момент его начала? Мы чувствуем одну каплю и задумчиво глядим на небо – будет вторая и третья или нет. При столь незначительных осадках один человек скажет, что пошел дождь, а другой ему возразит. Капли падают редко, так что один человек ощутит касание за минуту до того, как другая капля упадет на его соседа. Чтобы не сомневаться в том, светло вокруг нас или темно, частота попадания фотонов на сетчатку должна быть достаточно высокой. Надо полагать, фотоны кометы Галлея, когда мы с Джульет устремили взоры предположительно в ее сторону, достигали отдельных фоторецепторов наших сетчаток с низкой до обидного частотой – может, по одному за сорок минут! То есть от одного какого‐нибудь фоторецептора можно было получить сигнал, что свет есть, в то время как колоссальное множество соседних фоторецепторов никаких сигналов не передавали. У меня вообще возникло чувство, что я видел некий объект, похожий на комету, лишь благодаря моему мозгу, который подытожил вердикты, вынесенные сотнями фоторецепторов. Два фоторецептора ловят больше фотонов, чем один. Три больше, чем два – и так далее вверх по склону горы Невероятности. В столь совершенных глазах, как наши, плотно, как ворс ковра, упакованы миллионы фоторецепторов, и каждый настроен ловить как можно больше фотонов.
На рис. 5.2 изображен типичный, в данном случае человеческий, фоторецептор, но другие устроены почти так же. Клубок червячков в центре рисунка – это митохондрии, внутриклеточные органеллы. Они произошли от бактерий-паразитов, но стали незаменимыми элементами клетки, без которых не вырабатывается энергия. За левое поле рисунка уходит нервное окончание. Ровный, красивый ряд мембран в правой части, выстроившихся, словно на параде, и есть та самая часть рецептора, куда попадают фотоны. В эти слои встроены молекулы жизненно важного пигмента, поглощающего фотоны. На этом рисунке я насчитал 91 мембранный слой. Неважно, сколько именно слоев – когда речь идет об улавливании фотонов, лишним ни один не будет, хотя их количество лимитируется общими затратами организма. Идея в том, что 91 мембрана эффективнее ловит фотоны, чем 90, 90 эффективнее 89 и так далее вплоть до одиночной мембраны, чей КПД все‐таки выше нулевого. Вот что я имею в виду, когда говорю о плавном подъеме на гору Невероятности. Резкий перепад высоты встретился бы нам в том случае, если бы существовало некое пороговое значение – скажем, до сорока пяти слоев мембраны работали бы вообще не эффективно, а после сорока пяти очень эффективно. Здравый смысл выступает против таких непредвиденных скачков, да и нет фактов, свидетельствующих о том, что они могли бы быть.
Рис. 5.2. Фоторецептор, единичная клетка сетчатки человека, – биологический “фотоэлемент” для улавливания фотонов.
Как мы уже видели, у головоногих моллюсков независимо от позвоночных развились похожие глаза. Даже фоторецепторы у них почти такие же. Разница лишь в том, что у кальмаров мембрана состоит не из дисков, а из столбика колец на полой трубке. В эволюции полно таких несущественных отличий, в которых не больше логики, чем, скажем, в устройстве выключателя: в Англии при опущенном тумблере свет зажигается, а в Америке – выключается. У всех животных хорошо развитые фоторецепторы пытаются любым способом обзавестись дополнительными мембранами с пигментом – и пусть фотон попробует через них проскочить. В рамках концепции горы Невероятности важно, что каждый новый слой – сколько бы их уже ни было – хоть немножко, да повышает шансы заловить фотоны. В конце концов захватывается уже львиная доля фотонов, и начинает действовать закон убывающей доходности для роста затрат на прибавку слоев.
Конечно, в природе редко у кого возникает нужда отследить комету Галлея с ее ничтожно слабым потоком фотонов, которая к тому же появляется раз в семьдесят шесть лет. Однако зоркие глаза, способные видеть при лунном свете и даже при свете звезд – если вы сова, – весьма полезная вещь. Обычно ночью один наш фоторецептор улавливает примерно по фотону в секунду, то есть существенно быстрее, чем при наблюдении за кометой, но все равно слишком медленно для полного поглощения всех фотонов до единого – если это вообще возможно. Но коли уж мы заговорили о суровых экономических законах в применении к фотонам, было бы большой ошибкой полагать, что они действуют только ночью. В ясный солнечный день тоже не все так просто, хотя на сетчатку может обрушиться настоящий фотонный ливень. Формирование отчетливого, детального изображения сводится к тому, что на разных участках сетчатки фоторецепторы реагируют на свет разной интенсивности, а значит, частота попаданий фотонов, из которых складываются отдельные струи фотонного ливня, тоже должна быть разной. Мелкозернистое изображение предполагает распределение фотонов, а это может приводить к таким же значительным локальным ослаблениям их потока, как и сокращение его вообще в ночное время. Вот этим распределением мы сейчас и займемся.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.