Автор книги: Ричард Докинз
Жанр: Зарубежная публицистика, Публицистика
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 4 (всего у книги 31 страниц) [доступный отрывок для чтения: 10 страниц]
Тут может возникнуть вопрос: раз летучие мыши способны поднимать “частоту взятия проб” до 200 импульсов в секунду, почему же они не поддерживают ее постоянно на этом уровне? Раз у их “стробоскопа” имеется, как мы видим, “тумблер” частоты, почему же не держать его всегда “повернутым на максимум”, чтобы восприятие мира было настолько четким, насколько это возможно, – на случай любых непредвиденных обстоятельств? Одна из причин заключается в том, что такая высокая частота сигналов годится только для объектов, находящихся поблизости. Если импульс будет совсем уж “наступать на пятки” своему предшественнику, то он смешается с его эхом, возвращающимся от удаленной мишени. Даже если это не проблема, существуют, вероятно, и серьезные экономические причины для того, чтобы не поддерживать частоту импульсов постоянно на максимуме. Производить громкие ультразвуковые сигналы дорого. Это касается и расхода энергии, и износа голосового и слухового аппаратов, а также, возможно, и “машинного времени”. Мозг, занятый обработкой 200 отдельных эхо в секунду, может не изыскать “резервной мощности”, чтобы подумать о чем-нибудь еще. Даже “дежурный” уровень десять импульсов в секунду – это, вероятно, дорогое удовольствие, но все же куда меньшая роскошь по сравнению с максимальным, равным 200 импульсам в секунду. Отдельно взятая летучая мышь, которая резко повысит “дежурную частоту”, израсходует столько дополнительной энергии и т. п., что это не окупится более тонкой отлаженностью сонара. Когда в непосредственной близости от летучей мыши нет никаких движущихся объектов, кроме нее самой, то нет никакой необходимости обновлять картинку чаще, чем раз в десятую долю секунды, потому что за это время изображение меняется несильно. Если же поблизости появляется другой движущийся объект, к примеру летящее насекомое, которое крутится, уворачивается и пикирует, отчаянно стараясь избавиться от преследователя, то дополнительные выгоды летучей мыши оправдывают и, более того, превосходят увеличение издержек. Разумеется, данный анализ затрат и выгод целиком и полностью предположителен, но что-то подобное имеет место почти наверняка.
Инженеру, который приступает к разработке эффективного сонара или радара, очень скоро придется столкнуться с затруднением, вытекающим из необходимости делать импульсы чрезвычайно громкими. А они должны быть громкими, поскольку, когда звук распространяется, его волновой фронт имеет форму бесконечно увеличивающейся сферы. Интенсивность сигнала распределяется, в известном смысле “разбавляется” на всю поверхность этой сферы. Площадь поверхности любой сферы пропорциональна квадрату ее радиуса. Таким образом, по мере того как звуковая волна распространяется, а сфера растет, в каждой отдельной ее точке интенсивность сигнала ослабевает пропорционально не расстоянию от источника (т. е. радиусу), а квадрату этого расстояния. Это значит, что, удаляясь от своего источника (в данном случае от летучей мыши), звук стихает довольно быстро.
Когда этот “разбавленный” звук сталкивается с каким-либо объектом, например с мошкой, он отскакивает от нее рикошетом. Этот отраженный звук, в свою очередь, тоже идет увеличивающимся сферическим фронтом. По тем же причинам, что и в случае с исходным звуком, он ослабевает пропорционально квадрату расстояния от мошки. Когда сигнал в виде эха возвращается к летучей мыши, он ослаблен пропорционально не расстоянию от нее до мошки и даже не квадрату этого расстояния, а скорее квадрату квадрата, четвертой степени. Иными словами, он очень, очень тихий. Эту проблему можно отчасти решить, если направлять звук при помощи некоего подобия мегафона, но для этого летучая мышь уже должна знать направление, в котором находится ее мишень. Как бы то ни было, если летучей мыши требуется получать хоть сколько-нибудь заметное эхо от удаленных объектов, то ее исходный писк должен, несомненно, быть очень громким, а ухо – инструмент, который улавливает эхо, – высокочувствительным к очень тихим звукам. Как я уже упоминал, летучие мыши, в самом деле зачастую вопят как резаные, обладая при этом тончайшим слухом.
И тут возникает затруднение, способное обескуражить инженера, который взялся бы за разработку машины, похожей на летучую мышь. Раз микрофон, или ухо, обладает такой высокой чувствительностью, значит, ему грозит нешуточная опасность быть серьезно поврежденным своими же оглушительно громкими исходящими сигналами. Бесполезно бороться с этой проблемой, уменьшая силу звука, – тогда эхо будет слишком слабым, чтобы его можно было уловить. А против этой проблемы будет бесполезно бороться увеличением чувствительности микрофона (уха) – ведь оно лишь сделает его более уязвимым для повреждения исходящими сигналами (пусть даже они и станут чуточку слабее). Эта дилемма неизбежно следует из огромной разницы в интенсивности между исходящим сигналом и его эхом – разницы, неумолимо навязываемой нам законами физики.
Какой еще выход мог бы прийти в голову нашему инженеру? Когда разработчики радара времен Второй мировой столкнулись с этой проблемой, решение, на которое они натолкнулись, было названо ими “радаром с автоматизированной передачей и приемом”. Этот радар посылал достаточно мощные импульсы, которые вполне могли бы повредить высокочувствительные антенны, ожидающие слабых отраженных сигналов. Но схема “автоматизированной передачи и приема” временно отключала принимающую антенну непосредственно перед испусканием сигнала, а затем снова включала ее – так, чтобы она успела уловить эхо.
Рукокрылые отладили технологию “автоматизированной передачи и приема” давным-давно – вероятно, за миллионы лет до того, как наши с вами предки спустились с деревьев. А работает она так. В ушах у летучих мышей, так же как и у нас, звук передается от барабанной перепонки к сенсорным “клеткам-микрофонам” по мостику из трех миниатюрных косточек, названия которых соответствуют их форме и переводятся с латыни как “молоточек”, “наковальня” и “стремечко”. Надо сказать, что соединение и расположение этих трех косточек в точности таково, каким бы сделал его звуковой инженер, чтобы решить проблему согласования сопротивлений, но это другая история. Сейчас нам важно то, что у некоторых летучих мышей к стремечку и к молоточку подведены хорошо развитые мускулы. Когда они сокращаются, эффективность передачи звука через косточки падает – как если бы вы заглушили микрофон, пальцем придавив вибрирующую диафрагму. При помощи этих мышц рукокрылые способны временно выключать свои уши. Каждый раз непосредственно перед тем, как произвести исходящий звуковой импульс, летучая мышь сокращает эти мускулы, отключая таким образом уши и защищая их от повреждения громким сигналом. Затем мускулы расслабляются, и уши возвращаются в режим максимальной чувствительности – как раз вовремя, чтобы уловить вернувшееся эхо. Такая система переключения передачи и приема имеет смысл, только если координация во времени выверена с точностью до мгновения. Летучая мышь Tadarida способна поочередно сократить и расслабить эти мышцы-выключатели 50 раз в секунду, сохраняя абсолютную синхронность с пулеметными очередями исходящих ультразвуковых импульсов. Это чудо слаженности сравнимо с хитроумным изобретением, использовавшимся на некоторых истребителях в Первую мировую войну. Их пулеметы стреляли “сквозь” пропеллер – частота выстрелов была так тщательно скоординирована с его вращением, что пули неизменно пролетали между лопастями, не задевая их.
Затем наш инженер мог бы задуматься о следующей проблеме. Раз принцип работы сонара основан на измерении продолжительности паузы между звуком и его эхом – прием, которым, очевидно, пользуется Rousettus, – то издаваемым звукам следовало бы, по всей вероятности, быть отрывистыми, стаккато. Долгий, протяжный звук может не успеть закончиться к моменту возвращения эха и, даже будучи отчасти приглушен мускулами автоматического переключения передачи и приема, помешать восприятию. Действительно, может показаться, что в идеале импульсы рукокрылых должны быть чрезвычайно короткими. Однако чем короче звук, тем сложнее сделать его достаточно мощным, чтобы произвести хоть сколько-нибудь приемлемое эхо. Похоже, законы физики ставят нас перед необходимостью еще одного неприятного компромисса. Искусным инженерам тут могли бы прийти в голову два решения, и они действительно пришли им в голову при встрече с аналогичной проблемой – только опять-таки это было в ходе разработки радара. Какое из данных двух решений предпочтительнее, зависит от того, что важнее измерить: дальность (на каком расстоянии от прибора находится объект) или скорость (насколько быстро объект перемещается относительно прибора). Первое решение известно специалистам по радиолокации как “чирплет-радар”.
Сигналы радара можно представить как серию импульсов, однако каждый импульс характеризуется так называемой несущей частотой, которая аналогична “высоте” звука или ультразвука. Как мы знаем, крики летучих мышей повторяются с периодичностью, равной десяткам или сотням в секунду. Несущая частота каждого из этих импульсов измеряется десятками и сотнями тысяч повторяющихся циклов в секунду. Другими словами, каждый импульс – это высокий, пронзительный визг. Точно так же и каждый сигнал радара представляет собой “визг” радиоволн, отличающийся высокой несущей частотой. Особенностью чирплет-радара является то, что на протяжении каждого его “взвизгивания” несущая частота не является неизменной, а “взмывает” или “сползает” приблизительно на октаву. Если вам нужен эквивалентный звуковой образ, то представьте себе, что во время каждого импульса радар как бы присвистывает от удивления. Преимущество чирплет-радара перед радаром с фиксированной высотой импульсов состоит в следующем. Неважно, закончился исходящий “присвист” к моменту возвращения своего эха или еще нет. Их все равно не перепутаешь. Ведь эхо, улавливаемое в каждый конкретный момент времени, будет отражением более ранней части сигнала и потому иметь отличную от него частоту.
Разработчики человеческого радара извлекли немалую пользу из этой остроумной методики. А есть ли доказательства в пользу того, что летучие мыши тоже ее “открыли”, как это было с автоматизированной передачей и приемом? Ну, вообще-то многие виды рукокрылых действительно издают крики, высота которых постепенно снижается примерно на октаву. Такие “присвистывающие” сигналы называются частотно-модулированными (frequency modulated, FM). Казалось бы, это именно то, что нужно, чтобы воспользоваться принципом чирплет-радара. Тем не менее имеющиеся на сегодняшний день факты говорят о том, что летучие мыши используют этот метод не для того, чтобы отличать эхо от исходного сигнала, а для более тонкой задачи – чтобы отличать одно эхо от другого. Летучая мышь живет в мире эха, которое доносится от близких объектов, дальних объектов и от объектов, находящихся на всевозможных промежуточных расстояниях. Все эти звуковые отражения ей необходимо рассортировать. Если издавать плавно понижающиеся “присвистывания”, то можно провести четкую сортировку по высоте. Эхо, вернувшееся наконец от удаленного объекта, будет “старше”, чем эхо, которое в тот же момент пришло от объекта, расположенного поблизости. А значит, высота первого эха будет больше. Услышав несколько отраженных сигналов сразу, летучая мышь может положиться на простое практическое правило: чем звук выше, тем объект дальше.
Вторая идея, которая могла бы прийти в голову умному инженеру, особенно если он заинтересован в определении скорости движущейся мишени, – это сыграть на явлении, которое физики называют допплеровским смещением. Также его можно было бы назвать “эффектом скорой помощи”, поскольку наиболее известный его пример – это резкое падение высоты звука сирены у машины скорой помощи, после того как она промчится мимо нас. Допплеровское смещение наблюдается во всех случаях, когда источник звука (или света, или любых других волн) и его получатель движутся друг относительно друга. Для большей простоты представим себе, что источник звука неподвижен, а слушатель перемещается. Допустим, фабричная сирена непрерывно гудит на одной ноте. Звук распространяется вовне в виде идущих одна за другой волн. Эти волны невидимы, они из уплотненного воздуха. Но если бы их можно было увидеть, то они были бы похожи на концентрические окружности, расходящиеся по поверхности спокойного пруда от брошенных камешков. Представьте, что мы бросаем туда камешек за камешком, так что волны образуются непрерывно. Если в какой-нибудь точке этого пруда поставить на якорь игрушечную лодочку, то она будет ритмично подниматься и опускаться по мере прохождения под ней волн. Частота покачиваний лодочки аналогична высоте звука. Теперь давайте вообразим, что вместо того, чтобы стоять на якоре, наша лодочка плывет через пруд по направлению к центру, где возникают расходящиеся волны-окружности. Она по-прежнему будет покачиваться вверх-вниз, встречаясь с идущими друг за другом волнами. Но теперь, направляясь к источнику волн, она будет сталкиваться с ними чаще. Частота ее покачиваний будет выше. Когда же она минует источник волн и направится к противоположному берегу, частота, с которой она покачивается, очевидным образом уменьшится.
По тем же причинам, если мы будем мчаться на мотоцикле (желательно бесшумном) мимо гудящей фабричной сирены, то, пока мы приближаемся к фабрике, звук будет завышенным – фактически наши уши будет “накрывать” звуковой волной чаще, чем если бы мы просто сидели на одном месте. Из этих же рассуждений следует, что, когда наш мотоцикл проедет мимо фабрики и начнет от нее удаляться, высота звука понизится. Если мы остановимся, то услышим сигнал такой высоты, какая она есть на самом деле, – промежуточная между двумя значениями с допплеровским сдвигом частоты. Получается, что, зная точную высоту тона сирены, теоретически возможно вычислить, с какой скоростью мы движемся по направлению к ней или от нее. Для этого надо просто сравнить слышимую высоту звука с ее известным нам “настоящим” значением.
Этот принцип точно так же действует, когда источник звука перемещается, а слушатель неподвижен. Потому мы и можем наблюдать его в случае со скорой помощью. Ходят довольно неправдоподобные россказни, будто бы сам Кристиан Допплер, чтобы продемонстрировать свое открытие, нанял духовой оркестр, который играл на открытой грузовой платформе, несущейся по рельсам мимо изумленной публики. Что действительно важно, так это относительное движение, и, покуда речь идет о допплеровском эффекте, нам все равно – источник звука перемещается мимо уха или ухо мимо источника звука. Если два поезда едут в противоположных направлениях со скоростью 125 миль в час каждый, то для пассажира, находящегося в одном из них, свисток другого поезда должен резко понизить высоту в результате особенно значительного допплеровского смещения, поскольку относительная скорость будет составлять целых 250 миль в час.
Эффект Допплера используется и в полицейских портативных радарах – “ловушках для лихачей”. Неподвижно установленный прибор посылает радиолокационные сигналы вдоль дороги. Радиоволны отскакивают назад от приближающихся автомобилей и регистрируются приемным устройством. Чем быстрее движется машина, тем сильнее допплеровский сдвиг частоты. Сравнивая исходящую частоту с частотой возвращающегося эха, полицейские, а точнее их автоматизированная аппаратура, могут вычислить скорость каждой машины. Раз полиция освоила эту методику для ловли дорожных нарушителей, то можем ли мы надеяться, что и рукокрылые пользуются ею для измерения скорости насекомых, на которых охотятся?
Ответ будет – да. Давно известно, что мелкие летучие мыши, называемые подковоносами, издают не отрывистые щелчки и не нисходящие глиссандо, а продолжительные монотонные возгласы. Говоря “продолжительные”, я имею в виду – продолжительные по меркам рукокрылых. Эти “возгласы” все равно длятся менее десятой доли секунды. И, как мы дальше увидим, нередко в конце каждого возгласа к нему добавляется еще и нисходящее “присвистывание”. Но для начала просто представьте себе, как подковонос, непрерывно издавая ультразвуковой шум, на высокой скорости приближается к неподвижному объекту – скажем, к дереву. В связи с таким направлением движения летучей мыши звуковые волны ударяются о дерево с повышенной частотой. Если бы в дереве был спрятан микрофон, то по той причине, что животное приближается, он бы “слышал” звук с допплеровским завышением тона. В дереве нет микрофона, но точно таким же образом будет завышен тон у отражающегося от дерева эха. Итак, поскольку волны эха струятся от дерева обратно, то получается, что летучая мышь летит им навстречу. Следовательно, при восприятии летучей мышью высоты звучания эха происходит еще один допплеровский сдвиг в сторону завышения. Перемещение летучей мыши приводит к своего рода двойному допплеровскому эффекту, величина которого является точным показателем скорости движения животного относительно дерева. Сравнив высоту своего крика с высотой возвращающегося эха, летучая мышь (а точнее, встроенный в ее мозг “бортовой компьютер”) имела бы теоретическую возможность вычислить, насколько быстро она приближается к дереву. Пусть это ничего не сказало бы ей о том, как далеко от нее это дерево находится, тем не менее полученная информация сама по себе была бы очень ценной.
Если отражающий эхо объект – не неподвижное дерево, а перемещающееся насекомое, рассчитать последствия допплеровского эффекта будет труднее, однако летучая мышь будет по-прежнему иметь возможность вычислить относительную скорость своего движения по направлению к мишени – нет сомнений, что сложной управляемой ракете, какой является охотящаяся летучая мышь, эта информация крайне необходима. На самом деле некоторые рукокрылые придумали штуку поинтереснее, чем просто вопить на одной высоте и измерять высоту возвращающегося эха. Вместо этого они тщательно подстраивают высоту исходящих криков таким образом, чтобы высота эха после сдвига по Допплеру поддерживалась на неизменном уровне. Приближаясь со все возрастающей скоростью к движущемуся насекомому, они постоянно меняют высоту своих сигналов, все время добиваясь именно той частоты, какая нужна для того, чтобы сохранять высоту эха неизменной. Такая изобретательная уловка позволяет поддерживать эхо на той высоте звука, к которой уши этих летучих мышей наиболее чувствительны, что немаловажно, учитывая, насколько это эхо слабое. Следовательно, получить информацию для вычисления допплеровского эффекта животное может, следя за тем, на какой частоте ему сейчас нужно кричать для поддержания фиксированной высоты эха. Я не знаю, используется ли это ноу-хау в каких-либо рукотворных приборах, будь то сонары или радары. Но, коль скоро летучим мышам принадлежит пальма первенства во всех самых удачных решениях в данной области техники, готов биться об заклад, что используется.
Хотя может показаться, что два этих, весьма различных подхода – оценка допплеровского смещения и “чирплет-радар” – пригодны каждый для своих, особых целей, в действительности одни группы рукокрылых специализируются на первом, а другие – на втором из них. Некоторые, впрочем, пытаются, по-видимому, преуспеть и там и там, присоединяя FM-“присвистывание” к концу (или иногда к началу) протяжного “клича”, имеющего постоянную высоту. Еще один любопытный трюк, используемый подковоносами, связан с движениями их больших ушных раковин. В отличие от других летучих мышей подковоносы совершают частые взмахи ушами попеременно вперед и назад. Можно предположить, что такие дополнительные резкие перемещения звукоулавливающей поверхности относительно мишени модулируют эффект Допплера, сообщая дополнительную полезную информацию. Когда ухо делает взмах по направлению к мишени, кажущаяся скорость приближения к ней возрастает. Когда же оно отводится в противоположном направлении, все происходит наоборот. Мозгу летучей мыши “известно” направление взмахов каждого уха, и в принципе ему ничто не мешает пользоваться получаемой таким образом информацией для произведения необходимых вычислений.
Вероятно, самая серьезная из проблем, стоящих перед рукокрылыми, – это опасность непреднамеренных “помех”, создаваемых криками других летучих мышей. Однако, как показали эксперименты, сбить летучую мышь с толку мощными искусственными ультразвуковыми сигналами на удивление непросто. Впрочем, задним числом понимаешь, что это можно было предвидеть. Летучие мыши должны были научиться избегать помех еще давным-давно. Многие виды рукокрылых имеют привычку отдыхать, скапливаясь в огромных количествах в пещерах, где наверняка стоит оглушительная какофония из многочисленных ультразвуков и их эха, что, однако, не мешает летучим мышам легко порхать в полной темноте, не натыкаясь ни на стены пещеры, ни друг на друга. Каким же образом животное умудряется следить за собственным эхом, не путая его с эхом, создаваемым другими летучими мышами? Первое, что тут пришло бы в голову инженеру, – это некая разновидность частотного кодирования: каждая летучая мышь, подобно радиостанции, могла бы иметь свою собственную, личную частоту. Возможно, до некоторой степени это и так, но истинное положение дел, несомненно, сложнее.
Почему рукокрылые не “глушат” друг друга своими криками, не вполне ясно, но опыты, в которых им пытались “запудрить мозги”, дают нам любопытную подсказку. Оказывается, летучую мышь можно обмануть, если проигрывать ей запись ее собственного крика, но с задержкой. Другими словами, нужно фальшивое эхо ее собственных криков. Если аккуратно отрегулировать электронную аппаратуру, которая производит задержку этого фальшивого эха, то можно даже заставить летучую мышь пытаться сесть на “фантомную” поверхность. Полагаю, для нее это равносильно тому, чтобы смотреть на мир через линзу.
Не исключено, что у рукокрылых есть нечто, что мы могли бы назвать “фильтром странности”. Каждое последующее эхо, вызванное собственными криками летучей мыши, формирует такую картину мира, которая логична с точки зрения предшествовавшей картины, построенной на основании предыдущих отраженных сигналов. Если мозг летучей мыши услышит эхо крика другой летучей мыши и попытается поместить его в картину мира, которую он только что выстроил, получится бессмыслица. Создастся впечатление, будто все предметы вокруг стали внезапно разбегаться в разных случайных направлениях. Но предметам реального мира такое безумие несвойственно, а значит, мозг может спокойно проигнорировать подобное эхо как фоновый шум. Если же человек-экспериментатор будет подавать летучей мыши искусственное “эхо” ее сигналов с запозданием или, наоборот, преждевременно, то такие ложные звуки будут иметь смысл в рамках той картины мира, которую эта летучая мышь уже себе построила. Они являются правдоподобными в контексте своих предшественников, и потому “фильтр странности” их пропускает. Согласно им, окружающие предметы меняют свое местоположение совсем чуть-чуть, а это объектам реального мира вполне свойственно. Мозг летучей мыши твердо уверен в том, что мир, изображаемый эхом одного сигнала, должен либо ничем не отличаться от мира, нарисованного предыдущими звуковыми отражениями, либо отличаться от него незначительно. Например, преследуемое насекомое может слегка переместиться.
У философа Томаса Нагеля есть знаменитая статья, которая называется “Каково быть летучей мышью?”. Речь в ней идет не столько о рукокрылых, сколько о философской проблеме постижения того, “каково” это – быть кем-то, кем мы не являемся. Тем не менее для философа летучая мышь – пример чрезвычайно удачный, поскольку предполагается, что ощущения летучей мыши, ориентирующейся при помощи эхолокации, являются чем-то особенно чуждым для нас и отличным от наших ощущений. Можно почти с полной уверенностью сказать, что для того, чтобы почувствовать себя летучей мышью, без толку идти в пещеру, орать там, греметь кастрюлями, специально замерять продолжительность паузы до появления эха и на основании этого высчитывать, далеко ли до стены.
Все это соответствует тому, что чувствует летучая мышь, не более, чем следующее описание соответствует тому, как мы видим цвет. Возьмите прибор, измеряющий длину волны света, попадающего вам в глаз. Если она длинная – вы видите красный, а если короткая – фиолетовый или синий. Так уж вышло, и это научный факт, что у света, который мы называем красным, длина волны больше, чем у света, который мы называем синим. В нашей сетчатке включаются те или иные рецепторы – воспринимающие красный или синий – в зависимости от длины световой волны. Но понятие “длина волны” не играет ни малейшей роли в нашем субъективном восприятии цвета. То, “каково” это – различать красный и синий цвета, никоим образом не помогает нам узнать, в каком случае длина волны больше. Когда она для нас действительно важна (что бывает редко), мы должны ее просто помнить или (как обычно поступаю я) заглянуть в справочник. Аналогичным образом летучая мышь узнает местоположение насекомого, используя то, что мы называем эхом. Но когда она замечает насекомое, то думает о времени задержки эха наверняка не больше, чем мы с вами думаем о длинах волн, когда воспринимаем синий или красный цвет.
Да, в самом деле, если бы я был поставлен перед необходимостью попытаться сделать невозможное – представить себе, на что похоже быть летучей мышью, – то я предположил бы, что для летучих мышей ориентировка с помощью эха является во многом тем же самым, чем зрение для нас. Мы с вами животные, воспринимающие мир почти полностью через зрение, и потому вряд ли в состоянии осознать, какое непростое это дело. Предметы находятся “там-то”, и нам кажется, что там мы их и “видим”. Подозреваю, однако, что на самом деле мы видим искусную компьютерную модель, выстраиваемую мозгом на основании информации, приходящей извне, но преобразованной им так, чтобы ею было можно пользоваться. То, что снаружи является различиями в длине световой волны, компьютерная модель у нас в голове перекодирует в “цветовые” различия. Форма и прочие признаки трансформируются точно таким же образом, принимая вид, с которым удобно иметь дело. Наши с вами зрительные ощущения очень сильно отличаются от слуховых, но это никак напрямую не связано с физическими различиями между светом и звуком. И свет, и звук в конечном итоге переводятся соответствующими органами чувств в одни и те же нервные импульсы. По физическим свойствам нервного импульса невозможно определить, какую информацию он несет – о свете, о звуке или о запахе. Зрительные, слуховые и обонятельные ощущения так сильно отличаются друг от друга только потому, что нашему мозгу удобнее использовать разные типы внутренних моделей для мира зрительных образов, мира звуков и мира запахов. Мы используем зрительную и слуховую информацию различным образом и для разных целей – вот почему зрение и слух такие разные, а вовсе не непосредственно потому, что свет и звук – это различные физические явления.
Но летучая мышь использует звуковую информацию во многом для той же самой цели, для которой мы используем информацию зрительную. Она определяет местоположение предметов в трехмерном пространстве (и постоянно обновляет информацию об этом) с помощью звуков, так же как мы делаем это с помощью света. Следовательно, ей нужна такая внутренняя компьютерная модель, которая могла бы создавать образы, отражающие перемещение объектов в трехмерном пространстве. Суть здесь в том, что те формы, которые примет субъективный опыт животного, будут свойством его внутренней компьютерной модели. Эта модель конструируется в процессе эволюции исходя из того, насколько она годна для создания полезных внутренних представлений, безотносительно физической природы поступающих извне стимулов. Летучим мышам нужна такая же внутренняя модель для отображения местонахождения предметов в трехмерном пространстве, что и нам с вами. Тот факт, что их внутренняя модель формируется при помощи эха, а наша – при помощи света, не имеет отношения к делу. И та и другая внешняя информация будет на своем пути к мозгу преобразована в одинаковые нервные импульсы.
Итак, мое предположение состоит в том, что летучие мыши “видят” примерно так же, как и мы, пусть даже физический посредник, через который происходит преобразование внешнего мира в нервные импульсы, у них и совершенно иной: ультразвук, а не свет. Возможно, они даже могут испытывать ощущения, которые мы называем цветовыми, – эти ощущения не отсылают к физике и длине волн, но они отражают разнообразие внешнего мира и играют для летучих мышей ту же функциональную роль, какую цвет играет для нас. Кто знает, может быть, тонкая текстура поверхности у их самцов такова, что эхо, отскакивающее от нее, производит на самок впечатление роскошной окраски – этакий звуковой аналог брачного наряда райской птицы. И я подразумеваю под этим не просто какую-то расплывчатую метафору. Нет ничего невозможного в том, чтобы самка летучей мыши субъективно воспринимала самца, скажем, ярко-красным – точно так же, как я воспринимаю фламинго. Ну или, по меньшей мере, восприятие летучей мышью своего брачного партнера может отличаться от моего зрительного восприятия фламинго не больше, чем мое зрительное восприятие фламинго отличается от того, как фламинго видится другому фламинго.
Дональд Гриффин рассказывает, что было, когда в 1940 г. он и его коллега Роберт Галамбос впервые сообщили потрясенным участникам зоологической конференции о своем открытии эхолокации у рукокрылых. Скептицизм одного прославленного ученого сопровождался таким негодованием, что:
…он схватил Галамбоса за плечи и стал его трясти, попутно возмущаясь, что мы, конечно же, просто не могли иметь в виду такую дикость. Радар и сонар в то время еще относились к особо секретным военным разработкам, и мнение, будто летучие мыши способны на что-то, хотя бы отдаленно напоминающее недавние успехи электронной техники, оказалось для многих не только поразительно неправдоподобным, но и неприятным.
Этого знаменитого скептика легко понять. В таком нежелании поверить есть что-то очень человеческое. А точнее говоря, именно человеческое оно и есть. Именно из-за того, что наши собственные, человеческие чувства неспособны к тому, что по плечу рукокрылым, нам так тяжело поверить в это. Нам трудно представить себе, что то, что мы можем понять только на уровне искусственной аппаратуры или математических вычислений на бумаге, маленькое животное способно производить в своей голове. Однако математические расчеты, объясняющие основы зрения, будут точно так же сложны и труднопостижимы, но при этом ни для кого не составляет труда верить в то, что маленькие зверьки способны видеть. Причина таких двойных стандартов у нашего скептицизма весьма проста: видеть мы можем, а к эхолокации неспособны.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?