Электронная библиотека » Ричард Докинз » » онлайн чтение - страница 9


  • Текст добавлен: 4 мая 2015, 17:55


Автор книги: Ричард Докинз


Жанр: Зарубежная публицистика, Публицистика


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 9 (всего у книги 31 страниц) [доступный отрывок для чтения: 9 страниц]

Шрифт:
- 100% +

Антиэволюционистская пропаганда изобилует мнимыми примерами сложных систем, которые “никак не могли” возникнуть путем постепенных преобразований в ряду несовершенных предшественников. Зачастую это не что иное, как еще одна разновидность довольно жалкого обращения к Личному Недоверию, с которым мы уже встречались в главе 2. Например, в “Шее жирафа” непосредственно вслед за пассажем про глаз автор переходит к обсуждению жуков-бомбардиров, которые:

…выбрызгивают навстречу своему противнику смертоносную смесь гидрохинона и пероксида водорода. Два этих вещества, будучи смешаны друг с другом, в буквальном смысле взрываются. Поэтому жук-бомбардир, чтобы обезвредить их на время хранения в собственном теле, вырабатывает специальный химический ингибитор. Непосредственно перед тем, как жидкость будет выброшена из заднего конца насекомого, в нее добавляется антиингибитор, и она вновь становится взрывоопасной. Последовательность событий, могшая привести к возникновению такого сложного, согласованного и хитроумного процесса, лежит за пределами возможностей биологического объяснения, основанного на простой постепенности. Малейшее нарушение химического равновесия незамедлительно привело бы к появлению разновидности самовзрывающихся жуков.

Работающий у нас биохимик любезно предоставил мне бутылочку перекиси водорода и столько гидрохинона, сколько хватило бы на 50 жуков-бомбардиров. В настоящий момент я собираюсь смешать их между собой. В соответствии с вышесказанным они долж ны будут взорваться прямо перед моим лицом. Итак…

Не волнуйтесь, со мной все в порядке. Я вылил пероксид водорода в гидрохинон, и абсолютно ничего не случилось. Смесь даже не нагрелась. Разумеется, ничего другого я и не ждал – я же не настолько безрассуден! Утверждение, что “два этих вещества, будучи смешаны друг с другом, в буквальном смысле взрываются”, – это, говоря попросту, вранье, хотя оно то и дело приводится в креационистской литературе. Кстати, если вам интересно, что там на самом деле происходит у жуков-бомбардиров, то правда состоит в следующем. Они действительно выстреливают в своих врагов обжигающей смесью перекиси водорода и гидрохинона. Однако чтобы эти два вещества вступили в бурную реакцию, следует добавить катализатор. Именно это и делает жук-бомбардир. Что же до эволюционных предшественников этой системы, то и пероксид водорода, и различные хиноны используются в химии организма для других целей. Предки жуков-бомбардиров просто исхитрились найти новое применение тем химикатам, которые уже были под рукой. Эволюция часто действует подобным образом.

На той же самой странице, откуда я взял этот отрывок про жуков-бомбардиров, задается вопрос: “Какая может быть польза… от половины легкого? Естественный отбор наверняка бы элиминировал животных с такими диковинными образованиями, а не сохранял их”. У здорового взрослого человека каждое из двух легких разделено примерно на 300 млн крохотных отсеков, расположенных на кончиках ветвящейся системы трубочек. Архитектура ветвления этих трубочек очень напоминает древовидную биоморфу в самом низу рис. 2 в предыдущей главе. Число последовательных ветвлений, определяемых “геном № 9”, равно там восьми, а количество свободных кончиков у ветвей составляет 2 в 8-й степени, то есть 256. По мере того как ваш взгляд спускается вниз по рис. 2, число свободных веточек последовательно удваивается. Для того чтобы произвести 300 млн кончиков, требуется всего-навсего 29 удвоений подряд. Обратите внимание, что существует постепенная градация от одного отсека до 300 млн отсеков, когда каждый новый шаг достигается очередным разветвлением. Все превращение может быть завершено за 29 ветвлений, что можно упрощенно представить себе как неторопливую прогулку по 29-шаговому маршруту в генетическом пространстве.

В результате такого ветвления площадь поверхности внутри каждого легкого достигает более 70 квадратных ярдов (примерно 59 кв. м). Площадь поверхности – важный показатель для легкого, поскольку именно ею определяется скорость поглощения кислорода и избавления от выделяемого организмом углекислого газа. А отличительным свойством площади является то, что это непрерывная переменная. Площадь не относится к тем вещам, которые у вас либо есть, либо нет. Это то, чего можно иметь чуть-чуть больше или чуть-чуть меньше. Площадь идеально, как мало что еще, подходит для постепенных, последовательных преобразований – начиная от 0 квадратных ярдов и заканчивая 70.

Вокруг нас ходит множество людей, у которых после операции осталось всего одно легкое, причем некоторые из них вынуждены обходиться всего одной третью от нормальной дыхательной поверхности. Тем не менее они ходят – пускай не очень далеко и не очень быстро. В этом-то вся соль. Постепенное уменьшение поверхности для газообмена не влияет на выживание как нечто безусловное, по принципу “все или ничего”. Нет, оно незаметно, плавно сказывается на том, как далеко сможете вы уйти и с какой скоростью. А также, действительно, и на вашей ожидаемой продолжительности жизни – но тоже плавно и незаметно. Смерть не наступает внезапно при достижении площадью легочной поверхности некоего порогового значения! Она лишь постепенно становится более вероятной, по мере того как эта поверхность уменьшается по сравнению с оптимумом (или увеличивается по сравнению с ним – тогда уже вступают в действие причины другого рода, связанные с экономическим ущербом).

Первые из наших предков, у которых начали появляться легкие, почти наверняка жили в воде. Мы сможем примерно представить себе, как они дышали, если взглянем на современных рыб. Большинство современных рыб дышат жабрами, но многие виды, живущие в болотистых водоемах с затхлой водой, вдобавок к этому еще и захватывают воздух с поверхности. Они используют внутреннюю поверхность ротовой полости в качестве грубого “предлегкого”, а иногда эта полость имеет еще и специальный дыхательный карман, богатый кровеносными сосудами. Как мы уже видели, вообразить последовательный ряд X, ведущий от одиночного кармана к карману, разветвленному на 300 млн отсеков, каким ныне является человеческое легкое, совсем не сложно.

Любопытно, что многие современные рыбы оставили этот карман одиночным и используют его для совершенно иной цели. Хоть и возник он, вероятно, как легкое, однако в ходе эволюции превратился в плавательный пузырь – хитроумный прибор, благодаря которому рыба представляет собой гидростат с постоянно поддерживаемым равновесием. Животное, не имеющее плавательного пузыря, обычно немного тяжелее воды и потому опускается на дно. Вот почему акулы должны все время плыть, чтобы не утонуть. Животное, оснащенное воздушными мешками – как мы с нашими гигантскими легкими, – имеет тенденцию всплывать на поверхность. А животное с плавательным пузырем нужного объема находится посередине данного континуума, оно не тонет и не всплывает, а устойчиво держится на постоянной глубине безо всяких усилий. Именно этот прием современные рыбы (кроме акул) довели до совершенства. В отличие от акул они не тратят энергию на борьбу с силой тяжести и могут использовать свои плавники и хвост только для того, чтобы рулить и быстро двигаться вперед. Они больше не нуждаются в воздухе извне, чтобы заполнить свой пузырь, – у них есть особые железы, вырабатывающие газ. Благодаря этим железам и некоторым другим приспособлениям объем газа в пузыре тонко регулируется, и таким образом рыба поддерживает себя в состоянии точного гидростатического равновесия.

Некоторые виды нынешних рыб способны покидать водную среду. Крайним примером может служить анабас, или рыба-ползун, который едва ли вообще когда заходит в воду. Независимо от наших с вами предков у него возникло своеобразное легкое – воздушная камера, окружающая жабры. Некоторые другие рыбы, обитая главным образом в воде, совершают краткие вылазки на сушу. Так, вероятно, поступали и наши предки. Отличительным свойством вылазок является то, что их продолжительность может плавно варьировать вплоть до полного нуля. Если вы рыба, которая живет преимущественно в воде, но время от времени отваживается выходить на сушу – например, чтобы переползти в соседнюю лужу и таким образом спастись от засухи, – то вам пригодится не то что половина, а сотая часть легкого. Неважно, насколько маленьким является ваше зачаточное легкое, все равно благодаря ему вы сможете продержаться на суше какое-то время, которое будет чуть-чуть дольше, чем совсем без легкого. Время – непрерывная переменная. Не существует четкой грани между водными и сухопутными животными. Какие-то животные могут проводить в воде 99 % своего времени, какие-то – 98 %, 97 % и т. д. вплоть до нуля. И каждый раз при переходе от одного этапа к другому незначительное увеличение дыхательной поверхности легких будет оказываться преимуществом. На всем пути от водного образа жизни к сухопутному есть место для постепенности, градуализма.

Какая польза от половины крыла? С чего могли начаться крылья? Многие животные скачут с ветки на ветку и время от времени падают. Вся поверхность тела, особенно у мелких животных, улавливает воздух и способствует прыжку или ослабляет силу удара при падении, выступая в роли примитивного паруса или парашюта. Любая тенденция к увеличению отношения площади поверхности к массе тела будет способствовать появлению, например, кожных перепонок на сгибах суставов. Отсюда начинается непрерывный ряд плавных переходов к парящим крыльям, а там и к машущим крыльям. Очевидно, что самые первые животные с зачаточными крыльями не могли преодолеть некоторые дистанции одним прыжком. Но точно так же очевидно и то, что, как бы ни были малы и несовершенны предковые перепонки, должно было быть какое-то расстояние, сколь угодно малое, которое можно было преодолеть с перепонкой и нельзя без перепонки.

Или же, если первоначальные крыловидные перепонки служили для смягчения удара при падении, то мы не можем сказать: “От перепонок, которые меньше определенного размера, не было никакого толку”. Опять-таки не имеет значения, насколько маленькими и не похожими на крылья были эти перепонки. Всегда существует такая высота (назовем ее h), упав с которой животное сломает себе шею, притом что падение с чуть-чуть меньшей высоты не окажется смертельным. В этой критической области значений любое увеличение сопротивления воздуха и способности смягчить удар, каким бы маленьким оно ни было, может решить вопрос жизни и смерти. Следовательно, естественный отбор будет благоприятствовать возникновению едва заметных, зачаточных перепонок. Когда такие перепонки станут нормой, критическое значение h чуть-чуть вырастет. Теперь уже вопрос жизни и смерти будет решаться дальнейшим незначительным увеличением площади перепонок. И так далее, вплоть до появления настоящих крыльев.

Среди ныне живущих животных можно найти превосходные иллюстрации к любой точке этого спектра. Существуют лягушки, способные планировать благодаря широким перепонкам между пальцами, древесные змеи с уплощенным телом, которые скользят по воздуху, ящерицы, оснащенные идущими вдоль тела плоскими выростами. А различные представители млекопитающих с кожной складкой, натянутой между конечностями, показывают нам, как все должно было начинаться у рукокрылых. Вопреки креационистской литературе животные не только с “половиной крыла”, но и с четвертью крыла, и с тремя четвертями крыла, и т. д. не редкость в природе. Идея о непрерывности континуума способностей к полету будет еще более убедительной, если вспомнить, что животные очень маленького размера свободно парят в воздухе вне зависимости от своей формы. Более убедительной она станет по той причине, что ряд промежуточных состояний между большим и малым абсолютно плавен и непрерывен.

Постепенное накапливание очень маленьких изменений – вещь невероятно могущественная. Она в состоянии объяснить невообразимое множество явлений, которые никак иначе не объясняются. Что послужило толчком для возникновения змеиного яда? Многие животные кусаются, и в слюне любого животного содержатся белки, которые, попав в рану, могут вызвать аллергическую реакцию. Даже укусы так называемых неядовитых змей иногда очень болезненны. От обычной слюны к смертоносному яду ведет серия плавных, непрерывных изменений.

Откуда взялись уши? Любой участок кожи способен чувствовать колебания, если он прикасается к вибрирующему объекту. Это неизбежное следствие наличия осязания. Естественному отбору ничего не стоило постепенно развить это свойство, вплоть до способности улавливать очень легкие колебания при соприкосновении. Что в свою очередь автоматически позволяло ощущать и воздушные колебания достаточной силы и/или производящиеся в достаточной близости. Затем естественный отбор мог благоприятствовать эволюции специализированных органов – ушей, – чтобы они улавливали колебания воздуха, исходящие от все более и более удаленных источников. Нетрудно видеть, что плавная траектория пошаговых усовершенствований была тут вполне возможна. С чего началась эхолокация? Любое животное, обладающее слухом, способно слышать в том числе и эхо. Слепые люди нередко научаются пользоваться этим. Зачатки такой способности у древних млекопитающих должны были послужить богатым материалом для естественного отбора, чтобы шаг за шагом довести ее до того совершенства, какое мы наблюдаем у летучих мышей.

Пять процентов зрения лучше, чем вообще без зрения. Пять процентов слуха лучше, чем вообще без слуха. Пять процентов способности летать – лучше, чем вообще без нее. То, что каждый орган или механизм, который мы видим в живой природе, возник в результате плавного перехода через зоологическое пространство, где каждая промежуточная стадия способствовала выживанию и размножению, – мысль совершенно правдоподобная. Всегда, когда у настоящего, реально существующего животного мы видим некий X (под X понимается любой орган, слишком сложный для того, чтобы возникнуть с ходу в силу случайности), согласно теории эволюции путем естественного отбора, это означает, что частица X лучше полного отсутствия X. А две такие частицы лучше, чем одна. А X целиком лучше, чем девять десятых X. Мне не составляет труда согласиться, что все эти утверждения справедливы для глаз, ушей (включая уши рукокрылых), крыльев, покровительственной и предупреждающей окраски насекомых, змеиных челюстей, жал, кукушечьих повадок и прочих примеров, которыми нам надоедает антиэволюционистская пропаганда. Несомненно, существует множество теоретически возможных X, для которых эти утверждения неверны, множество теоретически возможных эволюционных путей, где промежуточные формы не будут лучше своих предшественников. Но в реальном мире таких X не существует.

В “Происхождении видов” Дарвин писал:

Если бы можно было показать наличие такого сложно устроенного органа, который не мог сформироваться в ходе многочисленных последовательных незначительных модификаций, моя теория потерпела бы полный крах.

Теперь, спустя век и двадцать пять лет после Дарвина, мы знаем о животных и растениях намного больше, чем он, однако я по-прежнему не слыхал ни об одном сложном органе, который не мог бы сформироваться в ходе многочисленных последовательных незначительных модификаций. Не думаю, что такой орган будет когда-нибудь обнаружен. Если же он будет обнаружен (только это должен быть действительно сложный орган, и, как я покажу в главе 11, следует аккуратно обходиться с понятием “незначительный”), тогда я перестану быть дарвинистом.

Порой история сменяющих друг друга промежуточных стадий ясно прописана в строении современных животных, и это даже может принимать форму откровенных изъянов окончательного устройства. В своем превосходном эссе “Большой палец панды” Стивен Гульд проводит мысль, что бросающиеся в глаза недостатки могут послужить доказательством эволюции лучше, чем свидетельства безукоризненного совершенства. Приведу только два примера.

Рыбам, живущим на морском дне, выгодно иметь плоскую форму и быть максимально сплющенными по краям. Существует две абсолютно не схожие между собой группы плоских придонных рыб, эволюция формы тела которых шла очень по-разному. Скаты, родственники акул, уплощались тем способом, который может показаться логичным. Их тело разрасталось в стороны, образуя широкие “крылья”. Они стали выглядеть как акулы, по которым проехался каток, однако же сохранили симметричность, и все у них “на своем месте”. А уплощение камбалы, палтуса и их родственников шло иначе. Они относятся к костным рыбам (обладающим плавательным пузырем) и состоят в родстве с сельдью, форелью и т. п., но никак не с акулами. В отличие от последних костные рыбы, как правило, имеют четкую тенденцию сплющиваться в вертикальном направлении. Сельдь, например, заметно крупнее в “высоту”, чем в ширину. Все ее уплощенное с боков тело является единым плавательным устройством, волнообразные движения которого рассекают толщу воды. Поэтому, когда предки камбалы и палтуса приспосабливались к донному образу жизни, для них было более естественным лечь на бок – а не на брюхо, как поступили предки скатов. Но это породило проблему: один глаз постоянно смотрел в песок и был, по сути, бесполезен. В ходе эволюции эта проблема была решена так: нижний глаз “передвинулся” на верхнюю сторону.

Этот процесс перемещения глаза можно заново наблюдать каждый раз в ходе раннего индивидуального развития любой плоской костной рыбы. В начале своей жизни камбала плавает у поверхности воды и, подобно сельди, симметрична и уплощена с боков. Однако затем ее череп начинает расти странно и кособоко, в итоге искривляясь так, что один глаз, например левый, пройдя через макушку, оказывается на противоположной стороне головы. Молодая рыбка ложится на дно, и оба ее глаза направлены вверх – необычная картина в манере Пикассо. Попутно замечу, что некоторые виды плоских рыб ложатся на правый бок, некоторые на левый, а некоторые – либо на тот, либо на другой.

Череп плоских костных рыб сам по себе – искривленное и кособокое свидетельство своего происхождения. В его несовершенстве скрыто убедительное доказательство его истории – истории постепенных преобразований, а не продуманного творения. Никакой разработчик, имеющий возможность спроектировать камбалу “с чистого листа”, никогда, будь он в здравом уме, не выдумал бы такое уродство. Подозреваю, что разумный инженер сконструировал бы что-нибудь более похожее на ската. Но эволюция никогда не начинается с чистого листа. Она всегда вынуждена начинать с того, что уже есть. В случае эволюции скатов это были свободноплавающие акулы. В отличие от свободноплавающих костных рыб, таких как сельдь, акулы обычно не сплющены с боков. Скорее даже, они слегка уплощены в спинно-брюшном направлении. А это означает, что, когда некоторые из древних акул начали переходить к донному образу жизни, достижение формы ската было процессом простым и постепенным: каждая последующая стадия была – в данных конкретных условиях – немножко более совершенной по сравнению со своим чуть менее плоским предком.

С другой стороны, свободноплавающему предку камбалы и палтуса, сплющенному с двух сторон подобно селедке, при переходе к донному образу жизни было намного выгоднее лечь на бок, а не балансировать на брюхе, как на лезвии ножа! Пускай этот эволюционный путь неизбежно вел к затруднительным и, вероятно, дорогостоящим искажениям, вызванным необходимостью иметь оба глаза на одной стороне, пускай тот способ, которым уплощались скаты, в конечном счете был бы наилучшим и для костных рыб, однако промежуточные формы, нужные для этого пути, явно были в краткосрочном масштабе менее успешными по сравнению со своими конкурентами, ложившимися на бок. В генетическом гиперпространстве существует плавная траектория, которая ведет от свободноплавающей предковой костной рыбы к камбале, лежащей на боку с покривившимся черепом. Ровного маршрута, который связывал бы тех же предков с плоскими рыбами, лежащими на брюхе, там нет. Этими рассуждениями все дело наверняка не исчерпывается, ибо существуют и такие плоские костные рыбы, тело которых симметрично, как у скатов. Возможно, их свободноплавающие предки были уже изначально слегка уплощены по какой-то иной причине.

Второй пример эволюционных усовершенствований, которые оказались бы удачными, но не состоялись из-за необходимости пройти через невыигрышные промежуточные стадии, – это наша с вами сетчатка (и вообще сетчатка позвоночных животных). Зрительный нерв, как и любой другой нерв, представляет собой “магистральный кабель” – пучок отдельных “изолированных проводов”, которых в данном случае около 3 млн. И каждый проводок из этих 3 млн ведет от какой-то одной клетки сетчатки к мозгу. Можете представить их себе как провода, передающие информацию от 3 млн фотоэлементов в обрабатывающий ее компьютер. (На самом деле – от 3 млн релейных станций, принимающих сигнал от еще большего числа фотоэлементов.) Все эти провода выходят из сетчатки и собираются в единый пучок, который и является зрительным нервом, идущим от глаза.

Всякий инженер, естественно, предположил бы, что фотоэлементы обращены по направлению к свету, а провода из них выходят со стороны, ближней к мозгу, то есть сзади. Предложение сделать наоборот – направить фотоэлементы в противоположную сторону, развернуть их к свету торчащими из них проводами – его бы только рассмешило. Однако именно так устроена сетчатка у всех позвоночных. Каждый фотоэлемент в ней фактически подключен задом наперед, так что провода торчат по направлению к источнику света и вынуждены тянуться по поверхности сетчатки, чтобы затем нырнуть в специальную дырку (так называемое слепое пятно) и присоединиться к зрительному нерву. Это означает, что свет, вместо того чтобы беспрепятственно падать на фотоэлементы, вынужден продираться через лес проводов, попутно ослабевая и искажаясь, – возможно, не так уж и сильно, но сам принцип покоробит любого аккуратного инженера!

Точная причина такого странного положения дел мне неизвестна. Соответствующий период эволюции был слишком давно. Но я готов биться об заклад, что это как-то связано с маршрутом путешествия по реально существующему аналогу Страны биоморф, с тем путем, который нужно было пройти от органа, предшествовавшего глазу, каким бы этот орган ни был, чтобы развернуть сетчатку правильным образом. Такой маршрут, вероятно, существует, но эта гипотетическая траектория, будучи воплощена в реальных организмах, соответствующих ее промежуточным этапам, оказывалась невыгодной – только лишь временно невыгодной, но большего и не требуется. Промежуточные варианты видели даже хуже, чем их несовершенные предки, и тот факт, что они обеспечивают лучшее зрение своим далеким потомкам, никак не мог их утешить. Единственное, что имеет значение, – это выживание здесь и сейчас.

Так называемый закон Долло утверждает, что эволюция необратима. Его нередко смешивают с изрядной долей идеалистических бредней о неотвратимости прогресса, зачастую еще и приправленных невежественным вздором о том, что эволюция якобы “нарушает Второй закон термодинамики” (той половине образованного человечества, которая, по заверениям романиста Ч. П. Сноу, знает, что такое Второй закон термодинамики, должно быть понятно, что эволюция противоречит этому закону не больше, чем рост младенца). Не существует никакой причины, почему основные направления эволюции не могут быть повернуты вспять. Если в течение какого-то периода имеется тенденция, скажем, по увеличению размера рогов, то ничто не мешает ей в один прекрасный момент смениться на противоположную. Закон Долло – это на самом деле не более чем констатация того, насколько статистически невероятно пройти снова тем же эволюционным маршрутом (а точнее, любым конкретным эволюционным маршрутом) в каком угодно направлении. Один мутационный шаг легко обратим. Но при большем количестве мутационных шагов математическое пространство всех возможных маршрутов становится так велико, что вероятность дважды прийти в одну и ту же точку исчезающе мала – даже когда речь идет о биморфах с их жалкими девятью генами. А уж для настоящих животных, у которых генов невообразимо больше, это тем более верно. В законе Долло нет ничего ни таинственного, ни мистического, и это не та научная истина, которую можно “подтвердить” результатами наблюдений. Это простое следствие законов статистики.

Ровно по этой же причине крайне маловероятно, чтобы один и тот же эволюционный маршрут был когда-нибудь пройден дважды. Столь же маловероятно – и по тем же статистическим соображениям, – что какие-то две различные линии эволюции смогут однажды сойтись в одной точке.

Тем больше у нас оснований поразиться могуществу естественного отбора при виде тех многочисленных примеров, реально существующих в живой природе, когда независимые линии эволюции, берущие свое начало далеко друг от друга, производят впечатление сходящихся в одной точке. Взглянув повнимательнее, мы обнаруживаем, что совпадение неполное (будь оно полным, стоило бы забеспокоиться). Эти линии эволюции выдают свою независимость друг от друга множеством мелочей. Например, глаза осьминогов очень похожи на наши, однако в их случае провода, ведущие от фотоэлементов, не торчат по направлению к свету, как у нас. В этом смысле у осьминогов глаза устроены более “разумно”. Они пришли к похожему результату, хотя и начали совершенно из другой точки, о чем свидетельствуют детали, подобные этой.

Примеры такого поверхностного конвергентного сходства зачастую неимоверно впечатляют, и окончание этой главы я посвящу некоторым из них. Они – наиболее яркое проявление мощнейшей способности естественного отбора создавать хорошие устройства. Однако тот факт, что устройства, в общих чертах сходные, все же различаются, подтверждает их независимое происхождение и историю. Основная идея тут такова: если устройство достаточно хорошо для того, чтобы возникнуть однажды, значит, его принцип достаточно хорош, чтобы возникнуть дважды – в разных краях животного царства, начиная эволюцию с разных отправных точек. Лучше всего это может быть проиллюстрировано на том примере, который мы изначально использовали для описания хорошего устройства как такового, – на примере эхолокации.

Все, что нам известно об эхолокации, мы знаем главным образом благодаря летучим мышам (а также человеческим приборам), но встречается она и в ряде других, не родственных им групп животных. К эхолокации способно как минимум две обособленные друг от друга группы птиц, а у дельфинов и китов она доведена до высочайшего уровня изощренности. Более того, по меньшей мере в двух группах рукокрылых она была “изобретена” самостоятельно. К птицам, которые ее используют, относятся южноамериканские гуахаро и пещерные саланганы с Дальнего Востока – те самые, из чьих гнезд готовят знаменитый суп. И те и другие гнездятся глубоко в пещерах, где света мало или нет совсем, и ориентируются во мраке при помощи эха своих собственных щелкающих возгласов. В обоих случаях эти щелчки слышны для человеческого уха, то есть они не ультразвуковые, в отличие от более специализированных сигналов летучих мышей. Похоже, что и вправду ни одному виду птиц не удалось развить способность к эхолокации до той степени утонченности, какую мы наблюдаем у рукокрылых. Их щелчки не являются частотно-модулируемыми и навряд ли годятся для измерения скорости с использованием эффекта Допплера. Вероятно, подобно крылану Rousettus эти птицы просто оценивают продолжительность интервала между каждым щелчком и его эхом.

В данном случае мы можем быть абсолютно уверены, что эти два вида птиц открыли эхолокацию независимо как друг от друга, так и от летучих мышей. Доказывается это с помощью одной из тех цепочек рассуждений, которые часто используются эволюционистами. Наблюдая за тысячами видов птиц, мы видим, что у них нет эхолокации. Ею пользуются только два изолированных рода, между которыми нет ничего общего за исключением того, что оба они живут в пещерах. Хотя мы и считаем, что у этих птиц и у рукокрылых, если проследить их родословные достаточно далеко, должен быть общий предок, это будет общий предок вообще всех птиц и всех млекопитающих (включая нас с вами). Подавляющее большинство млекопитающих и подавляющее большинство птиц не способны к эхолокации, как наверняка не был к ней способен и их предок (не умел он и летать – это еще одна техника, возникавшая независимо много раз). Получается, что к технологии эхолокации птицы и рукокрылые пришли самостоятельно – точно так же, как самостоятельно пришли к ней британские, американские и немецкие ученые. Из таких же рассуждений, только применительно к меньшему масштабу времени, следует вывод, что общий предок гуахаро и саланганы не пользовался эхолокацией и что эти два рода птиц разработали одну и ту же технологию независимо друг от друга.

Среди млекопитающих летучие мыши – тоже не единственная группа, самостоятельно выработавшая способность к эхолокации. По-видимому, эхо могут использовать разные звери, такие как землеройки, крысы и тюлени, но в небольшой степени, на уровне слепых людей. Единственные, кто может тут состязаться с рукокрылыми в сложности устройства, – это китообразные. Китообразные делятся на две основные группы: зубатые киты и усатые киты. И те и другие являются, разумеется, млекопитающими, произошедшими от сухопутных предков, и они вполне могли “изобрести” свой водный образ жизни независимо друг от друга, каждая группа – начиная от своего сухопутного предка. К зубатым китам относятся кашалоты, косатки и разнообразные дельфины – все они охотятся на относительно крупную добычу, такую как рыба или кальмары, которую захватывают своими челюстями. Некоторые из зубатых китов (как следует были изучены только дельфины) оснастили свои головы сложнейшим эхолокационным оборудованием.

Дельфины испускают частые очереди сигналов большой высоты. Некоторые из них слышны нам, некоторые – ультразвуковые. Не исключено, что “купол”, выпирающий у дельфина на лбу (и напоминающий – приятное совпадение! – обтекатель антенны радара у “обнаружителя опасности” самолета-разведчика “Нимрод”), каким-то образом способствует направленному испусканию гидроакустических сигналов вперед, хотя точный механизм его работы и неизвестен. Как и в случае летучих мышей, “дежурная частота” щелчков относительно низка, но по мере приближения животного к добыче возрастает до визгливого жужжания (400 сигналов в секунду). Впрочем, и “низкая” крейсерская частота тоже весьма высока. Вероятно, самыми искусными эхолокаторами являются речные дельфины, живущие в грязной воде, однако, как показали опыты, и дельфины открытого моря в этом смысле тоже весьма неплохи. Атлантическая афалина способна различать круги, квадраты и треугольники (все одной и той же, стандартизованной площади) исключительно при помощи своего сонара. Она может определить, какая из двух мишеней ближе, когда разница составляет всего 1¼ дюйма, а общее расстояние – около 7 ярдов[3]3
  Примерно 6,5 м. – Прим. перев.


[Закрыть]
. Также она может обнаружить стальной шар, который вдвое меньше мячика для гольфа, на расстоянии 70 ярдов. Эти показатели, возможно, и уступают человеческому зрению при хорошем освещении, но они, по-видимому, лучше, чем наше зрение лунной ночью.

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9
  • 4.8 Оценок: 5

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации