Автор книги: Ричард Докинз
Жанр: Зарубежная публицистика, Публицистика
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 7 (всего у книги 31 страниц) [доступный отрывок для чтения: 10 страниц]
Научить компьютер проводить отбор по неким обобщенным, размытым признакам, таким как высокий-и-тонкий, низенький-и-толстый, обладающий выпуклыми формами или шипами – да хоть украшенный в стиле рококо, – совсем несложно. В качестве одного из способов можно так запрограммировать компьютер, чтобы он помнил, какого рода признаки нравились человеку раньше, и продолжал самостоятельно вести отбор примерно в том же направлении. Но это нисколько не приблизит нас к имитации естественного отбора. Если не считать некоторых особых случаев, таких как выбор брачного партнера самкой павлина, то природе, чтобы сделать выбор, никаких вычислительных мощностей не требуется. Сила, действующая при естественном отборе, прямолинейна, сурова и проста. Зовут ее старуха с косой. Разумеется, причины выживания далеко не просты – потому-то естественный отбор и способен создавать животные и растительные организмы, устроенные так невероятно сложно. Но в самом факте гибели есть что-то очень грубое и примитивное. А неслучайная гибель – это все, что требуется, чтобы в дикой природе мог происходить отбор фенотипов, а значит, и скрывающихся за ними генов.
Если мы хотим сделать действительно интересную компьютерную имитацию естественного отбора, то следует забыть про узоры в стиле рококо и про все остальные качества, определяемые на глаз. Вместо этого нужно сосредоточиться на моделировании неслучайной гибели. Биоморфы должны взаимодействовать в компьютере с неким подобием враждебной окружающей среды. От каких-то свойств их формы должно зависеть, выживут они в этой среде или нет. В идеале враждебное окружение должно включать в себя и другие эволюционирующие биоморфы: “хищников”, “жертв”, “паразитов”, “конкурентов”. Определенная конфигурация биоморфы-“добычи” влияла бы, скажем, на ее уязвимость для определенных “хищных” форм. Такие критерии уязвимости не должны быть заранее установлены программистом. Они должны возникнуть точно так же самостоятельно, как и сами формы. Вот тогда в компьютере создались бы условия для самоподдерживающейся “гонки вооружений” (см. главу 7), что позволило бы начаться настоящей эволюции, и я не осмеливаюсь предполагать, чем бы все это могло закончиться. К сожалению, я не настолько силен в программировании, чтобы создать такой искусственный мир.
Рис. 5
Если кому оно и по плечу, то, вероятно, тем, кто разрабатывает эти шумные и вульгарные игровые автоматы – наследники “Космических захватчиков”. В их программу заложена модель искусственного мира, зачастую объемного, со своей географией и с ускоренной шкалой времени. В этом трехмерном пространстве то и дело появляются различные существа, которые сталкиваются, перестреливаются, пожирают друг друга – и все под аккомпанемент отвратительных звуков. Имитация бывает настолько удачной, что игрок с зажатым в руке джойстиком может испытывать убедительную иллюзию, будто он сам является частью этого искусственного мира. Полагаю, что вершиной подобного программирования являются специальные камеры для тренировки пилотов и космонавтов. Но даже это сущая чепуха по сравнению с написанием такой программы, которая имитировала бы гонку вооружений, возникающую между хищниками и их жертвами внутри полноценной искусственной экосистемы. Тем не менее ничего невозможного тут нет. Если где-нибудь есть профессиональный программист, который не прочь поучаствовать в этой амбициозной затее, то я буду рад связаться с ним (или с ней).
А пока можно попытаться сделать нечто куда более простое, чем я и собираюсь заняться ближайшим летом. Я поставлю компьютер где-нибудь в тенистом уголке сада. Дисплей у меня цветной. Имеется и вариант программы с несколькими дополнительными “генами”, которые контролируют цвет, точно так же как уже знакомые нам девять генов контролируют форму. В качестве исходной биоморфы я выберу какую-нибудь более или менее компактную и ярко окрашенную. На экране компьютера будет одновременно выставлено на обозрение все ее мутантное потомство, отличающееся от нее формой и/или окраской. Думаю, что пчелы, бабочки и прочие насекомые будут навещать биоморф и делать “выбор”, ударяясь в тот или иной участок экрана. После определенного количества таких визитов компьютер удалит все изображения, “размножит” наиболее удачливую из биоморф и покажет следующее поколение мутантных потомков.
С упоением предвкушаю, как благодаря диким насекомым через много поколений в компьютере появятся цветы. Если это получится, то эволюция компьютерных цветков будет идти ровно под тем же самым давлением отбора, которое направляло эволюцию цветка в реальном мире. Моя надежда подпитывается как тем фактом, что насекомые любят садиться на яркие цветные пятна на женской одежде, так и опубликованными результатами более систематических экспериментов. Другая возможность, которую я нахожу даже еще более захватывающей, – это то, что насекомые положат начало эволюции себе подобных форм. Есть прецедент (а значит, и повод для надежды): именно пчелы стали причиной возникновения пчеловидных орхидей. Самцы пчел, пытаясь совокупляться с цветками и перенося таким образом пыльцу, запустили у орхидных процесс накапливающего отбора, который через много-много поколений привел к появлению цветков, имеющих форму пчелы. Представьте себе орхидею с рис. 5 в цвете. Смогли бы вы устоять, будь вы пчелой?
Основным источником пессимизма для меня является то, что зрение у насекомых работает совершенно не так, как у нас с вами. Экраны компьютеров разрабатывались для человеческих глаз, а не для пчелиных. Запросто может оказаться, что хотя и нам, и пчелам пчеловидные орхидеи видятся (каждым на свой лад) похожими на пчел, тем не менее изображений на экране пчела может вообще не заметить. Возможно, она не увидит ничего, кроме 625 линий сканирования. И все же попробовать стоит. К моменту публикации этой книги я уже буду знать исход дела.
Существует распространенное клише, нередко произносящееся таким тоном, который Стивен Поттер назвал бы “рубануть сплеча”, и гласящее, что нельзя получить от компьютера больше, чем ты сам в него заложил. Бывает, что эта мысль формулируется иначе: компьютеры выполняют в точности то, что им говорится, и потому совершенно не способны к творческой созидательности. Это избитое утверждение верно только в том убогом смысле, в каком можно сказать, будто Шекспир за всю свою жизнь не написал ничего, кроме того, чему его научил первый школьный учитель, – слов. Я ввел в компьютер программу ЭВОЛЮЦИЯ, но я не задумывал ни “своих” насекомых, ни скорпиона, ни истребителя “Спитфайр”, ни лунохода. У меня не было ни малейшего подозрения, что они могут возникнуть, – вот почему глагол “возникнуть” здесь уместен. Не отрицаю, отбор, направлявший их эволюцию, проводился при помощи моих глаз, но каждый раз мои возможности ограничивались небольшим выводком потомков, возникавших благодаря случайным мутациям, а моя “стратегия” отбора – хороша она или плоха – была непоследовательной, изменчивой и сиюминутной. Я не стремился ни к какой отдаленной цели, как не стремится к ней и естественный отбор.
Могу для пущей эффектности подробнее остановиться на том случае, когда я действительно попытался стремиться к отдаленной цели. В первую очередь должен сделать признание. Впрочем, вы все равно догадались бы. История эволюционных событий, изображенная на рис. 4, – реконструкция. Это не самые первые из “моих” насекомых. Когда они в первый раз появились на свет под торжественные фанфары, у меня еще не было возможности списать их гены. Насекомые были прямо передо мной – глядели на меня с экрана, а добраться до них, расшифровать их гены я не мог. Я до последнего тянул с выключением компьютера, надрывая свой мозг в поиске способа сохранить их. Но такого способа не существовало. Гены были спрятаны слишком глубоко – так же как и в реальной жизни. Я мог распечатать изображения получившихся организмов, но гены были утрачены. Я немедленно внес в программу необходимые изменения – чтобы в дальнейшем все генетические формулы были в моей досягаемости. Но было слишком поздно. Своих насекомых я потерял.
Я предпринял “розыск”. Однажды они уже появлялись, и потому казалось вполне возможным вывести их повторно. Они мучили меня, как аккорд, который никак не получается подобрать. Я исходил вдоль и поперек всю Страну биоморф, встречая на своем пути бесконечное разнообразие диковинных созданий и предметов, но моих насекомых среди них не было. Я знал, что они где-то затаились. Я знал исходный набор генов, с которого началась их эволюция. У меня были их изображения. У меня даже была картинка со всей эволюционной последовательностью организмов, постепенно приведшей к моим насекомым от первоначального предка – точки. Но их генетической формулы я не знал.
Вы, вероятно, думаете, что восстановить ход эволюции было довольно просто, но это не так. Причина возникших затруднений (о которой я буду говорить еще не раз) заключалась в астрономическом количестве биоморф, которые могли бы возникнуть за достаточно большое число поколений, – даже при наличии всего лишь девяти меняющихся генов. Несколько раз за время моих странствий по Стране биоморф мне казалось, что я подобрался к предшественнику своих насекомых, но затем, несмотря на все мои старания быть хорошим фактором отбора, эволюция шла по ложному пути. В конце концов после долгих эволюционных скитаний мне все же удалось припереть их к стенке – чувство ликования при этом было едва ли меньшим, чем в первый раз. Я не знал (и не знаю до сих пор), были ли мои новые насекомые теми самыми “потерянными аккордами Заратустры” или же просто походили на них благодаря внешней конвергенции (см. следующую главу), но результатом я был вполне доволен. На сей раз промашки быть не могло: я записал генетические формулы своих насекомых и теперь в любой момент могу их “вывести”.
Да, я несколько драматизирую, но мысль, которую я хочу донести, вполне серьезна и заслуживает внимания. Суть моего рассказа в том, что, хоть я и сам запрограммировал компьютер, объяснив ему во всех подробностях, что нужно делать, получившихся существ я не планировал и был безмерно удивлен, когда увидел их. Я был до такой степени неспособен контролировать эволюцию, что, даже когда мне очень захотелось еще раз пройти тем же самым путем, это оказалось почти что невозможно. Не думаю, что мне удалось бы когда-либо снова встретиться со своими насекомыми, не распечатай я картинку с полным набором их эволюционных предков, – но даже в этом случае дело оказалось трудным и муторным. Так ли удивительна неспособность программиста контролировать и прогнозировать ход эволюции в компьютере? Означает ли это, что внутри компьютера происходит нечто необъяснимое, даже мистическое? Разумеется, нет. Как нет ничего мистического и в эволюции настоящих животных и растений. Чтобы разрешить парадокс, мы воспользуемся компьютерной моделью, а заодно узнаем кое-что и о реальной эволюции.
Скажу заранее, в чем будет суть разрешения данного парадокса. Мы располагаем неким строго определенным набором биоморф, каждая из которых постоянно находится в своей собственной уникальной точке математического пространства. Она постоянно находится там в том смысле, что если вам известны значения всех генов данной биоморфы, то вы можете сразу же ее найти. А ее соседками в этом особом пространстве будут те биоморфы, которые отличаются от нее только одним геном. Теперь, зная генетическую формулу своих насекомых, я могу воспроизвести их по собственному желанию, а также попросить компьютер “вывести” их, начиная эволюцию из любой произвольно взятой точки. Когда вы впервые получаете какое-то новое существо внутри компьютерной модели путем искусственного отбора, это похоже на творческое занятие. Так оно, в сущности, и есть. Но на самом-то деле вы не создаете, а находите это существо, поскольку в математическом смысле оно уже сидит на своем определенном месте в генетическом пространстве Страны биоморф. Тем не менее это не мешает вашему занятию оставаться творческим, ведь найти какое-то конкретное существо невероятно сложно – страна большая-пребольшая, и общее число населяющих ее созданий почти что бесконечно. Искать наугад бессмысленно. Необходимо взять на вооружение какой-то более эффективный – творческий – подход.
Некоторые наивно полагают, что играющий в шахматы компьютер действует путем перебора всех возможных комбинаций и ходов. Эта мысль утешает их, когда они продувают компьютеру, и, однако же, она абсолютно ошибочна. Возможных шахматных ходов слишком много: пространство для поисков в миллиарды раз превышает те масштабы, при которых имело бы смысл искать вслепую. Искусство написания хорошей шахматной программы состоит в прокладывании эффективных коротких маршрутов через это пространство. Накапливающий отбор – будь то искусственный отбор в компьютерной модели или естественный отбор в реальном мире – это рациональная методика поиска, сильно напоминающая созидательный интеллект. На чем, собственно, и построено все “телеологическое доказательство” Уильяма Пейли. Формально говоря, все, что мы делаем, играя в компьютерную игру с биоморфами, – это находим организмы, которые с математической точки зрения уже существуют и ждут нас. Ощущается же это как процесс художественного творчества. Когда обыскиваешь небольшой участок с небольшим количеством находящихся там предметов, такого ощущения не возникает. Детская игра “найди наперсток” (вариант игры “холодно – горячо”) не кажется нам чем-то созидательным. Когда обследуемое пространство невелико, то стратегия перевернуть все вверх дном, чтобы случайно наткнуться на искомый предмет, обычно срабатывает. Чем обширнее становится пространство для поисков, тем более изощренные методы требуются. Когда это пространство достаточно велико, эффективная стратегия поиска неотличима от истинного творчества.
Компьютерные модели с биоморфами очень показательны в этом отношении – они как бы перекидывают мостик между человеческим творчеством и эволюционной созидательностью естественного отбора, “слепого часовщика”. Чтобы это увидеть, следует подробнее развить мысль о Стране биоморф как о “математическом пространстве” – нескончаемом, но упорядоченном скоплении морфологических разновидностей, где каждое существо сидит на надлежащем месте, дожидаясь, когда его обнаружат. Семнадцать созданий, изображенных на рис. 5, расположены там без какого-либо порядка. Но в Стране биоморф каждое из них занимает свою собственную, уникальную позицию, определяемую имеющимся у него набором генов, и находится в окружении собственных, себе лишь свойственных соседей. Все существа, населяющие Страну биоморф, расположены друг относительно друга в пространстве строго определенным образом. Что это означает? Какой смысл в их пространственное расположение мы вкладываем?
Пространство, о котором идет речь, – это генетическое пространство. Каждое животное занимает там свое определенное положение. Ближайшими соседями в генетическом пространстве являются те животные, которые отличаются друг от друга только одной мутацией. Исходное дерево в центре рис. 3 окружено восемью из 18 своих непосредственных соседей в генетическом пространстве. В соответствии с правилами данной компьютерной модели 18 соседей животного – это 18 различных типов потомков, каких оно может породить, а также 18 типов родителей, от которых оно может произойти. Чуть подальше, на расстоянии одного шага, у нашей биоморфы обнаружится уже 324 соседки (18 × 18, обратные мутации для простоты не учитываем): полный комплект ее потенциальных внучек, бабок, тетушек и племянниц. Отойдя еще на один шаг, обнаруживаем уже 5832 соседки (18 × 18 × 18): всевозможных правнучек, прабабок, двоюродных сестер и т. п.
Какие преимущества могут нам дать эти рассуждения в терминах генетического пространства? К чему они нас приведут? Ответ таков: это один из способов понять эволюцию как поступательный, кумулятивный процесс. Согласно правилам нашей компьютерной модели, за одно поколение можно сделать только один шаг в генетическом пространстве. А за 29 поколений здесь нельзя уйти от исходного предка дальше чем на 29 шагов. Любой эволюционный процесс представляет собой какую-то особую тропинку, траекторию сквозь генетическое пространство. К примеру, история эволюционных событий, запечатленная на рис. 4, – это единственный в своем роде извилистый путь через генетическое пространство, ведущий от точки к насекомому через 28 промежуточных стадий. Вот что я имел в виду под своей метафорой “блужданий” по Стране биоморф.
Я хотел изобразить это генетическое пространство в виде картинки. Проблема в том, что картинки двумерны. Генетическое пространство, в котором находятся мои биоморфы, – не двумерное пространство. Оно даже не трехмерное. Оно девятимерное! (Важно помнить про математику одну вещь – ее не нужно бояться. Все не так сложно, как порой пытаются представить жрецы от математики. Я, лишь только начинает подступать страх, всегда вспоминаю афоризм Сильвануса Томпсона из его книги “Исчисление, ставшее простым”: “Что может один дурак, то сможет и другой”.) Если бы мы умели рисовать в девяти измерениях, то смогли бы сделать так, чтобы каждое измерение соответствовало одному из девяти генов. Местоположение конкретного животного, будь то скорпион, или летучая мышь, или насекомое, твердо закреплено численными значениями его девяти генов. Эволюционные преобразования состоят в пошаговом перемещении сквозь девятимерное пространство. Степень генетического различия между двумя животными – то есть насколько долго придется эволюционировать из одного в другое и насколько сложно будет это сделать – измеряется как расстояние между ними в генетическом пространстве.
Увы, рисовать в девяти измерениях мы не умеем. Я стал искать способ, как выкрутиться, как нарисовать такую двумерную картинку, которая хотя бы отчасти могла передать, на что это похоже – перемещаться из одного пункта в другой по девятимерному генетическому пространству Страны биоморф. Тут можно пойти различными путями; я выбрал тот, который называю “уловкой с треугольником”. Взгляните на рис. 6. На вершинах треугольника расположены три произвольно выбранные биоморфы. Сверху – наше “исходное дерево”, слева – одно из моих “насекомых”. Та, что справа, никак не называется, но, по-моему, она прелестна. Как и все биоморфы, каждая из этой тройки имеет свой собственный набор значений генов, которым определяется ее уникальное положение в девятимерном генетическом пространстве.
Рис. 6
Треугольник лежит на двумерной плоскости, пересекающей девятимерное гиперпространство (что может один дурак, то сможет и другой). Эту плоскость можно сравнить со стеклянной пластинкой, заключенной в желе. На ней нарисован наш треугольник, а также те из биоморф, чьи генетические формулы дают им право оказаться на данной конкретной плоскости. Откуда же у них это право? И вот тут в дело вступают биоморфы, расположенные на вершинах треугольника. Назовем их биоморфы-якоря.
Давайте вспомним, в чем суть самого понятия “расстояние” в нашем “пространстве”: генетически сходные биоморфы являются ближайшими соседями, а генетически различные удалены друг от друга. На данной конкретной плоскости все расстояния рассчитываются относительно трех биоморф-якорей. Генетическая формула, соответствующая любой точке на “стеклянной пластинке”, внутри треугольника или вне его, вычисляется как “взвешенное среднее” генетических формул трех этих биоморф. Теперь вы и сами догадаетесь, как именно производится такое “взвешивание”: на основании расстояния, а точнее, приближенности интересующей нас точки к каждому из трех “якорей”. Иными словами, чем ближе к насекомому вы находитесь на этой плоскости, тем больше окружающие вас биоморфы похожи на насекомых. А по мере того, как вы движетесь по стеклу в сторону “дерева”, “насекомые” постепенно перестают быть насекомыми и становятся все более и более древовидными. Если же вы забредете в центр треугольника, то животные, которых вы там встретите, например паук с еврейским семисвечным канделябром на голове, будут представлять собой различные “генетические компромиссы” между тремя биоморфами-якорями.
Однако такой подход уделяет слишком уж большое внимание этим трем биоморфам. Положим, компьютер действительно воспользовался ими, чтобы рассчитать соответствующие генетические формулы для каждой точки рисунка. Но на самом деле любые три биоморфы с этой плоскости подошли бы на роль якорей ничуть не хуже, и результат оказался бы абсолютно тем же самым. По этой причине на рис. 7 я треугольник рисовать не стал. Рисунок 7 – это изображение точно такого же типа, что и рис. 6. Просто на нем представлена другая плоскость. В качестве одной из трех “якорных точек” здесь выступает то же самое насекомое, что и в прошлый раз, только теперь оно расположено справа. Другими якорями являлись в данном случае самолет-истребитель и орхидея в форме пчелы – оба с рис. 5. Можно заметить, что и на этой плоскости биоморфы, расположенные по соседству, более сходны друг с другом, чем взаимно удаленные биоморфы. Истребитель, например, входит в состав эскадрильи похожих друг на друга самолетов, летящих строем. Поскольку на обеих плоскостях присутствует насекомое, вы можете представить их себе как две стеклянные пластинки, пересекающиеся под углом. Можно сказать, что плоскость рис. 7 “повернута” относительно плоскости рис. 6, а “точка вращения” – насекомое.
Рис. 7
Рис. 8
Удаление треугольника, который отвлекал внимание, придавая чрезмерное значение трем отдельно взятым точкам на плоскости, усовершенствовало наш метод. Следует, однако, сделать еще одно улучшение. Пространственная отдаленность на рис. 6 и 7 соответствует дальности генетического родства, но вот масштаб совершенно искажен. Один дюйм по вертикали вовсе не обязательно равнозначен дюйму по горизонтали. Чтоб исправить положение, следует тщательно подобрать биоморфы-якоря – все три должны находиться на одинаковом генетическом расстоянии друг от друга. Именно это сделано на рис. 8. Треугольник, как и на предыдущей иллюстрации, не вычерчен. На сей раз были взяты такие якоря: скорпион с рис. 5, снова то же самое насекомое (мы как бы сделали еще один “поворот” вокруг него) и не поддающаяся описанию биоморфа в верхней части рисунка. Все они находятся на расстоянии 30 мутаций друг от друга. То есть вывести любую из них из любой другой всегда будет сложно в одинаковой степени. Во всех случаях придется сделать не менее 30 генетических ходов. Отметки в нижней части рис. 8 обозначают единицы расстояния, измеряемого в генах. Можно считать это своего рода генетической линейкой. Она функционирует не только в горизонтальном направлении. Вы можете поворачивать ее как угодно, измеряя генетическое расстояние, а следовательно, и минимальное эволюционное время, разделяющее любые две точки на данной плоскости (к сожалению, в нашем конкретном случае это не вполне соответствует действительности, так как принтер исказил пропорции – не столь сильно, чтобы стоило поднимать из-за этого шум, однако ответ, который вы получите, подсчитав отметки на шкале, может оказаться слегка неверным).
Такие двумерные плоскости, пронизывающие девятимерное генетическое пространство, дают некоторое представление о том, что это такое – гулять по Стране биоморф. Чтобы представить себе это более точно, следует помнить, что эволюция не ограничивается рамками одной плоской картинки. Во время настоящей “эволюционной прогулки” вы можете в любой момент “перескочить” с плоскости на плоскость – например, с плоскости рис. 6 на плоскость рис. 7 (неподалеку от “насекомого”, где две эти плоскости подходят близко друг к другу).
Я сказал, что “генетическая линейка” на рис. 8 позволяет нам вычислить то минимальное время, которое потребуется, чтобы эволюционировать из одной точки в другую. При условиях, принятых в нашей первоначальной модели, это действительно можно сделать, однако основное ударение здесь следует поставить на слове минимальное. Раз насекомое и скорпион находятся всего в 30 генетических единицах друг от друга, значит, для того чтобы эволюционировать из одного в другое, потребуется всего 30 поколений. Но это при условии, что вы ни разу не повернете не в ту сторону, – другими словами, если вам известно то сочетание генов, к которому следует стремиться, и вы знаете, каким курсом к нему двигаться. В реальном эволюционном процессе не существует ничего, что было бы аналогично стремлению к некоей отдаленной генетической цели.
Давайте теперь на примере биоморф вернемся к той мысли, к которой мы уже пришли, когда говорили об обезьянах, печатающих “Гамлета”, – к мысли о необходимости постепенных, пошаговых эволюционных изменений, не имеющих ничего общего с чистой случайностью. Начнем с того, что иначе обозначим деления шкалы внизу рис. 8. Вместо того чтобы измерять расстояние количеством генов, которые должны измениться в ходе эволюции, мы будем определять его как “вероятность преодолеть дистанцию наудачу, одним прыжком”. Для этого нам придется смягчить одно из ограничивающих условий моей компьютерной игры – в конце наших рассуждений станет понятно, зачем я вообще установил это ограничение. Состояло же оно в том, что потомкам “позволялось” отличаться от родителей только одной мутацией. Иначе говоря, только один ген мог мутировать за один раз, и этому гену было разрешено увеличить или уменьшить свое “значение” только на единицу. Теперь мы не будем такими строгими и позволим всем генам мутировать одновременно, причем каждый сможет прибавлять к своему значению любое число – как положительное, так и отрицательное. Впрочем, это будет излишне большое послабление, при котором численные значения генов смогут колебаться в пределах от минус бесконечности до плюс бесконечности. Чтобы разобраться, что к чему, нам вполне достаточно разрешить генам принимать значения, выражаемые одной цифрой от –9 до +9.
Итак, новые широкие рамки в принципе допускают, что мутация может одним махом, за одно поколение изменить любые из имеющихся девяти генов. Более того, значение каждого гена может измениться на любую величину – при условии что оно не будет забираться в область двузначных чисел. Что из этого следует? Из этого следует, что за одно поколение эволюция теоретически способна совершить скачок из любой точки Страны биоморф в любую другую ее точку. Не просто в любую точку на какой-то одной плоскости, а в любую точку всего девятимерного гиперпространства. Если вы хотите, например, одним скачком добраться от насекомого до лисицы с рис. 5, то вот вам рецепт. Добавьте следующие числа к значениям всех генов от 1-го до 9-го, соответственно: –2, 2, 2, –2, 2, 0, –4, –1, 1. Но если речь идет о случайных прыжках, то пунктом назначения при каждом прыжке может с равной вероятностью оказаться любая точка Страны биоморф. А значит, шансы попасть по чистой случайности в какую-то конкретную точку – скажем, на лисицу – легко вычислить. Они составят, попросту говоря, единицу против общего количества всех биоморф в пространстве. Как видите, мы опять начинаем оперировать астрономическими числами. Имеется девять генов, каждый из которых может принимать любое из 19 численных значений. Следовательно, общее количество биоморф, до которых можно было бы допрыгнуть за один ход, – это число 19, помноженное само на себя девять раз, то есть 19 в 9-й степени. Это составляет где-то полтриллиона. Мелочь по сравнению с азимовским “гемоглобиновым числом”, но все же, я бы сказал, немало. Если, взяв за исходную биоморфу насекомое, вы начнете, как свихнувшаяся блоха, скакать полтриллиона раз подряд, то можно ожидать, что когда-нибудь вы попадете и на лисицу.
Как же все это помогает нам понять реальную эволюцию? На приведенном примере мы в очередной раз убеждаемся в важности постепенных, пошаговых преобразований. Некоторые из эволюционистов отрицали необходимость такого градуализма для эволюции. Наши вычисления с биоморфами показывают нам, что хотя бы одна причина для того, чтобы изменения непременно были постепенными и пошаговыми, существует точно. Когда я говорю, что эволюция способна совершить скачок от насекомого до одной из ближайших к нему биоморф, но не может перескочить сразу на скорпиона, я хочу сказать буквально следующее. Если бы эти скачки были действительно случайными, тогда в том, чтобы одним махом допрыгнуть от насекомого до скорпиона, не было бы абсолютно ничего невозможного. Согласитесь, что тогда это было бы возможно ровно так же, как и прыжок от насекомого к одной из его непосредственных соседок. Но при этом вероятность попасть на какую угодно другую из имеющихся в пространстве биоморф тоже была бы в точности такой же. Тут-то и загвоздка. Когда общее количество биоморф – полтриллиона и ни одна из них не является более вероятным пунктом назначения, чем другие, то шансы попасть на любую конкретную биоморфу малы настолько, что ими можно пренебречь.
Обратите внимание, что допущение о наличии мощного неслучайного “давления отбора” нам здесь не поможет. Пусть даже, удачно попав на скорпиона, вы сорвете большой куш – это не имеет значения. Шансы такого события по-прежнему составляют один к половине триллиона. Но если вместо того, чтобы скакать, вы будете идти шаг за шагом и каждый раз, шагнув в нужном направлении, получать копеечное вознаграждение, тогда вы доберетесь до скорпиона за очень короткий срок. Возможно, и не за самый короткий, не за 30 поколений, но тем не менее очень быстро. Двигаясь прыжками, вы теоретически могли бы получить свой выигрыш быстрее – всего за один ход. Но в связи с ничтожно малой вероятностью такой удачи единственная реально осуществимая возможность – это последовательность шажков, каждый из которых прибавляет к накопленному успеху своих предшественников дополнительную лепту.
То, как звучат несколько последних абзацев, оставляет простор для непонимания, и я обязан его развеять. Может опять показаться, будто эволюция устанавливает себе отдаленные цели, стараясь произвести объекты наподобие скорпионов. Мы уже знаем, что такого не бывает. Но если за отдаленную цель принять что угодно, что повышает шансы выжить, тогда вся наша аргументация остается в силе. Если животное является чьим-то родителем, значит, ему как минимум хватило качеств, необходимых, чтобы дожить до взрослого состояния. Вполне возможно, что какой-нибудь его мутантный потомок даже сумеет превзойти своего родителя в способности к выживанию. А если мутация окажется резкой, преодолевающей сразу большое расстояние в генетическом пространстве, то каковы будут шансы, что потомок окажется лучше родителя? Ответ такой: они будут очень, очень малы. Причину этого мы уже видели на нашей модели с биоморфами. Если рассматриваемый нами мутационный прыжок оказался очень дальним, то количество точек, куда мы могли бы в итоге приземлиться, астрономически велико. А так как из главы 1 мы знаем, что количество способов быть мертвым неизмеримо больше количества способов быть живым, то существует крайне высокая вероятность того, что большой бесцельный прыжок в генетическом пространстве закончится гибелью. И напротив: чем меньше прыжок, тем меньше опасность смерти и тем более вероятно, что он приведет к усовершенствованию. Мы еще вернемся к этой теме в одной из следующих глав.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?