Электронная библиотека » С. Егоров » » онлайн чтение - страница 11


  • Текст добавлен: 14 апреля 2015, 21:02


Автор книги: С. Егоров


Жанр: Химия, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 11 (всего у книги 19 страниц) [доступный отрывок для чтения: 6 страниц]

Шрифт:
- 100% +

67. Химические методы получения коллоидных систем. Методы регулирования размеров частиц в дисперсных системах

Существует большое число методов получения коллоидных систем, позволяющих тонко регулировать размеры частиц, их форму и строение. Т. Сведберг предложил разделить методы получения коллоидных систем на две группы: диспергационные (механическое, термическое, электрическое измельчение или распыление макроскопической фазы) и конденсационные (химическая или физическая конденсация).

Получение золей. В основе процессов лежат реакции конденсации. Процесс протекает в две стадии. Сначала формируются зародыши новой фазы а затем в золе создается слабое пересыщение, при котором уже не происходит образования новых зародышей, а идет только их рост. Примеры. Получение золей золота.



2KAuO2 + 3HСHO + K2CO3 = 2Au + 3HCOOK + КНСО3 + H2O

На образующихся микрокристаллах золота адсорбируются ионы аурата, являющиеся потенциалобразующими ионами. Противоионами служат ионы К+

Состав мицеллы золя золота схематически можно изобразить так:

{m[Au]nAuO2-(n-x)K+}x-xK+.

Можно получить желтые (d ~ 20 нм), красные (d ~ 40 нм) и синие (d ~ 100 нм) золи золота.

Золь гидроксида железа может быть получен по реакции:



При получении золей важно тщательно соблюдать условия проведения реакции, в частности необходимы строгий контроль рН и присутствие ряда органических соединений в системе.

С этой целью поверхность частиц дисперсной фазы ингибируют за счет образования на ней защитного слоя из ПАВ или за счет образования на ней комплексных соединений.

Регулирование размеров частиц в дисперсных системах на примере получения твердых наночастиц. Смешиваются две идентичные обратные микроэмульсионные системы, водные фазы которых содержат вещества А и В, образующие в ходе химической реакции труднорастворимое соединение. Размеры частиц новой фазы будут ограничены размером капель полярной фазы.

Наночастицы металлов могут быть получены также при введении в микроэмульсию, содержащую соль металла, восстановителя (например, водорода или гидразина) или при пропускании газа (например, СО или H2S) через эмульсию.

Факторы, влияющие на протекание реакции:

1) соотношение водной фазы и ПАВ в системе (W = [H2O] / [ПАВ]);

2) структура и свойства солюбилизированной водной фазы;

3) динамическое поведение микроэмульсий;

4) средняя концентрация реагирующих веществ в водной фазе.

Однако во всех случаях размер наночастиц, образующихся в процессах реакции, контролируется размером капель исходной эмульсии.

Микроэмульсионные системы используют для получения органических соединений. Большинство исследований в этой области относится к синтезу наночастиц сферической формы. Вместе с тем большой научный и практический интерес представляет получение асимметричных частиц (нитей, дисков, эллипсоидов) с магнитными свойствами.

68. Лиофильные коллоидные системы. Термодинамика самопроизвольного диспергирования по Ребиндеру-Щукину

Лиофильными коллоидными системами называются ультрамикрогенные системы, которые самопроизвольно образуются из макроскопических фаз, являются термодинамически устойчивыми как для относительно укрупненных частиц дисперсной фазы, так и для частиц при их дроблении до молекулярных размеров. Образование лиофильных коллоидных частиц может определяться приростом свободной поверхностной энергии при разрушении макрофазового состояния, которая, возможно, компенсируется вследствие повышения энтропийного фактора, прежде всего броуновского движения.

При низких значениях поверхностного натяжения могут самопроизвольно путем разложения макрофазы возникать стабильные лиофильные системы.

К лиофильным коллоидным системам относят коллоидные поверхностно-активные вещества, растворы высокомолекулярных соединений, а также студни. Если учесть, что критическое значение поверхностного натяжения сильно зависит от диаметра лиофильных частиц, то образование системы с частицами больших размеров возможно при более низких значениях свободной межфазной энергии.

Рассматривая зависимость при изменении свободной энергии монодисперсной системы от размера всех частиц, необходимо учитывать влияние дисперсии на некоторую величину свободной удельной энергии частиц, находящихся в дисперсной фазе.

Образование равновесной коллоидно-дисперсной системы возможно только при условии, что все значения диаметра частиц могут лежать именно в той области дисперсности, где размер этих частиц может превышать размеры молекул.

Исходя из вышесказанного условие образования лиофильной системы и условие ее равновесности можно представить в виде уравнения Ребиндера-Щукина:



выражения, характерного условию самопроизвольного диспергирования.

При достаточно низких, но изначально конечных значениях σ (изменение межфазной энергии) может происходить самопроизвольное диспергирование макрофазы, могут возникать термодинамические равновесные лиофильные дисперсные системы с едва заметной концентрацией частиц дисперсной фазы, которые в значительной степени будут превосходить молекулярные размеры частиц.

Значение критерия RS может определять условия равновесия лиофильной системы и возможность ее самопроизвольного возникновения из той же макрофазы, которая убывает с ростом концентрации частиц.

Диспергирование – это тонкое измельчение твердых, жидких тел в какой-либо среде, в результате чего получают порошки, суспензии, эмульсии. Диспергирование применяют для получения коллоидных и вообще дисперсных систем. Диспергирование жидкостей обычно называют распылением, если оно происходит в газовой фазе, и эмульгированием, когда его проводят в другой жидкости. При диспергирование твердых тел происходит их механическое разрушение.

Условие самопроизвольного образования лиофильной частицы дисперсной системы и ее равновесия можно также получить, используя кинетические процессы, например при помощи теории флуктуаций.

При этом получаются заниженные значения, поскольку флуктуация не учитывает некоторые параметры (время ожидания флуктуаций данного размера).

Для реальной системы могут возникать частицы имеющие дисперсную природу, с определенными распределениями по размерам.

Исследования П. И. Ребиндера и Е. Д. Щукина позволили рассмотреть процессы устойчивости критических эмульсий, определи процессы образования, привели расчеты различных параметров для таких систем.

69. Мицеллообразование в водных и неводных средах. Термодинамика мицеллообразования

Мицеллообразование – самопроизвольная ассоциация молекул поверхностно-активных веществ (ПАВ) в растворе.

Поверхностно-активные вещества (ПАВ) – вещества, адсорбция которых из жидкости на поверхности раздела с другой фазой приводит к значительному понижению поверхностного натяжения.

Строение молекулы ПАВ – дифильное: полярная группа и неполярный углеводородный радикал.


Строение молекул ПАВ


Мицелла – подвижный молекулярный ассоциат, существующий в равновесии с соответствующим мономером, причем молекулы мономера постоянно присоединяются к мицелле и отщепляются от нее (10–8–10–3 с). Радиус мицелл 2–4 нм, агрегируются 50–100 молекул.

Мицеллообразование – процесс, аналогичный фазовому переходу, при котором происходит резкий переход от молекулярно-дисперсного состояния ПАВ в растворителе к ассоциированному в мицеллы ПАВ при достижении критической концентрации мицеллообразования (ККМ).

Мицеллообразование в водных растворах (прямые мицеллы) обусловлено равенством сил притяжения неполярных (углеводородных) частей молекул и отталкивания полярных (ионогенных) групп. Полярные группы ориентированы в сторону водной фазы. Процесс мицеллообразования имеет энтропийную природу и связан с гидрофобными взаимодействиями углеводородных цепей с водой: объединение углеводородных цепей молекул ПАВ в мицеллу ведет к росту энтропии из-за разрушения структуры воды.

При формировании обратных мицелл полярные группы объединяются в гидрофильное ядро, а углеводородные радикалы образуют гидрофобную оболочку. Энергетический выигрыш мицеллообразования в неполярных средах обусловлен выгодностью замены связи «полярная группа – углеводород» на связь между полярными группами при их объединении в ядро мицеллы.


Рис. 1. Схематическое представление


Движущими силами образования мицелл являются межмолекулярные взаимодействия:

1) гидрофобное отталкивание между углеводородными цепями и водным окружением;

2) отталкивание одноименно заряженных ионных групп;

3) вандерваальсово притяжение между алкильными цепями.

Появление мицелл возможно лишь выше некоторой температуры, которая называется точкой Крафта. Ниже точки Крафта ионные ПАВ, растворяясь, образуют гели (кривая 1), выше – возрастает общая растворимость ПАВ (кривая 2), истинная (молекулярная) растворимость существенно не меняется (кривая 3).


Рис. 2. Образование мицилл

70. Критическая концентрация мицеллообразования (ККМ), основные методы определения ККМ

Критическая концентрация мицеллообразвания (ККМ) – концентрация ПАВ в растворе, при которой в системе образуется в заметных количествах устойчивые мицеллы и резко изменяется ряд свойств раствора. Появление мицелл фиксируется по изменению кривой зависимости свойства раствора от концентрации ПАВ. Свойствами могут быть поверхностное натяжение, электропроводность, ЭДС, плотность, вязкость, теплоемкость, спектральные свойства и т. д. Наиболее распространенные методы определения ККМ: по измерению поверхностного натяжения электропроводности, светорассеяния, растворимости неполярных соединений (солюбилизации) и абсорбции красителей. Область ККМ для ПАВ с числом атомов углерода в цепи 12–16 находится в интервале концентраций 10–2–10–4 моль/л. Определяющим фактором является соотношение гидрофильных и гидрофобных свойств молекулы ПАВ. Чем длиннее углеводородный радикал и менее полярна гидрофильная группа, тем меньше величина ККМ.

Значения ККМ зависят от:

1) положения ионогенных групп в углеводородном радикале (ККМ увеличивается при смещении их к середине цепи);

2) наличия в молекуле двойных связей и полярных групп (наличие увеличивает ККМ);

3) концентрации электролита (увеличение концентрации приводит к снижению ККМ);

4) органических противоионов (присутствие противоионов уменьшает ККМ);

5) органических растворителей (увеличение ККМ);

6) температуры (имеет сложную зависимость).

Поверхностное натяжение раствора σ определяется концентрацией ПАВ в молекулярной форме. Выше значения ККМ σ практически не меняется. По уравнению Гиббса, dσ = – Гdμ, при σ = const, химический потенциал (μ) практически не зависит от концентрации при со > ККМ. До ККМ раствор ПАВ близок по своим свойствам к идеальному, а выше ККМ начинается резко отличаться по свойствам от идеального.

Система «ПАВ – вода» может при изменении содержания компонентов переходить в различные состояния.

ККМ, при которой из мономерных молекул ПАВ образуются сферические мицеллы, т. н. мицеллы Гартли-Ребиндера – ККМ1 (резко изменяются физико-химические свойства раствора ПАВ). Концентрация, при которой начинается изменение мицеллярных свойств, называется второй ККМ (ККМ2). Происходит изменение структуры мицелл – сферической к цилиндрической через сфероидальную. Переход сфероидальной формы в цилиндрическую (ККМ3), как и сферической в сфероидальную (ККМ2), происходит в узких концентрационных областях и сопровождается ростом числа агрегации и уменьшением площади поверхности раздела «мицелла – вода», приходящейся на одну молекулу ПАВ в мицелле. Более плотная упаковка молекул ПАВ, большая степень ионизации мицелл, более сильный гидрофобный эффект и электростатическое отталкивание приводят к уменьшению солюбилизирующей способности ПАВ. При дальнейшем увеличении концентрации ПАВ уменьшается подвижность мицелл, и происходит их сцепление концевыми участками, при этом образуется объемная сетка – коагуляционная структура (гель) с характерными механическими свойствами: пластичностью, прочностью, тиксотропией. Подобные системы с упорядоченным расположением молекул, обладающие оптической анизотропией и механическими свойствами, промежуточными между истинными жидкостями и твердыми телами, называют жидкими кристаллами. При увеличении концентрации ПАВ гель переходит в твердую фазу – кристалл. Критическая концентрация мицеллообразвания (ККМ) – концентрация ПАВ в растворе, при которой в системе образуются в заметных количествах устойчивые мицеллы и резко изменяется ряд свойств раствора.

71. Мицеллообразование и солюбилизация в прямых и обратных мицеллах. Микроэмульсии

Явление образования термодинамически устойчивого изотропного раствора обычно малорастворимого вещества (солюбилизата) при добавлении ПАВ (солюбилизатора) называют солюбилизацией. Одним из наиболее важных свойств мицеллярных растворов является их способность солюбилизировать различные соединения. Например, растворимость октана в воде составляет 0,0015 %, а в 10 %-ном растворе олеата натрия растворяется 2 % октана. Солюбилизация растет с увеличением длины углеводородного радикала ионных ПАВ, а для неионных – с увеличением числа оксиэтиленовых звеньев. На солюбилизацию сложным образом влияют присутствие и природа органических растворителей, сильных электролитов, температура, другие вещества, природа и структура солюбилизата.

Различают прямую солюбилизацию («дисперсионная среда – вода») и обратную («дисперсионная среда – масло»).

В мицелле солюбилизат может удерживаться за счет сил электростатического и гидрофобного взаимодействия, а также других, например водородного связывания.

Известно несколько способов солюбилизации веществ в мицелле (микроэмульсии), зависящих как от соотношения его гидрофобных и гидрофильных свойств, так и от возможных химических взаимодействий между солюбилизатом и мицеллой. Строение микроэмульсий «масло – вода» сходно со строением прямых мицелл, поэтому способы солюбилизации будут идентичны. Солюбилизат может:

1) находиться на поверхности мицеллы;

2) ориентироваться радиально, т. е. полярная группа – на поверхности, а неполярная – в ядре мицеллы;

3) полностью погружаться в ядро, а в случае неионных ПАВ – располагаться в полиоксиэтиленовом слое.

Количественная способность к солюбилизации характеризуется величиной относительной солюбилизации s – отношением числа молей солюбилизированного вещества Nсол. к числу молей ПАВ, находящегося в мицеллярном состоянии Nмиц:



Микроэмульсии относятся к микрогетерогенным самоорганизующимся средам и являются многокомпонентными жидкими системами, содержащими частицы коллоидного размера. Образуются они самопроизвольно при смешении двух жидкостей с ограниченной взаимной растворимостью (в простейшем случае воды и углеводорода) в присутствии мицеллообразующего ПАВ. Иногда для образования гомогенного раствора необходимо добавлять немицеллобразующий ПАВ, т. н. ко-ПАВ (спирт, амин или эфир), и электролит. Размер частиц дисперсной фазы (микрокапель) составляет 10–100 нм. Благодаря малым размерам капель микроэмульсии прозрачны.

От классических эмульсий микроэмульсии отличаются размером диспергированных частиц (5–100 нм для микроэмульсий и 100 нм – 100 мкм для эмульсий), прозрачностью и стабильностью. Прозрачность микроэмульсий связана с тем, что размер их капель меньше длины волны видимого света. Водные мицеллы могут вбирать в себя одну или несколько молекул растворенного вещества. Микрокапля микроэмульсии обладает большей поверхностью и большим внутренним объемом.

Мицеллообразование и солюбилизация в прямых и обратных мицеллах. Микроэмульсии.

Микроэмульсии обладают рядом уникальных свойств, которых нет у мицелл, монослоев или полиэлектролитов. Водные мицеллы могут вбирать в себя одну или несколько молекул растворенного вещества. Микрокапля микроэмульсии обладает большей поверхностью и большим внутренним объемом переменной полярности, может вбирать существенно больше молекул растворяемого вещества. Эмульсии в этом отношении близки к микроэмульсиям, но у них меньше поверхностный заряд, они полидисперсны, нестабильны и непрозрачны.

72. Солюбилизация (коллоидное растворение органических веществ в прямых мицеллах)

Важнейшим свойством водных растворов ПАВ является солюбилизация. Процесс солюбилизации связан с гидрофобными взаимодействиями. Выражается солюбилизация в резком повышении растворимости в воде в присутствии ПАВ малополярных органических соединений.

В водных мицеллярных системах (прямые мицеллы) солюбилизируются вещества, нерастворимые в воде, например бензол, органические красители, жиры.

Это обусловлено тем, что ядро мицеллы проявляет свойства неполярной жидкости.

В органических мицеллярных растворах (обратные мицеллы), в которых внутренняя часть мицелл состоит из полярных групп, солюбилизируются полярные молекулы воды, причем количество связанной воды может быть значительным.

Растворяемое вещество называется солюбилизатом (или субстратом), а ПАВ – солюбилизатором.

Процесс солюбилизации является динамическим: субстрат распределяется между водной фазой и мицеллой в соотношении, зависящем от природы и гидрофильно-липофильного баланса (ГЛБ) обоих веществ.

Факторы, влияющие на процесс солюбилизации:

1) концентрация ПАВ. Количество солюбилизированного вещества увеличивается пропорционально концентрации раствора ПАВ в области сферических мицелл и дополнительно резко возрастает при образовании пластинчатых;

2) длина углеводородного радикала ПАВ. С увеличением длины цепи для ионных ПАВ или числа оксиэтилированных звеньев для неионных ПАВ солюбилизация увеличивается;

3) природа органических растворителей;

4) электролиты. Добавление сильных электролитов обычно сильно увеличивает солюбилизацию вследствие уменьшения ККМ;

5) температура. При повышении температуры солюбилизация возрастает;

6) присутствие полярных и неполярных веществ;

7) природа и структура солюбилизата.

Стадии процесса солюбилизации:

1) адсорбция субстрата на поверхности (быстрая стадия);

2) проникновение субстрата в мицеллу или ориентация внутри мицеллы (более медленная стадия).

Способ включения молекул солюбилизата в мицеллы водных растворов зависит от природы вещества. Неполярные углеводороды в мицелле располагаются в углеводородных ядрах мицелл.

Полярные органические вещества (спирты, амины, кислоты) встраиваются в мицеллу между молекулами ПАВ так, чтобы их полярные группы были обращены к воде, а гидрофобные части молекул ориентированы параллельно углеводородным радикалам ПАВ.

В мицеллах неионных ПАВ молекулы солюбилизата, например фенола, закрепляются на поверхности мицеллы, располагаясь между беспорядочно изогнутыми полиоксиэтиленовыми цепями.

При солюбилизации неполярных углеводородов в ядрах мицелл углеводородные цепи раздвигаются, в результате размер мицелл увеличивается.

Явление солюбилизации находит широкое применение в различных процессах, связанных с применением ПАВ. Например, в эмульсионной полимеризации, получении фармацевтических препаратов, пищевых продуктов.

Солюбилизация – важнейший фактор моющего действия ПАВ. Это явление играет большую роль в жизнедеятельности живых организмов, являясь одним из звеньев процесса обмена веществ.

73. Микроэмульсии, строение микрокапель, условия образования, фазовые диаграммы

Различают два типа микроэмульсий (рис. 1): распределение капелек масла в воде (м/в) и воды в масле (в/м). Микроэмульсии испытывают структурные превращения при изменениях относительных концентраций масла и воды.


Рис. 1. Схематическое представление микроэмульсий


Микроэмульсии образуются только при определенных соотношениях компонентов в системе. При изменении числа компонентов, состава или температуры в системе происходят макроскопические фазовые превращения, которые подчиняются правилу фаз и анализируются с помощью диаграмм состояния.

Обычно строят «псевдотройные» диаграммы. В качестве одного компонента рассматривают углеводород (масло), другого – воду или электролит, третьего – ПАВ и ко-ПАВ.

Построение фазовых диаграмм проводят по методу сечений.

Обычно левый нижний угол данных диаграмм соответствует весовым долям (процентам) воды или солевого раствора, правый нижний угол – углеводороду, верхний – ПАВ или смеси ПАВ: ко-ПАВ с определенным их соотношением (чаще 1:2).

В плоскости треугольника составов кривая отделяет область существования однородной (в макроскопическом смысле) микроэмульсии от областей, где микроэмульсия расслаивается (рис. 2).

Непосредственно вблизи кривой существуют набухшие мицеллярные системы типов «ПАВ – вода» с солюбилизированным углеводородом и «ПАВ – углеводород» с солюбилизированной водой.

ПАВ (ПАВ: ко-ПАВ) = 1:2


Рис. 2. Фазовая диаграмма микроэмульсионной системы


По мере увеличения отношения вода/масло в системе происходят структурные переходы:

микроэмульсия в/м → цилиндры воды в масле → ламелярная структура ПАВ, масла и воды → микроэмульсия м/в.


Страницы книги >> Предыдущая | 1 2 3 4 5 6
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации