Электронная библиотека » Александр Герасимович » » онлайн чтение - страница 23

Текст книги "COVID-19/SARS-CoV-2"


  • Текст добавлен: 12 апреля 2023, 15:03


Автор книги: Александр Герасимович


Жанр: Руководства, Справочники


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 23 (всего у книги 25 страниц) [доступный отрывок для чтения: 7 страниц]

Шрифт:
- 100% +

683. Li Y, Cao L, Zhang Z, et al. Reporting and methodological quality of COVID-19 systematic reviews needs to be improved: an evidence mapping. J Clin Epidemiol. 2021 Jul;135:17—28. doi: 10.1016/j. jclinepi.2021.02.021. Epub 2021 Feb 28. PMID: 33657455; PMCID: PMC8313077.

684. Belletti A, Todaro G, Valsecchi G, et al. Barotrauma in Coronavirus Disease 2019 Patients Undergoing Invasive Mechanical Ventilation: A Systematic Literature Review. Crit Care Med. 2022 Mar 1;50 (3):491—500. doi: 10.1097/CCM.0000000000005283. PMID: 34637421; PMCID: PMC8855757.

685. Kabia AU, Li P, Jin Z, et al. The effects of hypertension on the prognosis of coronavirus disease 2019: a systematic review and meta-analysis on the interactions with age and antihypertensive treatment. J Hypertens. 2022 Dec 1;40 (12):2323—2336. doi: 10.1097/HJH.0000000000003266. Epub 2022 Aug 8. PMID: 35950998; PMCID: PMC9640264.

686. Huang AT, Garcia-Carreras B, Hitchings MDT, et al. A systematic review of antibody mediated immunity to coronaviruses: kinetics, correlates of protection, and association with severity. Nat Commun. 2020 Sep 17;11 (1):4704. doi: 10.1038/s41467-020-18450-4. PMID: 32943637; PMCID: PMC7499300.

687. Chinazzi, M. et al. The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science https://doi.org/10.1126/science.aba9757 (2020).

688. Read, J. M., Bridgen, J. R. E., Cummings, D. A. T., et al. Novel coronavirus 2019-nCoV: early estimation of epidemiological parameters and epidemic predictions. https://doi.org/10.1101/2020.01.23.20018549 (2020).

689. Kucharski, A. J. et al. Early dynamics of transmission and control of COVID-19: a mathematical modelling study. Lancet Infect. Dis. https://doi.org/10.1016/S1473-3099(20)30144-4 (2020).

690. Baker, R. E., Yang, W., Vecchi, G. A., et al. Susceptible supply limits the role of climate in the COVID-19 pandemic. https://doi.org/10.1101/2020.04.03.20052787 (2020).

691. Kissler, S. M., Tedijanto, C., Goldstein, et al. Projecting the transmission dynamics of SARS-CoV-2 through the post-pandemic period. Science 368, 860—868 (2020).

692. Tan, W. et al. Viral kinetics and antibody responses in patients with COVID-19. Preprint at https://doi.org/10.1101/2020.03.24.20042382 (2020).

693. Zhao, J. et al. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciaa344 (2020).

694. Welsh Surgical Research Initiative (WSRI) Collaborative. Recommended operating room practice during the COVID-19 pandemic: systematic review. BJS Open. 2020 Oct;4 (5):748—756. doi: 10.1002/bjs5.50304. Epub 2020 Jun 4. PMID: 32395909; PMCID: PMC7272923.

695. Vasconcelos ZS, Salem HA, Veiga SP, et al. Immunogenicity Characterization of COVID-19 Vaccines: A Systematic Review and Meta-analysis. Rev Soc Bras Med Trop. 2023 Jan 23;56:S0037—86822023000100307. doi: 10.1590/0037-8682-0661-2022. PMID: 36700611.

696. Akbari A, Fathabadi A, Razmi M, et al. Characteristics, risk factors, and outcomes associated with readmission in COVID-19 patients: A systematic review and meta-analysis. Am J Emerg Med. 2022 Feb;52:166—173. doi: 10.1016/j. ajem.2021.12.012. Epub 2021 Dec 11. PMID: 34923196; PMCID: PMC8665665.

697. Bordallo B, Bellas M, Cortez AF, Vieira M, Pinheiro M. Severe COVID-19: what have we learned with the immunopathogenesis? Adv Rheumatol. 2020 Sep 22;60 (1):50. doi: 10.1186/s42358-020-00151-7. PMID: 32962761; PMCID: PMC7506814.

698. Kyriakoulis KG, Kollias A, Kyriakoulis IG, et al. Thromboprophylaxis in Patients with COVID-19: Systematic Review of National and International Clinical Guidance Reports. Curr Vasc Pharmacol. 2022;20 (1):96—110. doi: 10.2174/1570161119666210824160332. PMID: 34431465.

699. Petráš M, Máčalík R, Janovská D, et al. Risk factors affecting COVID-19 vaccine effectiveness identified from 290 cross-country observational studies until February 2022: a meta-analysis and meta-regression. BMC Med. 2022 Nov 25;20 (1):461. doi: 10.1186/s12916-022-02663-z. PMID: 36434597; PMCID: PMC9701077.

700. Chen H, Zhang X, Lin G, et al. Safety of COVID-19 vaccination in women undergoing IVF/ICSI treatment – Clinical study and systematic review. Front Immunol. 2023 Jan 11;13:1054273. doi: 10.3389/fimmu.2022.1054273. PMID: 36713439; PMCID: PMC9876364.

701. Samimisedeh P, Jafari Afshar E, Shafiabadi Hassani N, Rastad H. Cardiac MRI Findings in COVID-19 Vaccine-Related Myocarditis: A Pooled Analysis of 468 Patients. J Magn Reson Imaging. 2022 Oct;56 (4):971—982. doi: 10.1002/jmri.28268. Epub 2022 May 25. PMID: 35612967; PMCID: PMC9348186.

702. Reis S, Metzendorf MI, Kuehn R, et al. Nirmatrelvir combined with ritonavir for preventing and treating COVID-19. Cochrane Database Syst Rev. 2022 Sep 20;9 (9):CD015395. doi: 10.1002/14651858.CD015395.pub2. PMID: 36126225; PMCID: PMC9487421.

703. Griesel M, Wagner C, Mikolajewska A, et al. Inhaled corticosteroids for the treatment of COVID-19. Cochrane Database Syst Rev. 2022 Mar 9;3 (3):CD015125. doi: 10.1002/14651858.CD015125. PMID: 35262185; PMCID: PMC8905579.

704. Kramer A, Prinz C, Fichtner F, et al. Janus kinase inhibitors for the treatment of COVID-19. Cochrane Database Syst Rev. 2022 Jun 13;6 (6):CD015209. doi: 10.1002/14651858.CD015209. PMID: 35695334; PMCID: PMC9190191.

705. Xiang HR, He B, Li Y, Cheng X, Zhang QZ, Peng WX. Bamlanivimab plus etesevimab treatment have a better outcome against COVID-19: A meta-analysis. J Med Virol. 2022 May;94 (5):1893—1905. doi: 10.1002/jmv.27542. Epub 2021 Dec 30. PMID: 34936121.

706. Landoni G, Zangrillo A, Piersanti G, et al. The effect of reparixin on survival in patients at high risk for in-hospital mortality: a meta-analysis of randomized trials. Front Immunol. 2022 Jul 25;13:932251. doi: 10.3389/fimmu.2022.932251. PMID: 35958623; PMCID: PMC9358031.

707. Avni T, Leibovici L, Cohen I, et al. Tocilizumab in the treatment of COVID-19-a meta-analysis. QJM. 2021 Nov 5;114 (8):577—586. doi: 10.1093/qjmed/hcab142. PMID: 34010403; PMCID: PMC8243364.

708. Lim PC, Wong KL, Rajah R, et al. Comparing the efficacy of tocilizumab with corticosteroid therapy in treating COVID-19 patients: a systematic review and meta-analysis. Daru. 2022 Jun;30 (1):211—228. doi: 10.1007/s40199-021-00430-8. Epub 2022 Jan 27. PMID: 35084705; PMCID: PMC8792140.

709. Wen W, Chen C, Tang J, et al. Efficacy and safety of three new oral antiviral treatment (molnupiravir, fluvoxamine and Paxlovid) for COVID-19:a meta-analysis. Ann Med. 2022 Dec;54 (1):516—523. doi: 10.1080/07853890.2022.2034936. PMID: 35118917; PMCID: PMC8820829.

710. Helman SN, Adler J, Jafari A, et al. Treatment strategies for postviral olfactory dysfunction: A systematic review. Allergy Asthma Proc. 2022 Mar 1;43 (2):96—105. doi: 10.2500/aap.2022.43.210107. PMID: 35317886; PMCID: PMC8984764.

711. Abbas AS, Hardy N, Ghozy S, et al. Characteristics, treatment, and outcomes of Myasthenia Gravis in COVID-19 patients: A systematic review. Clin Neurol Neurosurg. 2022 Feb;213:107140. doi: 10.1016/j.clineuro.2022.107140. Epub 2022 Jan 22. PMID: 35091255; PMCID: PMC8782728.

712. Xixi NA, Kremmydas P, Xourgia E, et al. Association between timing of intubation and clinical outcomes of critically ill patients: A meta-analysis. J Crit Care. 2022 Oct;71:154062. doi: 10.1016/j. jcrc.2022.154062. Epub 2022 May 17. PMID: 35588639.

713. Javed A, Karki S, Sami Z, et al. Association between Mesenchymal Stem Cells and COVID-19 Therapy: Systematic Review and Current Trends. Biomed Res Int. 2022 Jun 22;2022:9346939. doi: 10.1155/2022/9346939. PMID: 35782071; PMCID: PMC9242780.

714. Yelin D, Moschopoulos CD, Margalit I, et al. ESCMID rapid guidelines for assessment and management of long COVID. Clin Microbiol Infect. 2022 Jul;28 (7):955—972. doi: 10.1016/j.cmi.2022.02.018. Epub 2022 Feb 17. PMID: 35182760; PMCID: PMC8849856.

715. Xu DY, Dai B, Tan W, et al. Effectiveness of the use of a high-flow nasal cannula to treat COVID-19 patients and risk factors for failure: a meta-analysis. Ther Adv Respir Dis. 2022 Jan-Dec;16:17534666221091931. doi: 10.1177/17534666221091931. PMID: 35467449; PMCID: PMC9047804.

716. Yang Y, Cai Z, Zhang J. Insulin Treatment May Increase Adverse Outcomes in Patients With COVID-19 and Diabetes: A Systematic Review and Meta-Analysis. Front Endocrinol (Lausanne). 2021 Jul 22;12:696087. doi: 10.3389/fendo.2021.696087. PMID: 34367067; PMCID: PMC8339900.

717. He Y, Liu N, Zhuang X, Wang X, Ma W. High-flow nasal cannula versus noninvasive ventilation in patients with COVID-19: a systematic review and meta-analysis. Ther Adv Respir Dis. 2022 Jan-Dec;16:17534666221087847. doi: 10.1177/17534666221087847. PMID: 35318888; PMCID: PMC8972939.

718. Liu Y, Liu S, Qin Y, et al. Does prior exposure to immune checkpoint inhibitors treatment affect incidence and mortality of COVID-19 among the cancer patients: The systematic review and meta-analysis. Int Immunopharmacol. 2021 Dec;101 (Pt A):108242. doi: 10.1016/j.intimp.2021.108242. Epub 2021 Oct 11. PMID: 34688136; PMCID: PMC8502698.

719. Zeng N, Zhao YM, Yan W, et al. A systematic review and meta-analysis of long term physical and mental sequelae of COVID-19 pandemic: call for research priority and action. Mol Psychiatry. 2023 Jan;28 (1):423—433. doi: 10.1038/s41380-022-01614-7. Epub 2022 Jun 6. PMID: 35668159; PMCID: PMC9168643.

720. Li J, Tian A, Zhu H, et al. Mendelian Randomization Analysis Reveals No Causal Relationship Between Nonalcoholic Fatty Liver Disease and Severe COVID-19. Clin Gastroenterol Hepatol. 2022 Jul;20 (7):1553—1560.e78. doi: 10.1016/j.cgh.2022.01.045. Epub 2022 Feb 3. PMID: 35124268.

721. Zeng Y, Zeng W, Yang B, Liu Z. Effectiveness of corticosteroids to treat coronavirus disease 2019 symptoms: A meta-analysis. Med Clin (Barc). 2022 Dec 23;159 (12):575—583. doi: 10.1016/j.medcli.2022.03.013. Epub 2022 May 3. PMID: 35618496; PMCID: PMC9061135.

722. Reddy MP, Subramaniam A, Chua C, et al. Respiratory system mechanics, gas exchange, and outcomes in mechanically ventilated patients with COVID-19-related acute respiratory distress syndrome: a systematic review and meta-analysis. Lancet Respir Med. 2022 Dec;10 (12):1178—1188. doi: 10.1016/S2213—2600 (22) 00393—9. Epub 2022 Nov 3. PMID: 36335956; PMCID: PMC9708089.

723. Hadjadj S, Saulnier PJ, Ruan Y, et al; CORONADO, the ABCD COVID-19 diabetes national audit and AMERICADO investigators. Associations of microvascular complications with all-cause death in patients with diabetes and COVID-19: The CORONADO, ABCD COVID-19 UK national audit and AMERICADO study groups. Diabetes Obes Metab. 2023 Jan;25 (1):78—88. doi: 10.1111/dom.14845. Epub 2022 Sep 12. PMID: 36053971; PMCID: PMC9538242.

724. Abdulla M, Mohammed N, AlQamish J, Mosli M. Inflammatory bowel disease and COVID-19 outcomes: a meta-analysis. Sci Rep. 2022 Dec 9;12 (1):21333. doi: 10.1038/s41598-022-25429-2. PMID: 36494448; PMCID: PMC9734125.

725. Cohen MA, Edelman A, Paynter R, Henderson JT. Risk of thromboembolism in patients with COVID-19 who are using hormonal contraception. Cochrane Database Syst Rev. 2023 Jan 9;1 (1):CD014908. doi: 10.1002/14651858.CD014908.pub2. PMID: 36622724; PMCID: PMC9829026.

726. Shang W, Zhang B, Ren Y, Wang W, Zhou D, Li Y. Thymosin alpha1 use in adult COVID-19 patients: A systematic review and meta-analysis on clinical outcomes. Int Immunopharmacol. 2023 Jan;114:109584. doi: 10.1016/j.intimp.2022.109584. Epub 2022 Dec 13. PMID: 36527881; PMCID: PMC9754924.

727. Patterson TJ, Currie P, Williams M, Shevlin C. Ocular Injury Associated With Prone Positioning in Adult Critical Care: A Systematic Review and Meta-Analysis. Am J Ophthalmol. 2021 Jul;227:66—73. doi: 10.1016/j. ajo.2021.02.019. Epub 2021 Mar 3. PMID: 33675753; PMCID: PMC9745902.

728. Gatti M, Rinaldi M, Bussini L, et al; ORCHESTRA study group; Infectious Diseases Unit; Department of Integrated Management of Infectious Risk; IRCCS Policlinico Sant’Orsola; Department of Medical and Surgical Sciences; University of Bologna in Bologna, Italy; Division of Infectious Diseases; Department of Diagnostics and Public Health, University of Verona in Verona, Italy; Infectious Diseases and Microbiology Unit; Hospital Universitario Virgen Macarena; Department of Medicine, University of Sevilla/Biomedicines Institute of Sevilla in Sevilla, Spain. Clinical outcome in solid organ transplant recipients affected by COVID-19 compared to general population: a systematic review and meta-analysis. Clin Microbiol Infect. 2022 Aug;28 (8):1057—1065. doi: 10.1016/j.cmi.2022.02.039. Epub 2022 Mar 12. PMID: 35289294; PMCID: PMC8916831.

729. O’Byrne L, Webster KE, MacKeith S, Philpott C, Hopkins C, Burton MJ. Interventions for the treatment of persistent post-COVID-19 olfactory dysfunction. Cochrane Database Syst Rev. 2022 Sep 5;9 (9):CD013876. doi: 10.1002/14651858.CD013876.pub3. PMID: 36062970; PMCID: PMC9443431.

730. Zheng Q, Ma P, Wang M, et al. Efficacy and safety of Paxlovid for COVID-19:a meta-analysis. J Infect. 2023 Jan;86 (1):66—117. doi: 10.1016/j. jinf.2022.09.027. Epub 2022 Sep 30. PMID: 36191676; PMCID: PMC9523907.

731. Amer YS, Titi MA, Godah MW, et al. International alliance and AGREE-ment of 71 clinical practice guidelines on the management of critical care patients with COVID-19: a living systematic review. J Clin Epidemiol. 2022 Feb;142:333—370. doi: 10.1016/j. jclinepi.2021.11.010. Epub 2021 Nov 14. PMID: 34785346; PMCID: PMC8590623.

732. Alsagaff MY, Mulia EPB, Maghfirah I, et al. Low molecular weight heparin is associated with better outcomes than unfractionated heparin for thromboprophylaxis in hospitalized COVID-19 patients: a meta-analysis. Eur Heart J Qual Care Clin Outcomes. 2022 Nov 17;8 (8):909—918. doi: 10.1093/ehjqcco/qcac046. PMID: 35921219; PMCID: PMC9384651.

733. Wang Y, Zheng J, Zhu K, Xu C, Wang D, Hou M. The effect of tixagevimab-cilgavimab on clinical outcomes in patients with COVID-19: A systematic review with meta-analysis. J Infect. 2023 Jan;86 (1):e15-e17. doi: 10.1016/j. jinf.2022.08.021. Epub 2022 Aug 27. PMID: 36031156; PMCID: PMC9420004.

734. Marcec R, Dodig VM, Likic R. A meta-analysis regarding fluvoxamine and hospitalization risk of COVID-19 patients: TOGETHER making a difference. J Infect. 2023 Feb;86 (2):154—225. doi: 10.1016/j. jinf.2022.11.011. Epub 2022 Nov 18. PMID: 36403698; PMCID: PMC9673087.

735. Loffredo L, Di Castelnuovo A, Chiariello GA, et al. Full versus prophylactic-intermediate doses of anticoagulants in COVID-19: a meta-analysis. Haematologica. 2022 Aug 1;107 (8):1933—1939. doi: 10.3324/haematol.2022.280652. PMID: 35354256; PMCID: PMC9335104.

736. Zeng J, Liu F, Wang Y, et al. The effect of previous oral anticoagulant use on clinical outcomes in COVID-19: A systematic review and meta-analysis. Am J Emerg Med. 2022 Apr;54:107—110. doi: 10.1016/j. ajem.2022.01.059. Epub 2022 Feb 3. PMID: 35152118; PMCID: PMC8810267.

737. Kurdi A, Mueller T, Weir N. An umbrella review and meta-analysis of renin-angiotensin system drugs use and COVID-19 outcomes. Eur J Clin Invest. 2023 Feb;53 (2):e13888. doi: 10.1111/eci.13888. Epub 2022 Oct 19. PMID: 36205627; PMCID: PMC9874890.

738. de Jong VMT, Rousset RZ, Antonio-Villa NE, et al; CAPACITY-COVID consortium; Moons KGM, Debray TPA. Clinical prediction models for mortality in patients with covid-19: external validation and individual participant data meta-analysis. BMJ. 2022 Jul 12;378:e069881. doi: 10.1136/bmj-2021-069881. PMID: 35820692; PMCID: PMC9273913.

739. Gnanenthiran SR, Borghi C, Burger D, et al.; COVID‐METARASI Consortium. Renin-Angiotensin System Inhibitors in Patients With COVID-19: A Meta-Analysis of Randomized Controlled Trials Led by the International Society of Hypertension. J Am Heart Assoc. 2022 Sep 6;11 (17):e026143. doi: 10.1161/JAHA.122.026143. Epub 2022 Aug 24. PMID: 36000426; PMCID: PMC9496439.

740. Ma S, Su W, Sun C, et al. Does aspirin have an effect on risk of death in patients with COVID-19? A meta-analysis. Eur J Clin Pharmacol. 2022 Sep;78 (9):1403—1420. doi: 10.1007/s00228-022-03356-5. Epub 2022 Jun 22. PMID: 35732963; PMCID: PMC9217117.

741. Agrati C, Sacchi A, Tartaglia E, et al. The Role of P-Selectin in COVID-19 Coagulopathy: An Updated Review. Int J Mol Sci. 2021 Jul 26;22 (15):7942. doi: 10.3390/ijms22157942. PMID: 34360707.

742. Goshua, G.; Pine, A.B.; Meizlish, M.L.; et al. Endotheliopathy in COVID-19-associated coagulopathy: Evidence from a single-centre, cross-sectional study. Lancet Haematol. 2020, 7, 575—582.

743. Hottz, E.D.; Azevedo-Quintanilha, I.G.; Palhinha, L.; et al. Platelet activation and platelet-monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19. Blood 2020, 136, 1330—1341.

744. Agrati, C.; Bordoni, V.; Sacchi, A.; et al. Elevated P-Selectin in Severe Covid-19: Considerations for Therapeutic Options. Mediterr. J. Hematol. Infect. Dis. 2021, 13, e2021016.

745. Comer, S.P.; Cullivan, S.; Szklanna, P.B.; et al. COVID-19 induces a hyperactive phenotype in circulating platelets. PLoS. Biol. 2021, 19, e3001109.

746. Fraser, D.D.; Patterson, E.K.; Slessarev, M.; et al. Endothelial Injury and Glycocalyx Degradation in Critically Ill Coronavirus Disease 2019 Patients: Implications for Microvascular Platelet Aggregation. Crit. Care Explor. 2020, 2, e0194.

747. Almulla AF, Supasitthumrong T, Tunvirachaisakul C, et al. The tryptophan catabolite or kynurenine pathway in COVID-19 and critical COVID-19: a systematic review and meta-analysis. BMC Infect Dis. 2022 Jul 15;22 (1):615. doi: 10.1186/s12879-022-07582-1. PMID: 35840908; PMCID: PMC9284970.

748. Guerrero JI, Barragán LA, Martínez JD, et al. Central and peripheral nervous system involvement by COVID-19: a systematic review of the pathophysiology, clinical manifestations, neuropathology, neuroimaging, electrophysiology, and cerebrospinal fluid findings. BMC Infect Dis. 2021 Jun 2;21 (1):515. doi: 10.1186/s12879-021-06185-6. PMID: 34078305; PMCID: PMC8170436.

749. Beach SR, Praschan NC, Hogan C, et al. Delirium in COVID-19: a case series and exploration of potential mechanisms for central nervous system involvement. Gen Hosp Psychiatry. 2020;65:47—53.

750. Gandhi S, Srivastava AK, Ray U, Tripathi PP. Is the collapse of the respiratory Center in the Brain Responsible for respiratory breakdown in COVID-19 patients? ACS Chem Neurosci. 2020;11 (10):1379—81.

751. Acharya A, Kevadiya BD, Gendelman HE, Byrareddy SN. SARS-CoV-2 infection leads to neurological dysfunction. J NeuroImmune Pharmacol. 2020;15 (2):167—73.

752. Asadi-Pooya AA, Simani L. Central nervous system manifestations of COVID-19: a systematic review. J Neurol Sci. 2020;413:116832.

753. Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci. 2020;11 (7):995—8.

754. Baig AM, Sanders EC. Potential Neuroinvasive pathways of SARS-CoV-2: deciphering the Spectrum of neurological deficit seen in coronavirus disease 2019 (COVID-19). J Med Virol. 2020;92 (10):1845—57.

755. Hepburn M, Mullaguri N, George P, et al. Acute symptomatic seizures in critically ill patients with COVID-19: is there an association? Neurocrit care. 2020. p. 1—5.

756. Reichard RR, Kashani KB, Boire NA, et al. Neuropathology of COVID-19: a spectrum of vascular and acute disseminated encephalomyelitis (ADEM) -like pathology. Acta Neuropathol. 2020;140 (1):1—6.

757. Iba T, Connors JM, Levy JH. The coagulopathy, endotheliopathy, and vasculitis of COVID-19. Inflamm Res. 2020;69 (12):1181—9.

758. WHO – Therapeutics and COVID-19: living guideline (risorsa elettronica): https://www.who.int/publications/i/item/WHO-2019-nCoV-therapeutics-2022.4 Дата посещения: 2.02.2023.

759. Sukhatme VP, Reiersen AM, Vayttaden SJ, Sukhatme VV: Fluvoxamine: A Review of Its Mechanism of Action and Its Role in COVID-19. Frontiers in pharmacology 2021;12 652688 Pubmed Journal.

760. Hashimoto Y, Suzuki T, Hashimoto K: Mechanisms of action of fluvoxamine for COVID-19: a historical review. Molecular psychiatry 2022.

761. Drosos AA, Pelechas E, Drossou V, Voulgari PV: Colchicine Against SARS-CoV-2 Infection: What is the Evidence?. Rheumatology and therapy 2022;9 (2):379—389.

762. Reyes AZ, Hu KA, Teperman J, Wampler Muskardin TL, Tardif J-C, Shah B, et al.: Anti-inflammatory therapy for COVID-19 infection: the case for colchicine. Annals of the rheumatic diseases 2021;80 (5):550—557.

763. University of Liverpool: Interaction Checker. 2022; https://covid19-druginteractions.org.

764. Couzin-Frankel J: Antiviral pills could change pandemic’s course. Science 2021;374 (6569):799—800.

765. Owen DR, Allerton CMN, Anderson AS, Aschenbrenner L, Avery M, Berritt S, et al.: An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19. Science 2021;374 (6575):1586—1593.

766. Vangeel L, Chiu W, De Jonghe S, et al.: Remdesivir, Molnupiravir and Nirmatrelvir remain active against SARS-CoV-2 Omicron and other variants of concern. Antiviral Res 2022;198 105252.

767. Gordon CJ, Tchesnokov EP, Woolner E, et al.: Remdesivir is a direct-acting antiviral that inhibits RNAdependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. J Biol Chem 2020;295 (20):6785—6797.

768. Szemiel AM, Merits A, Orton RJ, et al.: In vitro selection of Remdesivir resistance suggests evolutionary predictability of SARS-CoV-2. PLoS Pathog 2021;17 (9):e1009929.

769. Sheahan TP, Sims AC, Zhou S, et al.: An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Science translational medicine 2020;12 (541):eabb5883.

770. Tao S, Zandi K, Bassit L, et al.: Comparison of anti-SARS-CoV-2 activity and intracellular metabolism of remdesivir and its parent nucleoside. Current research in pharmacology and drug discovery 2021;2 100045.

771. Kabinger F, Stiller C, Schmitzová J, et al.: Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis. Nature structural & molecular biology 2021;28 (9):740—746.

772. Gordon CJ, Tchesnokov EP, Schinazi RF, Götte M: Molnupiravir promotes SARS-CoV-2 mutagenesis via the RNA template. The Journal of biological chemistry 2021;297 (1):100770.

773. Abdelnabi R, Foo CS, De Jonghe S, et al: Molnupiravir Inhibits Replication of the Emerging SARS-CoV-2 Variants of Concern in a Hamster Infection Model. The Journal of infectious diseases 2021;224 (5):749—753.

774. Prince T, Donovan-Banfield I, Goldswain H, et al.: Antiviral activity of molnupiravir precursor NHC against Variants of Concern (VOCs) and its therapeutic window in a human lung cell model. bioRxiv 2021.

775. Vangeel L, De Jonghe S, Maes P, Slechten B, Raymenants J, André E, et al.: Remdesivir, Molnupiravir and Nirmatrelvir remain active against SARS-CoV-2 Omicron and other variants of concern. bioRxiv 2021.

776. Mayence A, Vanden Eynde JJ: Baricitinib: A 2018 Novel FDA-Approved Small Molecule Inhibiting Janus Kinases. Pharmaceuticals 2019;12 (1):37.

777. Fragoulis GE, McInnes IB, Siebert S: JAK-inhibitors. New players in the field of immune-mediated diseases, beyond rheumatoid Therapeutics and COVID-19: living guideline – World Health Organization (WHO) arthritis. Rheumatology 2019;58 (Suppl 1):i43-i54.

778. Schwartz DM, Kanno Y, Villarino A, et al. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Discov 2017;17 (1):78.

779. Sotrovimab for injection. In: COVID-19 vaccines and treatments portal. Ottawa: Health Canada; 2021 (Product monograph; https://covid-vaccine.canada.ca/info/pdf/sotrovimab-pm-en.pdf, accessed 10 December 2021).

780. United States Food and Drug Administration: Fact sheet for healthcare providers – Emergency Use Authorization (EUA) of sotrovimab. https://www.fda.gov/media/149534/download, accessed 4 January 2022).

781. Cathcart AL, Havenar-Daughton C, Lempp FA, et al.: The dual function monoclonal antibodies VIR-7831 and VIR-7832 demonstrate potent in vitro and in vivo activity against SARS-CoV-2. bioRxiv 2021.

782. Iketani S, Liu L, Guo Y, et al.: Antibody evasion properties of SARS-CoV-2 Omicron sublineages. Nature 2022.

783. Zhou H, Tada T, Dcosta BM, Landau NR: Neutralization of SARS-CoV-2 Omicron BA.2 by Therapeutic Monoclonal Antibodies.bioRxiv 2022.

784. Casadevall A, Pirofski L-A: The convalescent sera option for containing COVID-19. J Clin Investig 2020;130 (4):1545—1548.

785. Jermain B, Hanafin PO, Cao Y, et al. Development of a minimal physiologically-based pharmacokinetic model to simulate lung exposure in humans following oral administration of ivermectin for COVID-19 drug repurposing. J Pharm Sci 2020;109 (12):3574—3578.

786. Arshad U, Pertinez H, Box H, et al. Prioritization of anti-SARS-Cov-2 drug repurposing opportunities based on plasma and target site concentrations derived from their established human pharmacokinetics. Clin Pharmacol Ther 2020;108 (4):775—790.

787. Peña-Silva R, Duffull SB, Steer AC, et al. Pharmacokinetic considerations on the repurposing of ivermectin for treatment of COVID-19. Br J Clin Pharmacol 2021;87 (3):1589—1590.

788. de Melo GD, Lazarini F, Larrous F, Feige F, Kornobis E, Levallois S, et al.: Attenuation of clinical and immunological outcomes during SARS-CoV-2 infection by ivermectin. EMBO Mol Med 2021;13 (8):e14122.

789. Parvez MSA, Karim MA, Hasan M, et al.: Prediction of potential inhibitors for RNA-dependent RNA polymerase of SARS-CoV-2 using comprehensive drug repurposing and molecular docking approach. Int J Biol Macromol 2020;1631787—1797.

790. Mody V, Ho J, Wills S, et al. Identification of 3-chymotrypsin like protease (3CLPro) inhibitors as potential anti-SARS-CoV-2 agents. Commun Biol 2021;4 (1):93.

791. Arouche TDS, Martins AY, Ramalho TDC, et al. Molecular docking of azithromycin, ritonavir, lopinavir, oseltamivir, ivermectin and heparin interacting with coronavirus disease 2019 main and severe acute respiratory syndrome coronavirus-2 3C-like proteases. J Nanosci Nanotechnol 2021;21 (4):2075—2089.

792. Kalhor H, Sadeghi S, Abolhasani H, et al. Repurposing of the approved small molecule drugs in order to inhibit SARS-CoV-2 S protein and human ACE2 interaction through virtual screening approaches. J Biomol Struct Dyn 2020; 1—16.

793. Lehrer S, Rheinstein PH: Ivermectin docks to the SARS-CoV-2 spike receptor-binding domain attached to ACE2. In Vivo 34 (5):3023—3026.

794. Ward T, Glaser A, Johnsen A, et al. Growth, reproduction numbers and factors affecting the spread of SARS-CoV-2 novel variants of concern in the UK from October 2020 to July 2021: a modelling analysis. BMJ Open. 2021 Nov 24;11 (11):e056636. doi: 10.1136/bmjopen-2021-056636. PMID: 34819293; PMCID: PMC8613669.

795. Parums DV. Editorial: The XBB.1.5 («Kraken’) Subvariant of Omicron SARS-CoV-2 and its Rapid Global Spread. Med Sci Monit. 2023 Feb 1;29:e939580. doi: 10.12659/MSM.939580. PMID: 36722047.

796. Winchester NE, Shrestha NK, Kim P, et al. Protection Conferred by Delta and BA.1/BA.2 Infection against BA.4/BA.5 Infection and Hospitalization: A Retrospective Cohort Study. Infectious Diseases (except HIV/AIDS); 2022. doi:10.1101/2022.11.14.22282310.

797. Altarawneh HN, Chemaitelly H, Ayoub HH, et al. Protective Effect of Previous SARS-CoV-2 Infection against Omicron BA.4 and BA.5 Subvariants. N Engl J Med. Published online October 5, 2022:NEJMc2209306. doi:10.1056/NEJMc2209306.

798. Altarawneh HN, Chemaitelly H, Ayoub HH, et al. Protection of SARS-CoV-2 Natural Infection against Reinfection with the Omicron BA.4 or BA.5 Subvariants. Epidemiology; 2022. doi:10.1101/2022.07.11.22277448.

799. Bowen JE, Sprouse KR, Walls AC, et al. Omicron BA.1 and BA.2 Neutralizing Activity Elicited by a Comprehensive Panel of Human Vaccines. Immunology; 2022. doi:10.1101/2022.03.15.484542.

800. Iketani S, Liu L, Guo Y, et al. Antibody evasion properties of SARS-CoV-2 Omicron sublineages. Nature. 2022;604 (7906):553—556. doi:10.1038/s41586-022-04594-4.

801. Yu J, Collier A ris Y, Rowe M, et al. Comparable Neutralization of the SARS-CoV-2 Omicron BA.1 and BA.2 Variants. Infectious Diseases (except HIV/AIDS); 2022. doi:10.1101/2022.02.06.22270533.

802. Hachmann NP, Miller J, Collier A ris Y, et al. Neutralization Escape by the SARS-CoV-2 Omicron Variants BA.2.12.1 and BA.4/BA.5. Infectious Diseases (except HIV/AIDS); 2022. doi:10.1101/2022.05.16.22275151.

803. Cao Y, Yisimayi A, Jian F, et al. BA.2.12.1, BA.4 and BA.5 Escape Antibodies Elicited by Omicron Infection. Immunology; 2022. doi:10.1101/2022.04.30.489997.

804. Metzger CM, Lienhard R, Seth-Smith HM. PCR performance in the SARS-CoV-2 Omicron variant of concern? Swiss Med Wkly. 2021;151 (49—50). doi:10.4414/smw.2021.w30120.

805. Drain PK, Bemer M, Morton JF, et al. Accuracy of Rapid Antigen Testing across SARS-CoV-2 Variants. Infectious Diseases (except HIV/AIDS); 2022. doi:10.1101/2022.03.21.22272279.

806. Soni A, Herbert C, Filippaios A, et al. Comparison of Rapid Antigen Tests’ Performance between Delta (B.1.61.7; AY. X) and Omicron (B.1.1.529; BA1) Variants of SARS-CoV-2: Secondary Analysis from a Serial Home Self-Testing Study. Infectious Diseases (except HIV/AIDS); 2022. doi:10.1101/2022.02.27.22271090.

807. Bayart JL, Degosserie J, Favresse J, et al. Analytical Sensitivity of Six SARS-CoV-2 Rapid Antigen Tests for Omicron versus Delta Variant. Viruses. 2022;14 (4):654. doi:10.3390/v14040654.

808. Bekliz M, Perez-Rodriguez F, Puhach O, et al. Sensitivity of SARS-CoV-2 Antigen-Detecting Rapid Tests for Omicron Variant. Infectious Diseases (except HIV/AIDS); 2021. doi:10.1101/2021.12.18.21268018.

809. Takashita E, Kinoshita N, Yamayoshi S, et al. Efficacy of Antiviral Agents against the SARS-CoV-2 Omicron Subvariant BA.2. N Engl J Med. Published online March 9, 2022:NEJMc2201933. doi:10.1056/NEJMc2201933.

810. Planas D, Saunders N, Maes P, et al. Considerable Escape of SARS-CoV-2 Variant Omicron to Antibody Neutralization. Immunology; 2021. doi:10.1101/2021.12.14.472630.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации