Электронная библиотека » Андрей Кананин » » онлайн чтение - страница 2


  • Текст добавлен: 16 октября 2020, 09:16


Автор книги: Андрей Кананин


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 2 (всего у книги 12 страниц) [доступный отрывок для чтения: 3 страниц]

Шрифт:
- 100% +

Глава 6. Фундаментальные взаимодействия

В нашем мире есть некоторые параметры, которые никогда не меняются, ни в пространстве, ни во времени. Именно они определяют строение Вселенной и являются основой физики. Все механизмы сущего приводят в действие всего четыре силы: гравитационная, электромагнитная, слабая и сильная.

Природа этих сил различна, они отличаются друг от друга и обладают собственными свойствами. Гравитационное и электромагнитное взаимодействия проявляются в повседневной жизни. Сильное и слабое – исключительно на микроскопическом уровне.

Механизм взаимодействий заключается в обмене частицами (квантами), несущими минимальную энергию. Квантом тяготения является гравитон. Электромагнитные взаимодействия осуществляются фотонами, сильные – глюонами, слабые – мезонами. Каждая из этих частиц представляет собой своеобразный минимальный пучок соответствующего взаимодействия. Механизм достаточно прост – вещество испускает частицу, которая переносит фундаментальное взаимодействие и поглощается другим веществом.

По своей интенсивности все взаимодействия значительно отличаются друг от друга. Наиболее мощное – сильное, превышает электромагнитное в 100 раз. Слабое взаимодействие в тысячу раз меньше электромагнитного. Самая «малозаметная» сила – гравитация. Она слабее остальных взаимодействий более чем на три порядка.

В первые мгновения после Большого Взрыва четыре фундаментальных взаимодействия не отличались друг от друга и представляли собой одну величественную силу. Но затем они разделились, чтобы каждое выполняло свою особую функцию в существующем Мироздании.

В электромагнитном взаимодействии участвуют все частицы, имеющие электрический заряд. Эта сила является ключевой во всех химических реакциях. Именно электромагнитное взаимодействие в конечном итоге отвечает за строение атомов и молекул.

Слабое ядерное взаимодействие отвечает за радиоактивный распад нейтронов на протоны и электроны, запускает цепочку реакций, при которых водород превращается в гелий, поэтому оно является ключевым для свечения звёзд. Слабое взаимодействие начинает работать, когда частицы находятся совсем рядом друг с другом. Радиус его действия составляет расстояние меньше размера атомного ядра.

Роль слабого взаимодействия существенно возрастёт по мере старения Вселенной. Вещество в основном состоит из слабо взаимодействующих частиц. Но сегодня они неактивны и имеют тенденцию взаимодействовать друг с другом лишь по прошествии больших промежутков времени.

Сильное ядерное взаимодействие удерживает протоны и нейтроны в ядре атома. Без него распалась бы вся существующая реальность. Между положительно заряженными протонами действует сила электростатического отталкивания. Для удержания их рядом, необходима превосходящая сила притяжения. Эту функцию выполняет сильное ядерное взаимодействие. Оно сосредоточено на сверхмалых расстояниях.

Сильное взаимодействие связывает в единое целое отдельные части протона, которые никогда не разъединяются. Именно поэтому ядерные реакции в миллион раз мощнее химических.

Стоит также сказать, что вся энергия в звёздах образуется благодаря ядерному синтезу. А управляет этим процессом сильное взаимодействие.

Гравитационное взаимодействие наиболее знакомо нам. Именно гравитация отвечает за образование сложных структур во Вселенной. Она поддерживает существование галактик, звёзд и планет. Благодаря ей Земля удерживается на орбите вокруг Солнца, а люди твёрдо стоят на поверхности планеты.

Гравитационное взаимодействие самое слабое из четырёх фундаментальных. Зато его область действия безгранична. Поэтому на больших масштабах гравитация доминирует над всеми остальными силами. Гравитационное взаимодействие отвечает за всемирное тяготение. Два любых объекта, имеющих массу, притягиваются друг к другу. Поэтому гравитационное взаимодействие универсально. Все элементарные частицы и любые материальные объекты участвуют в нём.

Глава 7. Элементарные частицы

Сейчас, когда я пишу эту книгу, то не сижу на стуле, а, строго говоря, завис над ним. Твёрдость окружающих нас предметов – иллюзия. Всё вещество состоит из атомов, а те, в свою очередь, из положительно заряженного центрального ядра и отрицательно заряженных электронов. Поскольку все электроны имеют идентичный заряд, они всегда отталкиваются друг от друга. Соответственно, между моим телом и стулом остаётся микроскопический зазор в одну стомиллионную долю сантиметра. Это физически непреодолимый барьер.

Вам только кажется, что, здороваясь с кем-то, вы пожимаете руку друг другу. Реального контакта материальных тел никогда не происходит. Всегда остаётся микроскопический зазор между отталкивающимися электронами. Увы, вам никогда не суждено по-настоящему прикоснуться к любимому человеку.

Как правило, электрон представляют себе в виде миниатюрной вращающейся по атомной орбите сферы. Это совершенно не так. Электроны не имеют ширины. Они одновременно заполняют всё пространство своей орбиты, находясь «сразу везде». Для нас это очень необычно. Но электрон не подчиняется привычным для людей законам макромира. В мире элементарных частиц действуют свои правила.

Мы редко задумываемся на тем, что всё вокруг нас создано из элементарных частиц. Не только твердые стул, стол и эта книга, но и вы сами, и кажущийся пустым воздух.

Все материальные объекты сотканы из атомов, которые за счёт химических процессов объединяются в молекулы. Сам атом состоит из трёх типов элементарных частиц: отрицательно заряженных электронов, положительно заряженных протонов и не несущих заряда нейтронов. Протоны и нейтроны очень плотно расположены в ядре, а электроны обращаются вокруг него.

Количество протонов и электронов определяет индивидуальность атома. Самый простейший атом состоит из одного протона и одного электрона – это водород; второй по сложности – гелий; и так далее в соответствии с периодической таблицей химических элементов Дмитрия Менделеева99
  Менделеев Дмитрий – выдающийся русский химик, автор периодического закона химических элементов.


[Закрыть]
. Функционал нейтронов состоит в том, что они увеличивают массу атома. Вне атомного ядра нейтрон неустойчив и примерно через 900 секунд распадается на электрон, протон и нейтрино.

Радиус атома равен всего 0.00000000001 метра. Но он огромен по сравнению с собственным крошечным ядром, располагающимся в центре. Размер ядра составляет всего лишь 0.000000000000001 часть от размера атома. Для наглядности поясню, что ядро атома меньше всего атома примерно настолько же, насколько воздушный шар меньше шара под названием планета Земля. Этот факт необходимо осмыслить. Ведь он означает, что весь мир состоит практически из пустоты.

Несмотря на малый размер, в ядре сосредоточено 99.95% всей массы атома. Оставшуюся пять сотых процента составляют электроны. Хотя в вашем теле они встречаются так же часто, как протоны и нейтроны, их общая масса не превышает 10—15 грамм, если, конечно, у вас нет проблем с лишним весом.

Электроны – фундаментально неделимые частицы. Но не они играют заглавную роль в обеспечении стабильности Мироздания. Главная частица Вселенной – протон. До сих пор не установлено, распадается ли он, несмотря на многочисленные и весьма затратные эксперименты. В любом случае, время его жизни если не бесконечно, то во много-много раз превышает возраст Вселенной.

Если протон вечен, то никогда не погибнет наш мир. Если он распадается, пусть даже через сотни миллиардов лет, то рано или поздно исчезнут любые материальные объекты. Наступит абсолютная тепловая смерть Вселенной, и ничто в Природе не сможет воспрепятствовать разрушению существующей реальности. Даже самая развитая сверхцивилизация погибнет, если нет способа воспрепятствовать распаду составной части ядра атома.

У протонов и нейтронов имеются части. Это кварки. Известно шесть типов кварков, каждый из них может находиться в трёх состояниях. Каждый протон и каждый нейтрон состоят из трёх кварков, которые взаимодействуют между собой путём обмена безмассовыми и электрически нейтральными частицами – глюонами, выполняющими внутри вещества функцию своеобразного клея, удерживая кварки вместе. Кварки – это самая элементарная и фундаментальная составляющая в структуре материи. Их невозможно «разбить» на части.

Как я уже говорил, электроны и протоны обладают противоположными электрическими зарядами. Поскольку и тех и других частиц в атоме одинаковое количество, то атом в целом электрически нейтрален. А раз все вещи созданы из атомов, то электрически нейтральна вся Вселенная, потому что электронов и протонов в ней поровну.

Твёрдые тела состоят из практически пустых атомов. Но частицы не стационарны, а постоянно взаимодействуют между собой, создавая устойчивые связи. Благодаря этому люди не разваливаются на части. Вы состоите из атомов, и наша планета тоже состоит из атомов. Но вы не проваливайтесь сквозь Землю. Это происходит из-за постоянного электрического взаимодействия и взаимного отталкивания атомов.

Всё вещество создано из электронов, протонов и нейтронов. Остальные типы элементарных частиц не входят в структуру материи. Но они выполняют другие значимые функции.

Элементарные частицы разделяются по трём признакам: массе, стабильному или нестабильному времени жизни, а также спину – собственному моменту вращения. В микромире частицы постоянно сталкиваются друг с другом. Хотя электрон стабилен, но, если он сталкивается со своей античастицей – позитроном, то обе частицы взаимно уничтожаются. Этот процесс называется аннигиляцией. Такое столкновение – не бесцельная гибель. При аннигиляции постоянно рождаются новые частицы. Например, фотон – квант света – появляется при столкновении электрона и позитрона. Если бы все частицы при столкновениях взаимно аннигилировали, то космос был бы пуст. К счастью, взаимодействие частиц приводит не только к взаимоуничтожению старого, но и к зарождению нового.

Самая распространенная частица во Вселенной – нейтрино. У нейтрино очень малая масса, всего около одной десятимиллионной части от массы электрона. На каждую «рядовую» тяжёлую частицу приходится миллиард нейтрино. Это поистине частица-фантом, которая практически неуловима. Дело в том, что нейтрино очень редко взаимодействует с другими видами материи. Через каждый квадратный сантиметр вашего тела ежесекундно проникает 60 миллиардов этих частиц, испущенных Солнцем. Но вы этого совершенно не замечаете. Что не удивительно, ведь для того, чтобы «затормозить» нейтрино понадобится металлическая пластина толщиной в 80 триллионов километров. Расстояние от Солнца до ближайшей звезды меньше в два раза.

Не будет преувеличением сказать, что наш мир – нейтринный, а вовсе не материальный. Вы, возможно, удивлены, но это неоспоримый факт. Вселенная – море нейтрино, в которых очень-очень-очень редко встречаются атомы.

Главный плюс атомов в том, что они – удивительно устойчивые и долгоживущие элементы структуры Мироздания. Можно уверенно утверждать, что практически каждый атом вашего тела раньше был частью миллионов живых организмов и даже давно погасших звёзд. Учитывая, что человеческий организм состоит из невероятно огромного числа атомов, вы почти наверняка содержите в себе частичку любой исторической личности. И это не красивая фраза. Когда человек умирает, составлявшие его атомы не гибнут, а продолжают свое существование в капле дождя, лепестке цветка или в другом живом организме. После смерти атомы тела подвергаются очень интенсивному перераспределению в природном кругообороте. Поэтому почти все они когда-то в прошлом принадлежали другим людям. Я вряд ли ошибусь, если предположу, что в вашем организме есть не только частица средневекового крестьянина, но и Клеопатры, и Чингисхана.

Интересные математические вычисления показывают, что теоретически вся Вселенная может выглядеть для внешнего наблюдателя как микроскопический объект, подобный атому. Такая гипотетическая частица была названа фридмоном в память об Александре Фридмане1010
  Фридман Александр – российский математик, физик и геофизик, автор теории нестационарной Вселенной.


[Закрыть]
. Учёные рассчитали, что если средняя плотность вселенной превышает критическое значение, то она становится замкнутой. То есть, пребывает в необычном состоянии, когда вселенная безгранична, но её объём конечен.

Подобную структуру проще всего понять по аналогии с шаром. По его сферической плоской поверхности можно перемещаться куда угодно. У неё нет границы, как нет «края» горизонта у Земли. Вы можете вечно ходить по кругу и всегда вернётесь в начальную точку отправления. В этом смысле для двумерного существа шар представляется бесконечным. Данное рассуждение применимо и к трёхмерному пространству.

Причём, подобная воображаемая бесконечность – не самое удивительное свойство такого гипотетического мира. Внешний наблюдатель воспринимает замкнутую систему как объект очень малого размера и массы. Но, на самом деле, фридмон может быть настолько огромным, что будет содержать в себе целую вселенную. Такой объект обладает внешними микроскопическими параметрами, но внутренней макроскопической структурой. Конечно, это только гипотеза, однако, математически выверенная и соответствующая теории относительности Эйнштейна.

Еще более смелым является предположение о том, что все окружающие нас элементарные частицы являются не более чем различными видами фридмонов. Такая идея основана на достаточно мистическом, но вполне научном допущении. Если представить себе, что некто всемогущий стал бы осознанно создавать вселенные с критической плотностью, разнообразные по внутренней структуре, со своими особыми галактиками, законами и даже разумными цивилизациями, то спустя некоторое время, он с удивлением обнаружил бы, что все его творения выглядят со стороны как одинаковые микроскопические частицы – фридмоны.

Глава 8. Расстояния в космосе

Вселенная огромная. И чтобы её изучать, необходимо уметь измерять расстояния в космосе.

Точная скорость света составляет 299 792 458 метров в секунду или 1 079 252 849 километров в час. Обычно её округляют до 300 тыс. километров в секунду. В течение одного года свет преодолевает гигантское расстояние, равное 9 460 730 472 580 820 метров. Это примерно 10 триллионов километров.

Учитывая масштабы Вселенной, считать космические расстояния в километрах, а тем более в метрах, неудобно. Поэтому в астрофизике используется понятие «световой год», то есть расстояние, которое свет преодолевает в течение года.

Поясню сказанное на конкретных примерах.

1.Расстояние до Луны составляет около 385 тыс. километров, что равно 1.28 световой секунды. То есть, за это время (чуть больше секунды) свет преодолевает расстояние от Луны до Земли.

2.Ближайшая к нам планета – Венера. Расстояние до неё составляет около 40 млн. километров. Это равно 2.23 световой минуты.

3.Расстояние от Земли до Солнца составляет 149 597 870 691 метр. Это равно 8.3 световой минуты. То есть, если Солнце внезапно погаснет, мы узнаем об этом лишь через восемь минут.

4.Солнечная система в поперечнике насчитывает 17 млрд. 600 млн. километров. Это равно 16.4 светового часа. Следовательно, свету, испущенному с Земли, понадобится меньше земных суток, чтобы покинуть Солнечную систему. Однако, указанное расстояние равно всего лишь 0.00187 светового года.

5.Ближайшая к нам звезда – Проксима Центавра. До неё 4.22 световых года. То есть, свет «мчится» со своей огромной скоростью до нашей соседки больше четырёх лет. Этот пример наглядно демонстрирует масштабы космоса, который впечатляюще огромен. В нашей галактике Млечный Путь может быть от 200-х до 400-х миллиардов звёзд. И самая близкая к нам оказывается по человеческим меркам невообразимо далёкой. Расстояние до неё составляет 40 680 271 163 000 километра. Если бы вы попытались достичь Проксимы Центавра привычными нам способами, то пешком, без сна и отдыха, шли бы к ней 900 млн. лет, на машине ехали бы 45 млн. лет, а на самолёте летели бы 5 млн. лет.

6.Млечный Путь свет пересекает примерно за 100 тыс. лет. На самолёте вы пролетели бы эту дистанцию за 120 млрд. лет, что в 10 раз больше возраста жизни современной Вселенной.

7.Наша Галактика состоит в Местной группе, в которой насчитывается 50 галактик-спутников. Свет преодолевает это расстояние за 10 млн. лет. От ближайшего скопления галактик, скопления Девы, нас отделяет 59 млн. световых лет. Для таких космических просторов, бессмысленно рассчитывать километраж, присущий земному транспорту. Эта дистанция просто невообразимо огромна с человеческой точки зрения. Но, в масштабах космоса, Местная группа галактик – песчинка, не более того.

В специализированной литературе также встречается ещё одна единица измерения – парсек, сложносоставное слово, состоящее из двух – параллакс и секунда. Один парсек равен 3.26 светового года. Ближайшая к Солнцу звезда, Проксима Центавра, удалена от нас на расстояние 4.22 светового года или 1.295 парсек. Центр галактики Млечный Путь расположен на расстоянии в 26 тыс. световых лет от Солнца или примерно в 8 тыс. парсек. Ближайшая к нам соседняя галактика – Туманность Андромеды, удалена от нас на 2.5 млн. световых лет или на 772 000 парсек.

Многие люди, впервые осознав масштабы Космоса, чувствуют себя неуютно. Вселенная пугает, кажется враждебной, а человек на её фоне ничтожным. Конечно, это заблуждение. Ведь это наш родной дом, где мы появились на свет и по законам которого живём. И чем этот дом больше и разнообразнее, тем лучше. Наша Вселенная по-настоящему величественна и огромна. Тем интереснее её изучать.

Глава 9. Вселенная

Космос состоит из галактик, звёзд и планет. На первый взгляд, Вселенная кажется стационарной, не расширяющейся и не сжимающейся, бесконечной и вечной. Так считало большинство учёных вплоть до XX века.

Но в 1929 году Эдвин Хаббл1111
  Хаббл Эдвин Пауэлл – американский астроном и космолог, внёсший решающий вклад в современное понимание структуры космоса.


[Закрыть]
сделал потрясающее открытие. Он обнаружил, что Вселенная не стационарна. Она расширяется. Все галактики удаляются друг от друга. Это открытие перевернуло всё тогдашнее представление о Мироздании. Ведь в расширяющейся Вселенной не может быть ничего вечного. Казавшийся застывшим Космос вдруг неожиданно предстал очень изменчивым и динамичным.

Ещё за десять лет до открытия Хаббла Александр Фридман создал модели расширяющейся и сжимающейся вселенной. В них ответ на вопрос, каким именно путём пойдёт эволюция Космоса, зависит от средней плотности материи в мире. Если она низкая, то есть общего количества вещества недостаточно, чтобы воспрепятствовать силе растяжения пространства – Вселенная будет расширяться вечно. Если плотность материи высокая – расширение рано или поздно прекратится, всё обернётся вспять, сила гравитации начнёт стягивать вещество, расширение сменится сжатием и Вселенная «схлопнется» в микроскопически плотную точку, уже известную нам как сингулярность.

Какой вариант развития событий применим к наблюдаемому миру: вечное расширение или обратное сжатие материи к состоянию до Большого Взрыва?

Для ответа на этот вопрос необходимо рассчитать кривизну пространства Вселенной. Вселенная высокой плотности будет иметь положительную кривизну, а низкой – отрицательную. Тогда выяснится, какая судьба нас ждёт.

Впрочем, мы забыли о третьем сценарии. Существует крайне маловероятная, фактически нереальная возможность того, что кривизна пространства Вселенной является критической, то есть ни положительной и не отрицательной, а равной или практически равной нулю. В таком случае Космос будет расширяться вечно, но с постоянно уменьшающейся скоростью. В геометрическом смысле такая Вселенная должна выглядеть плоской.

Конечно, это самый маловероятный вариант. Ведь «ноль» – это единственное и выделенное число в бесконечном ряду положительных и отрицательных значений. Поэтому неудивительно, что астрофизики были поражены, когда неоднократно перепроверенные подсчёты показали – наша Вселенная практически плоская с нулевой кривизной пространства.

Не успели специалисты до конца осознать столь необычный факт, как выяснилось, что полученный результат автоматически приводит к ещё более странным последствиям. Из-за того, что пространственная геометрия нашего мира плоская, напрямую следует, что плотность Вселенной очень близка к определённому значению. Так вот, нулевая кривизна пространства означает, что плотность энергии в Космосе должна находится в интервале, очень близком к единице. Однако, согласно базовым уравнениям Эйнштейна, сегодня это значение должно быть приближено к нулю. Но мы наблюдаем совершенно иное. Как это понимать?

Поразительно, но единственное правдоподобное научное объяснение состоит в достаточно фантастическом допущении. Чтобы требуемые цифры сходились сейчас, в самом начале времён значение плотности Вселенной должно было быть «задано» с точностью до единицы с шестьюдесятью нолями после запятой. Именно так и никак иначе. В том то и суть, что изначально необходимо было именно такое, а никакое иное точное число. То есть, допустим, если бы его значение в момент Большого Взрыва было 1.0001, или 1.00000000000001, или 1.000000000000000000000000001, то сегодня плотность энергии Космоса резко отличалась от наблюдаемой.

Совершенно непонятно почему в ранней Вселенной было такое уникально точное значение плотности, с шестьюдесятью нулями после запятой, критично необходимое для того, чтобы сегодня оно приближалось к единице. Это выглядит противоестественным и подозрительно напоминает искусственную «подгонку» оптимальной цифры.

Почему из трёх допустимых вариантов кривизны пространства, в нашем случае сработал самый маловероятный?

Почему Большой Взрыв начался практически без отклонения от плоской геометрии пространства?

Большинство специалистов считают, что к началу XXI века ответ удалось найти. Плоскостность Вселенной достаточно корректно объясняется теорией инфляции. А если всё же гипотеза неверна? Некоторые свои сомнения на сей счёт я уже высказывал в 5 главе. Здесь надо чётко понимать, что всего один-единственный необъяснимый факт может напрочь разрушить самую правдоподобную теорию.

Впрочем, вернёмся к открытию Хаббла. С 20-х годов прошлого века учёные значительно продвинулись вперёд в своих исследованиях эволюции Вселенной. В настоящее время мы хорошо понимаем, каким образом возник наш мир. Для того, чтобы представить себе эволюцию Космоса, совершим путешествие в прошлое.

13 миллиардов 798 миллионов лет назад произошёл Большой Взрыв. Появились пространство и время как свойства нашей Вселенной. Заработали понимаемые нами законы физики. Изначально все четыре фундаментальных взаимодействия были объединены в единую «сверхсилу».

Прошло 0.0000000000000000000000000000000000000000001 секунды после Большого Взрыва. Разрушилась полная симметрия мира. Гравитация отделилась от остальных трёх фундаментальных взаимодействий.

Прошло 0.00000000000000000000000000000000001 секунды после Большого Взрыва. Началась эпоха инфляции. Пространство невообразимо быстро расширилось. Вселенная увеличила свой радиус на несколько порядков.

Прошло 0.00000000000000000000000000000001 секунды после Большого Взрыва. Произошёл повторный разогрев Космоса. Температура составляла 1 000 000 000 000 000 000 000 000 000°С. С этого момента Вселенная начала охлаждаться и расширяться стандартным способом. Великое объединение трёх фундаментальных взаимодействий разрушилось – сильное взаимодействие отделилось от двух других сил. Вселенная в основном была заполнена излучением.

Прошло 0.000000000001 секунды после Большого Взрыва. Температура Вселенной остаётся очень высокой. Образуются бозоны.

Прошло 0.000001 секунды после Большого Взрыва. Электромагнитное и слабое взаимодействие разделились. Существующие фундаментальные силы сформировались в их современном состоянии. Вселенная заполнена кварк-глюонной плазмой.

Прошла 1 секунда после Большого Взрыва. Вселенная достаточно охладилась для того, чтобы кварки стали группироваться в элементарные частицы. Плотность материи снизилась до уровня, чтобы нейтрино начали свободно перемещаться в пространстве. Начался процесс нуклеосинтеза, то есть формирование простейших ядер из протонов и нейтронов.

Прошло 3 минуты после Большого Взрыва. Вселенная остыла и уже не представляла собой сплошной огненный шар. Водород частично преобразовался в гелий, создав сегодняшнюю пропорцию этих веществ в космосе: 75% водорода и 25% гелия. Появился третий химический элемент – литий. Свет рассеивался свободными электронами, поэтому Вселенная оставалась непрозрачной. Но это условное представление. Гипотетический наблюдатель видел бы вокруг себя однородное излучение, как будто всё небо сплошь заполнено Солнцем. Но его цвет периодически менялся, приобретая причудливые оттенки от бардового до чёрного.

Прошло 20 минут после Большого Взрыва. Вещество начинает наполнять Вселенную. Помимо водорода и гелия образуются следы первичных тяжёлых металлов, вплоть до бора.

Прошло 70 тысяч лет после Большого Взрыва. Материя начинает доминировать над излучением. Вселенная существенно охладилась и перешла в газообразное состояние. Именно эту крайнюю для нас эпоху мы различаем в виде реликтового излучения.

Прошло 380 тысяч лет после Большого Взрыва. Температура упала до 3 000 градусов Кельвина. Интенсивно формируются атомы. Вселенная стала прозрачной.

Прошло 150 миллионов лет после Большого Взрыва. Во Вселенной доминирует реликтовое излучение, водород и гелий. Однако, сложных структур и источников света пока что нет. Космос выглядит тёмным.

Прошёл миллиард лет после Большого Взрыва. Вещество сгруппировалось в протогалактики. Появляются первые плотные и яркие объекты – квазары. Образуются звёзды, происходит постоянный синтез элементов тяжелее гелия – углерода, кислорода и азота. Температура Вселенной составляет 18 градусов Кельвина. Начали взрываться сверхновые, обогащая окружающее пространство элементами с атомным весом выше железа. С этого момента Вселенная приобретает современный вид. Она продолжает расширяться и охлаждаться.

Прошло 13.7 миллиарда лет после Большого Взрыва – наша эпоха. Вселенная включает в себя весь окружающий мир, со всем разнообразием форм материи и энергии. Та её часть, которую можно изучать, называется наблюдаемой Вселенной. В настоящий момент космическое пространство окончательно охладилось, и его температура составляет 2.7 градуса Кельвина, то есть всего на три градуса выше абсолютного нуля. Учёные убеждены, что во всей Вселенной работают одинаковые фундаментальные физические законы.

С момента Большого Взрыва в космосе сформировалась своя иерархия. Отдельные звёзды сгруппированы в галактики, галактики в скопления, а те – в сверхскопления галактик.

Наблюдаемая Вселенная содержит около 100 млрд. галактик. Общее число звёзд в космосе – 1 000 000 000 000 000 000 000. Число огромное, хотя, смотря с чем сравнивать. Примерно такое же количество молекул содержится в глотке воды.

В целом Вселенная очень пустая. В среднем в четырёх кубических метрах пространства содержится всего один атом водорода.

Соседние галактики разделяет около 3 млн. световых лет. На первый взгляд, кажется, что максимально удалённый от нас объект находится примерно на расстоянии в 14 млрд. световых лет. Эта дистанция, которую свет был способен преодолеть с момента Большого Взрыва. На самом деле, такие расчёты неверны.

Дело в том, что Вселенная расширяется. Следовательно, многие объекты располагаются значительно дальше обозначенного выше предела. С момента эпохи свободного испускания фотонов реликтового излучения Вселенная расширилась в 1 292 раза. Расстояние от Земли до «края» наблюдаемой Вселенной сегодня составляет 46.5 млрд. световых лет во всех направлениях. Соответственно, если представить наш мир в виде огромной сферы, то её современный диаметр составляет около 93 млрд. световых лет. Поэтому, иногда встречающееся даже в научной литературе, утверждение, что расстояние до самой далёкой галактики чуть больше 13 млрд. световых лет – ошибочно.

Самым значимым фактом, описывающим природу Мироздания, является именно тот, что Вселенная расширяется. Он означает, что пространство не является жёсткой, неподвижной сущностью. Оно эластично и как бы растягивает космические объекты друг от друга. Расширение Вселенной не является разлётом галактик в пустом пространстве. Это динамическое изменение самой структуры пространства. В рассматриваемом случае отсутствует движение «чего-то в чём-то».

Кстати, сей факт также подразумавает, что удалённые галактики могут двигаться от нас быстрее скорости света. Но сказанное не противоречит специальной теории относительности Эйнштейна. В нашем случае двигаются не галактики. Расширяется само пространство, подобно резине. И скорость этого расширения может быть сверхсветовой.

Свет от какой-либо очень далёкой галактики может вообще никогда не долететь до Земли. Это происходит, когда расширение пространства увеличивает расстояние, которое свету ещё предстоит пролететь до нас, быстрее, чем сама скорость света. Именно тогда, несмотря на то, что галактика реально существует во Вселенной, у нас нет никакой возможности когда-либо её увидеть.

Нам повезло, что на небольших, человеческих масштабах ядерные, электромагнитные и гравитационные силы легко побеждают глобальную силу пространственного расширения. Поэтому разбегаются только удалённые друг от друга галактики, а не отдельные звёзды, планеты и атомы в вашем теле.

Через 100 млрд. лет галактики разбегутся настолько далеко друг от друга, что астрономы будущего изрядно поломают себе голову над вопросом о том, почему космос столь компактен и пустынен. Ведь на их небе можно будет наблюдать всего одну огромную галактику в абсолютно тёмном пространстве.

Мы с вами живём в особую эпоху эволюции Вселенной, в период её наибольшего расцвета и красоты.

Может сложиться обманчивое впечатление, что поскольку все галактики однонаправленно разлетаются от нас, то мы находимся в «центре мира». Это не так. Если бы мы занимали особое положение в космосе, то физические условия в удалённых областях пространства отличались бы от окружающих нас. Но космос очень однороден и выглядит одинаково во всех направлениях. В нём каждая галактика может считаться «центром». Справедливости ради стоит сказать, что если бы мы действительно жили в некоем избранном космическом регионе, то никак не смогли бы распознать этот факт.


Страницы книги >> Предыдущая | 1 2 3 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации