Электронная библиотека » Андрей Кашкаров » » онлайн чтение - страница 1


  • Текст добавлен: 17 октября 2017, 14:40


Автор книги: Андрей Кашкаров


Жанр: Техническая литература, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 1 (всего у книги 8 страниц) [доступный отрывок для чтения: 2 страниц]

Шрифт:
- 100% +

Андрей Кашкаров
Микроэлектромеханические системы и элементы

© Кашкаров А. П., 2018

© Оформление, издание, ДМК Пресс, 2018

К читателю

Монтировать, обслуживать и эксплуатировать устройства, рассмотренные в этой книге и рекомендуемые к повторению, могут ответственные радиолюбители. Это лица, ознакомленные со всеми предупреждениями и замечаниями по безопасности, а также эксплуатационными и монтажными процедурами, изложенными в соответствующих инструкциях по охране труда и наставлениях (руководствах) по электробезопасности:

• лица, прошедшие обучение и получившие полномочия на монтаж, обслуживание и эксплуатацию электро– и радиооборудования и микромагнитоэлектронных систем с учетом требований правил техники безопасности;

• лица, прошедшие обучение и способные использовать все необходимые защитные средства;

• лица, прошедшие обучение и способные оказать пострадавшим от электрического тока первую (доврачебную) медицинскую помощь.

Надежная и безопасная работа рекомендуемых в книге устройств зависит от исправности радиокомпонентов, грамотной сборки, соблюдения правил выполнения монтажа (особенно в устройствах, где применяются полевые транзисторы с управляющим напряжением) и своевременного технического обслуживания (регламента) электронных устройств и систем.

Меры безопасности

Чтобы рекомендованные в книге устройства долго вам служили, необходимо соблюдать указания по технике безопасности.

Во избежание опасности возгорания и поражения электрическим током перед первым включением электрических устройств, питающихся от напряжения 220 В осветительной сети, а также после замены деталей необходимо при отключенном напряжении внимательно осмотреть монтажную плату с элементами, проверить правильность соединений (в соответствии с электрической схемой).

Подавать питание можно только после того, как вы удостоверитесь в правильности монтажа. Все устройства и узлы, рекомендованные читателям в этой книге, проверены автором на полное соответствие стандартам безопасности.

Автор не несет ответственности за повреждения устройств и травмы, полученные вследствие неправильной эксплуатации рекомендованных конструкций.

Авторские права

Информация, включенная в данную книгу, является собственностью автора и не может копироваться или тиражироваться любыми способами, любыми лицами и организациями без письменного разрешения автора и издателя, с которым заключен авторский договор.

Автор оставляет за собой право совершенствовать приведенные в книге радиоэлектронные устройства и узлы, внося в них изменения и дополнения, не ухудшающие их эксплуатационных характеристик, без предварительного уведомления читателей.

Автор (и издатель) не несут ответственности за любые убытки, как единовременные, так и последующие, вызванные наличием ошибок в монтаже, включая типографские, электронные, арифметические и другие ошибки.

Преимущество технологии МЭМС

Описание существующих и разрабатываемых типов гироскопических чувствительных элементов с использованием магнитоэлектронных и микроэлектромеханических систем заняло бы несколько увесистых томов и много часов драгоценного читательского внимания. Поэтому в этой книге в формате квинтэссенции приведены наиболее известные и современные датчики и системы, применяемые в различных областях техники, и не только электронной. Описаны физические основы функционирования преобразователей магнитного поля (ПМП). Рассматриваются особенности применения различных ПМП (элементов Холла, магниторезисторов и др.), приводятся схемы сопряжения приборов с внешними цепями и устройствами. Информация о принципах работы магниточувствительных (МЧМС) и магнитоуправляемых (МУМ) интегральных схем, а также об особенностях их применения с приведением функциональных схем, параметров и характеристик МЧМС и МУМ дана с опорой на проверенные источники.

1. Гироскопы и акселерометры

За несколько лет широкое распространение по всему миру получили датчики, основанные на микроэлектромеханических системах, называемых МЭМС. В этот ряд входят гироскопы и акселерометры. Популярность этих современных устройств в электронном исполнении обусловлена рядом факторов, основными из которых являются доступность и простота их использования, относительно низкая цена и малые габариты. МЭМС-датчики, как правило, оснащаются интегрированной электроникой обработки сигнала и не имеют движущихся частей, «результат показаний» таких датчиков нетрудно интерпретировать для различных устройств анализа данных и автоматики, устройств управления силовыми электрическими цепями. Высокая надежность и способность обеспечивать стабильные показания в жестких условиях окружающей среды (перепады температур, удары, влажность, вибрация, электромагнитные и высокочастотные помехи) – еще один качественный аргумент для использования электронных гироскопов и акселерометров на основе МЭМС-датчиков.

1.1. Описание и принцип действия гироскопа

Термин гироскоп происходит от «наблюдатель вращений» (от греч. gyros – круг, gyrou – кружусь, вращаюсь и scopeo – смотрю, наблюдаю), предложен в 1852 году французским ученым Леоном Фуко при изобретении прибора для демонстрации вращения Земли вокруг своей оси. Фуко поместил вращающийся маховик в некоторое устройство, называемое кардановым подвесом, поэтому долгое время слово гироскоп использовалось для обозначения быстро закрученного вращающегося симметричного твердого тела. По закону ньютоновой механики, скорость поворота оси гироскопа в пространстве обратно пропорциональна его собственной угловой скорости, и, следовательно, ось быстро закрученного гироскопа поворачивается столь медленно, что в отдельном интервале времени конструкцию используют в качестве указателя неизменного направления в пространстве. И хотя опыт с первым гироскопом оказался не вполне удачным, морские и военные применения гироскопов усовершенствовали первоначальную конструкцию Фуко весьма быстрыми темпами.

Примерно через полтора века гироскопами уже называли широкий класс приборов; сейчас термин гироскоп используется для названия устройств, содержащих материальный объект, совершающий быстрые периодические движения. В результате этих движений устройство становится чувствительным к вращению в инерциальном пространстве. При таком понимании слова гироскоп для него уже необязательно наличие симметричного массивного быстро вращающегося ротора, подвешенного без трения таким образом, чтобы его центр масс совпадал с центром подвеса.

Гироскопы разделяют на измерительные и силовые. Силовые служат для создания моментов сил, приложенных к основанию, на котором установлен гироприбор, а измерительные предназначены для определения параметров движения основания (измеряемыми параметрами могут быть углы поворота основания, проекции вектора угловой скорости и т. д.).

1.1.1. Самый простой гироскоп

Простейшим гироскопом, с необыкновенными свойствами которого мы знакомимся еще в детстве, является волчок. Парадоксальность поведения волчка заключается в его сопротивлении изменить направление оси вращения. При действии внешней силы ось волчка (гироскопа) двигается в направлении, перпендикулярном вектору силы. Поэтому вращающийся волчок не падает, а его ось описывает конус вокруг вертикали; это движение называется регулярной прецессией тяжелого твердого тела.

Медленное движение вектора собственного кинетического момента гироскопа под действием моментов внешних сил называется прецессией гироскопа и описывается векторным уравнением

w × H = M.

Здесь w – вектор угловой скорости прецессии, H – вектор собственного кинетического момента гироскопа, M – ортогональная к H составляющая вектора момента внешних сил, приложенных к гироскопу. Момент сил, приложенных со стороны ротора к подшипникам оси собственного вращения ротора, возникающий при изменении направления оси, называют гироскопическим моментом. Погрешность гироскопа измеряется скоростью ухода его оси от первоначального положения. Свободный гироскоп функционирует идеально лишь в том случае, если внешний момент M равен нулю.

1.1.2. Виды гироскопов и практическое применение

Высокоточный гироскоп может уверенно (с погрешностью 5 %) измерять скорость вращения Земли, однако если бы этот гироскоп оказался на Луне, то ему не удалось бы обнаружить вращение Луны, происходящее в 28 раз медленнее вращения Земли. Во времена Фуко не существовало средств для раскрутки ротора гироскопа до скоростей тысячи оборотов в минуту. Только в конце XIX века было предложено использовать для разгона и поддержания вращения ротора гироскопа электрический мотор, тем самым обеспечив возможность получения больших значений кинетического момента гироскопа H и его постоянства в течение неограниченного промежутка времени.

Впервые уравновешенный гироскоп нашел практическое применение в устройстве для стабилизации курса торпеды, изобретенном в 80-х годах XIX века инженером Обри. Гироскоп Обри устанавливался в кардановом подвесе так, чтобы его ось вращения была параллельна продольной оси торпеды. Ротор гироскопа приводился во вращение за несколько секунд до выстрела, когда ось торпеды была уже направлена на цель. При движении торпеды гироскоп продолжал сохранять исходное направление и при возникновении отклонений торпеды поворачивал ее рули таким образом, чтобы обеспечить неизменность курса. Аналогичные устройства в различных вариантах исполнения и под разными наименованиями позднее стали применять на самолетах для указания курса (гироскопы направления, гирополукомпасы) и для управления движением ракет. Наземные маркшейдерские гирокомпасы применяют при выяснении формы буровых скважин (инклинометры), в качестве компасов сухопутной артиллерии при стабилизации стволов танковых орудий и в орудийных прицелах зенитной артиллерии. При первом практическом применении прицелов типа («Сперри-14») во время Второй мировой войны зенитные пушки сбили 32 самолета противника в одном только бою. В стабилизацию вертикального положения велосипеда основной вклад вносят гироскопические моменты колес, гироскопический эффект у винтовых самолетов и вертолетов оказывает существенное влияние на их угловое движение.

Но не все технические приложения гироскопов оказались удачными. Нерациональными оказались изобретенные в начале XX века гироскопические успокоители качки кораблей из-за неблагоприятных силовых воздействий, которые они оказывали на корпус, и однорельсовые гироскопические железные дороги из-за сложности и дороговизны. Известно более ста различных явлений и физических принципов, которые позволяют решать гироскопические задачи. К примеру, кольцевой лазерный гироскоп (КЛГ), называемый также квантовым гироскопом, создан на основе лазера с кольцевым резонатором, в котором по замкнутому оптическому контуру одновременно распространяются встречные электромагнитные волны. Длины этих волн определяются условиями генерации, согласно которым на длине периметра резонатора должно уложиться целое число волн, поэтому на неподвижном основании частоты этих волн совпадают. При вращении резонатора лазерного гироскопа путь, проходимый лучами по контуру, становится разным, и частоты встречных волн становятся неодинаковыми. Волновые фронты лучей интерферируют друг с другом, создавая интерференционные полосы. Вращение резонатора лазерного гироскопа приводит к тому, что интерференционные полосы начинают перемещаться со скоростью, пропорциональной скорости вращения гироскопа. Интегрирование по времени выходного сигнала лазерного гироскопа, пропорционального угловой скорости, позволяет определить угол поворота объекта, на котором установлен гироскоп.

К достоинствам лазерных гироскопов следует отнести отсутствие вращающегося ротора, подшипников, подверженных действию сил трения. Или волоконно-оптические гироскопы, определившие достижения в области разработки и промышленного выпуска световодов с минимальным значением погонного затухания и интегральных оптических компонентов привели к началу работ над волоконно-оптическим гироскопом (ВОГ), представляющим собой волоконно-оптический интерферометр, в котором распространяются встречные электромагнитные волны. Наиболее распространенный вариант ВОГ – многовитковая катушка оптического волокна. Достигнутые в лабораторных образцах точности ВОГ приближаются к точности КЛГ. ВОГ из-за простоты конструкции является одним из наиболее дешевых среднеточных гироскопов.

Волновые твердотельные гироскопы (ВТГ) зарекомендовали себя в качестве датчиков средней точности. В основе функционирования волнового твердотельного гироскопа лежит физический принцип, заключающийся в инертных свойствах упругих волн в твердом теле. Упругая волна может распространяться в сплошной среде как жесткое тело, не изменяя своей конфигурации. Такая частицеподобная волна называется солитоном и рассматривается как модельное воплощение корпускулярно-волнового дуализма: с одной стороны, это волна, с другой – неизменность конфигурации приводит к аналогии с частицей.

Аналогия в некоторых явлениях простирается и дальше. Если возбудить стоячие волны упругих колебаний в осесимметричном резонаторе, то вращение основания, на котором установлен резонатор, вызывает поворот стоячей волны на меньший, но известный угол. Соответствующее движение волны как целого называется прецессией. Скорость прецессии стоячей волны пропорциональна проекции угловой скорости вращения основания на ось симметрии резонатора. Резонатор ВТГ представляет собой тонкую упругую оболочку вращения, сделанную из плавленого кварца, сапфира или другого материала, обладающего малым коэффициентом потерь при колебаниях. Форма оболочки – полусфера с отверстием в полюсе, поэтому ВТГ называется в литературе полусферическим резонаторным гироскопом. Один край резонатора (у полюса) жестко прикреплен к основанию (ножке). Другой край, называемый рабочим, свободен. На внешнюю и внутреннюю поверхности резонатора, около рабочего края, напыляются металлические электроды, которые образуют вместе с такими же электродами, нанесенными на окружающий резонатор кожуха, конденсаторы. Часть конденсаторов служит для силового воздействия на резонатор. Вместе с соответствующими электронными схемами они образуют систему возбуждения колебаний и поддержания их постоянной амплитуды. Вторая группа конденсаторов служит датчиками положения пучностей на резонаторе. Соответствующая (весьма сложная) обработка сигналов этих датчиков позволяет получать информацию о вращательном движении основания резонатора.

К достоинствам ВТГ относятся высокое отношение точность/ цена, способность переносить большие перегрузки, компактность и небольшой вес, низкая энергоемкость, малое время готовности, слабая зависимость от температуры окружающей среды.

Вибрационные гироскопы основаны на свойстве камертона, заключающегося в стремлении сохранить плоскость колебаний своих ножек. Первые разработчики вибрационных гироскопов предрекали близкую смерть классическим гироскопам с вращающимся ротором. Однако более глубокий анализ показал, что вибрационные гироскопы отказываются работать в условиях вибрации, которая практически всегда сопровождает места установки приборов на движущихся объектах. Непреодолимой оказалась и проблема нестабильности показаний из-за сложностей высокоточного измерения амплитуды колебаний ножек. Поэтому идея чистого камертонного гироскопа так и не была доведена до прецизионного прибора, однако она стимулировала целое направление поисков новых типов гироскопов, использующих либо пьезоэлектрический эффект, либо вибрацию жидкостей или газов в хитро изогнутых трубках и т. п.

Микромеханические гироскопы (ММГ) относятся к области низких точностей. Эта область длительное время не разрабатывалась, однако сегодня она имеет перспективы: одноосные гироскопы вибрационного типа, изготавливаемые на базе современных кремниевых технологий, представляют собой своеобразный электронный чип с кварцевой подложкой площадью в несколько квадратных миллиметров, на которую методом фотолитографии наносится плоский вибратор типа описанного выше камертона. Решающее значение имеет исключительно низкая стоимость микромеханических чувствительных элементов. Автомобили и бинокли, телескопы и видеокамеры, манипуляторы-мыши для ПК и «джойстики», в том числе как элементы управления электронно-механической коробки передач в автомобилях, мобильные робототехнические устройства и детские игрушки – вот лишь некоторые области применения МГГ. Конечно, ММГ можно использовать и при совершенствовании военной техники (прицелы, самонаводящиеся бомбы, тактическое оружие), но не эти приложения являются определяющими в экономическом плане.

Неконтактные гироскопы

В отличие от ММГ, неконтактные гироскопы находятся на другом полюсе среди гироскопических чувствительных элементов, так как с их помощью удалось достичь сверхвысоких точностей. Неконтактные гироскопы имеют резервы повышения точности; в обозримом будущем именно они останутся лидерами массового производства в своей сфере. Среди гироскопов с неконтактными подвесами можно выделить гироскопы с электростатическим и магнитным подвесами ротора.

В электростатическом гироскопе (ЭСГ) проводящий сферический ротор подвешен в условиях вакуума в регулируемом электрическом поле, создаваемом системой электродов. Если поверхность ротора близка к идеальной сфере, то силы электрического поля, действующие по нормали к проводящей поверхности ротора, не могут создать момента относительно его центра, и возникает возможность создания идеального гироскопа. Ротором электростатического гироскопа может служить бериллиевый шар диаметром 1 см, раскрученный до скорости порядка 180 000 оборотов в минуту.

Внимание, важно!

Для подвеса характерно практически полное отсутствие трения (при вакууме в подвесе 10-8 мм рт. ст. постоянная времени выбега ротора за счет остатков газа имеет величину порядка 100 лет). Ничтожно малые величины возмущающих моментов сил, действующих на левитирующий в вакууме ротор, обеспечивают неограниченно долгое и надежное сохранение направления оси вращения гироскопа в пространстве.

Гироскопы с магниторезонансным подвесом ротора (МСГ) являются в определенной степени аналогами гироскопов с электростатическим подвесом ротора, в которых электрическое поле заменено магнитным, а бериллиевый ротор – ферритовым.

Перспективы развития

Кроме перечисленных выше типов гироскопов, проводятся работы над ионными, ядерными и другими типами гироскопов. Отрадно заметить, что исследовательские разработки в этой области по состоянию на 2017 год осуществляют всего 5 стран в мире, и Россия в их числе. Созданы весьма точные гироскопические системы, повысился интерес к применению гироскопической техники в невоенной сфере. Прогресс в области высокоточной спутниковой навигации GPS сделал ненужными автономные средства навигации в тех случаях, когда сигнал со спутника может приниматься непрерывно. Система навигационных спутников третьего поколения позволяет определять координаты объектов на поверхности Земли с точностью до единиц сантиметров. При этом отпадает необходимость в использовании даже курсовых гироскопов, ибо сравнение показаний двух приемников спутниковых сигналов, установленных на расстоянии в несколько метров, к примеру, на крыльях самолета, позволяет получить информацию о повороте самолета вокруг вертикальной оси. С начала XXI века внимание инженеров-разработчиков в области гироскопии сосредоточено на поиске нетрадиционных областей применения устройств. Разведка полезных ископаемых, и предсказание землетрясений, и сверхточное измерение положений железнодорожных путей и нефтепроводов, медицинская техника и многое другое.

1.2. МЭМС-гироскопы

В этом разделе рассмотрены МЭМС-датчики для измерения ускорения (акселерометры) и угловой скорости (гироскопы). Данные устройства активно используются в системах управления летательными аппаратами, для обеспечения безопасности движения автомобилей, в сельскохозяйственной технике, изделиях специального назначения и др. Существует много различных решений по исполнению МЭМС-устройств. В их числе – одноосевой МЭМС-гироскоп с вибрирующим кольцом и трехосевой емкостной МЭМС-акселерометр.

1.2.1. Одноосевой МЭМС-датчик угловой скорости (гироскоп) с вибрирующим кремниевым кольцом

Кремниевый цифровой гироскоп разработан с учетом требований к низкой стоимости изделия и экономичному энергопотреблению для систем навигации и наведения нового поколения. Он имеет два режима вывода: аналоговый сигнал напряжения, линейно-пропорциональный угловой скорости, и цифровой по протоколу SPI. Режимы вывода – аналоговый или цифровой – выбираются пользователем при подключении датчика к системной плате. Отличительной особенностью гироскопа является применение технологии сбалансированного вибрирующего кольца в качестве датчика угловой скорости. Именно она обеспечивает надежную работу и точное измерение скорости вращения даже в условиях сильной вибрации. Возможны две основные конфигурации гироскопа, одна из них позволяет датчику измерять угловую скорость по оси, перпендикулярной к плоскости системной платы, другая дает возможность определять угловую скорость по оси, параллельной плоскости материнской платы. Сочетание в одном устройстве гироскопов обеих конфигураций дает возможность получить инерциальную систему, измеряющую угловую скорость по нескольким осям (любые сочетания тангажа, крена и рысканья летательного аппарата). Такие гироскопы выпускаются в герметичных керамических LCC-корпусах, которые можно устанавливать на системные платы.

Датчик состоит из пяти основных компонентов: кремниевый кольцевой МЭМС-сенсор (MEMS-ring), основание из кремния (Pedestal), интегральная микросхема гироскопа (ASIC), корпус (PackageBase), крышка (Lid). На рис. 1.1 представлен вид основных детелей кремниевого МЭМС-сенсора.


Рис. 1.1. Кремниевый кольцевой МЭМС-сенсор. Основные детали


Кремниевый кольцевой МЭМС-сенсор, микросхема и кремниевое основание размещены в герметичной части корпуса с вакуумом, частично заполненным азотом. Это дает серьезные преимущества перед сенсорами, которые поставляются в пластиковых корпусах, имеющих определенные ограничения чувствительности в зависимости от уровня влажности. Диаметр кремниевого МЭМС-кольца равен 3 мм, толщина – 65 мкм. Его изготавливают методом глубокого реактивного ионного травления объемных кремниевых структур на пластинах. Кольцо поддерживается в свободном пространстве восемью парами симметричных спиц, которые исходят из твердого концентратора диаметром 1 мм в центре кольца. Процесс объемного травления кремния и уникальная технология изготовления кольца позволяют получить хорошие геометрические свойства, необходимые для точного баланса и термической стабильности сенсорного кольца.

В отличие от других гироскопов, в этом нет расхождений, создающих проблемы с интерференцией и трением. Указанные особенности существенно определяют стабильность датчика при колебаниях температуры, вибрации или ударе. Еще одним преимуществом подобной конструкции является ее «врожденный» иммунитет к ошибкам, которые датчики могут выдавать под влиянием ускорения, или «g-чувствительности». Пленочные приводы и преобразователи прикреплены к верхней поверхности кремниевого кольца по периметру и для получения электроэнергии подключены к связующим контактам в центре концентратора через треки на спицах. Это активирует, или «заводит», периметр кольца в рабочий режим вибрации на уровне Cos2 и с частотой 22 кГц, определяя радиальное перемещение, которое может осуществляться по причине первичного движения привода либо за счет действия кориолисовой силы, когда гироскоп вращается относительно его оси чувствительности, – см. рис. 1.2.


Рис. 1.2. Иллюстрация функционала гироскопа


Существуют одна пара приводов первичного движения, одна пара первичных снимающих преобразователей и две пары вторичных снимающих преобразователей. Комбинация сенсорной технологии и восьми вторичных снимающих преобразователей улучшает в датчике соотношение «сигнал/шум», что позволяет получать малошумящие устройства с отличными свойствами по угловому случайному дрейфу гироскопа, которые являются ключевыми для применения в сферах инерциальной навигации (например, стабильность наведения камеры или антенны).

Описанную схему можно сравнить с камертонной структурой, содержащей бесконечное количество камертонов, интегрированных в единую балансирующую вибрирующую кольцевую конструкцию. Это обеспечивает наиболее высокую стабильность измерения угловой скорости по времени, температуре, вибрациям и ударам для МЭМС-гироскопов этого класса. Концентратор в центре кольца сенсора установлен на цилиндрическом кремниевом основании диаметром 1 мм, которое связано с кольцом и ASIC с помощью эпоксидной смолы. Микросхема гироскопа имеет габариты 3×3 мм и изготовлена по технологии 0,35 мкм КМОП. ASIC и МЭМС-сенсор (кольцо) разделены физически, но соединены электрической цепью через золотые проводки. В связи с этим в подобной схеме отсутствуют внутренние каналы, что позволяет уменьшить шумовую нагрузку и получить отличные электромагнитные свойства. Керамический корпус датчика изготовлен по технологии LCC и представляет из себя многослойную оксидно-алюминиевую конструкцию с внутренними контактными площадками для «разварки», соединенными через корпус с наружными контактными площадками посредством многослойных вольфрамовых соединений.

Аналогичные интегральные соединения есть в крышке гироскопа, что обеспечивает размещение чувствительного элемента датчика внутри щита Фарадея и хорошие электромагнитные показатели гироскопа. При этом внутренние и наружные контактные площадки покрыты гальваническим путем – наложением слоем никеля и золота. Корпус включает в себя уплотнительное кольцо, на верхней части которого шовной сваркой приварена металлическая крышка. Сварка произведена электродом сопротивления, что создает полную герметичность конструкции.

В отличие от большинства МЭМС-корпусов, доступных сегодня на рынке, при изготовлении корпуса данного устройства используется специально разработанная шовная сварка, при которой исключена возможность образования комочков (брызг) сварки внутри гироскопа. При использовании других технологий сварки сварочные брызги могут попадать на нижние конструкции и негативно влиять на надежность гироскопа за счет воздействия на вибрирующий МЭМС-элемент, особенно в тех местах, где конструкции имеют небольшие зазоры. В корпусе также есть встроенный датчик температуры для обеспечения внешней термокомпенсации.


Страницы книги >> 1 2 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации