Электронная библиотека » Аурика Луковкина » » онлайн чтение - страница 1


  • Текст добавлен: 27 мая 2015, 02:27


Автор книги: Аурика Луковкина


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 1 (всего у книги 5 страниц) [доступный отрывок для чтения: 1 страниц]

Шрифт:
- 100% +

Техническая механика. Шпаргалка

1. Аксиомы и понятие силы статики

Теоретическая механика – это наука о механическом движении твердых материальных тел и их взаимодействии. Механическое движение понимается как перемещение тел в пространстве и во времени по отношению к другим телам, в частности, к Земле.

Статика изучает условия равновесия тел под действием сил.

Кинематика рассматривает движение тел как перемещение в пространстве; характеристики тел и причины, вызывающие движение, не рассматриваются.

Динамика изучает движение тел под действием сил.

Сила – это мера механического взаимодействия материальных тел между собой. Взаимодействие характеризуется величиной и направлением, т. е. сила – это величина векторная, характеризующаяся точкой приложения, направлением (линией действия), величиной (модулем).

Силы, действующие на тело (или систему сил), делят на внешние и внутренние. Внешние силы бывают активные и реактивные. Активные силы вызывают перемещение тела, реактивные стремятся противодействовать перемещению тела под действием внешних сил.

Системой сил называют совокупность сил, действующих на тело.

Эквивалентная система сил – система сил, действующая так же, как заданная.

Уравновешенной (эквивалентной нулю) системой сил называется такая система, которая, будучи приложенной к телу, не изменяет его состояния.

Систему сил, действующих на тело, можно заменить одной равнодействующей, действующей так, как система сил.

Все теоремы и уравнения статики выводятся из нескольких исходных положений, называемых аксиомами.

Первая аксиома. Под действием уравновешивающей системы сил абсолютно твердое тело или материальная точка находятся в равновесии или движутся равномерно и прямолинейно (закон инерции).

Вторая аксиома. Две силы, равные по модулю и направленные по одной прямой в разные стороны, уравновешиваются.

Третья аксиома. Не нарушая механического состояния тела, можно добавить или убрать уравновешивающую систему сил (принцип отбрасывания системы сил, эквивалентной нулю).

Четвертая аксиома (правило параллелограмма сил). Равнодействующая двух сил, приложенных к одной точке, приложена к той же точке и является диагональю параллелограмма, построенного на этих силах как на сторонах.

Пятая аксиома. При взаимодействии тел всякому действию соответствует равное и противоположно направленное противодействие.

Следствие из второй и третьей аксиом. Силу, действующую на твердое тело, можно перемещать вдоль линии ее действия.

2. Связи и реакции связей

Все тела делятся на свободные и связанные.

Свободные тела – это тела, перемещение которых не ограничено.

Связанные тела – это тела, перемещение которых ограничено другими телами.

Тела, ограничивающие перемещение других тел, называют связями.

Силы, действующие от связей и препятствующие перемещению, называют реакциями связей. Реакция связи всегда направлена с той стороны, куда нельзя перемещаться.

Всякое связанное тело можно представить свободным, если связи заменить их реакциями (принцип освобождения от связей).

Связи делятся на несколько типов.

Связь – гладкая опора (без трения) – реакция опоры приложена в точке опоры и всегда направлена перпендикулярно опоре.

Гибкая связь (нить, веревка, трос, цепь) – груз подвешен на двух нитях. Реакция нити направлена вдоль нити от тела, при этом нить может быть только растянута.

Жесткий стержень – стержень может быть сжат или растянут. Реакция стержня направлена вдоль стержня. Стержень работает на растяжение или сжатие. Точное направление реакции определяют, мысленно убрав стержень и рассмотрев возможные перемещения тела без этой связи.

Возможным перемещением точки называется такое бесконечно малое мысленное перемещение, которое допускается в данный момент.

Шарнирная опора. Шарнир допускает поворот вокруг точки закрепления. Различают два вида шарниров.

Подвижный шарнир. Стержень, закрепленный на шарнире, может поворачиваться вокруг шарнира, а точка крепления может перемещаться вдоль направляющей (площадки). Реакция подвижного шарнира направлена перпендикулярно опорной поверхности, так как не допускается только перемещение поперек опорной поверхности.

Неподвижный шарнир. Точка крепления перемещаться не может.

Стержень может свободно поворачиваться вокруг оси шарнира. Реакция такой опоры проходит через ось шарнира, но неизвестна по направлению. Ее изображают в виде двух составляющих: горизонтальной и вертикальной (Rx, Ry).

Защемление, или «заделка». Любые перемещения точки крепления невозможны.

Под действием внешних сил в опоре возникают реактивная сила и реактивный момент Мz, препятствующий повороту.

Реактивная сила представляется в виде двух составляющих вдоль осей координат:

R = Rx + Ry.

3. Определение равнодействующей геометрическим способом

Система сил, линии действия которых пересекаются в одной точке, называется сходящейся.

Необходимо определить равнодействующую системы сходящихся сил (F1; F2; F3;…; Fn), где n – число сил, входящих в систему.

В соответствии со следствиями из аксиом статики, все силы системы можно переместить вдоль линии действия, и все силы окажутся приложенными к одной точке.

Используя свойство векторной суммы сил, можно получить равнодействующую любой сходящейся системы сил, складывая последовательно силы, входящие в систему. Образуется многоугольник сил.

При графическом способе определения равнодействующей векторы сил можно вычерчивать в любом порядке, результат (величина и направление равнодействующей) при этом не изменится.

Вектор равнодействующей направлен навстречу векторам сил-слагаемых. Такой способ получения равнодействующей называется геометрическим.

Многоугольник сил строится в следующем порядке.

1. Вычертить векторы сил заданной системы в некотором масштабе один за другим так, чтобы конец предыдущего вектора совпал с началом последующего.

2. Вектор равнодействующей замыкает полученную ломаную линию; он соединяет начало первого вектора с концом последнего и направлен ему навстречу.

3. При изменении порядка вычерчивания векторов в многоугольнике меняется вид фигуры. На результат порядок вычерчивания не влияет.

Условие равновесия плоской системы сходящихся сил. При равновесии системы сил равнодействующая должна быть равна нулю, следовательно, при геометрическом построении конец последнего вектора должен совпасть с началом первого.

Если плоская система сходящихся сил находится в равновесии, многоугольник сил этой системы должен быть замкнут.

Если в системе три силы, образуется треугольник сил.

Геометрическим способом пользуются, если в системе три силы. При решении задач на равновесие тело считается абсолютно твердым (отвердевшим).

Задачи решаются в следующем порядке.

1. Определить возможное направление реакций связей.

2. Вычертить многоугольник сил системы, начиная с известных сил, в некотором масштабе. (Многоугольник должен быть замкнут, все векторы-слагаемые направлены в одну сторону по обходу контура).

3. Измерить полученные векторы сил и определить их величину, учитывая выбранный масштаб.

4. Для уточнения определить величины векторов (сторон многоугольника) с помощью геометрических зависимостей.

4. Определение равнодействующей аналитическим способом

Проекция сил на ось определяется отрезком оси, отсекаемой перпендикулярами, опущенными на ось из начала и конца вектора.

Величина проекции силы на ось равна произведению модуля силы на косинус угла между вектором силы и положительным направлением сил. Проекция имеет знак: положительный при одинаковом направлении вектора силы и оси и отрицательный при направлении в сторону отрицательной полуоси.

Проекция силы на две взаимно перпендикулярные оси.

Fx = Fcosα > 0

Fy = Fcosβ = Fsinα > 0

Величина равнодействующей равна векторной (геометрической) сумме векторов системы сил. Определим равнодействующую аналитическим способом. Выберем систему координат, определим проекции всех заданных векторов на эти оси. Складываем проекции всех векторов на оси х и у.

FΣx= F1x + F2x + F3x + F4x;

FΣy= F1y + F2y + F3y + F4y.

Модуль (величину) равнодействующей можно определить по известным проекциям:



Направление вектора равнодействующей можно определить по величинам и знакам косинусов углов, образуемых равнодействующими с осями координат:



Плоская система сходящихся сил находится в равновесии, если алгебраическая сумма проекций всех сил системы на любую ось равна нулю.

Система уравнений равновесия плоской системы сходящихся сил:



При решении задач координатные оси выбирают так, чтобы решение было наиболее простым. При этом желательно, чтобы хотя бы одна неизвестная сила совпадала с осью координат.

5. Пара сил. Момент силы

Парой сил называется система двух сил, равных по модулю, параллельных и направленных в разные стороны.

Пара сил вызывает вращение тела, и ее действие на тело оценивается моментом. Силы, входящие в пару, не уравновешиваются, так как они приложены к двум точкам.

Действие этих сил на тело не может быть заменено одной равнодействующей силой.

Момент пары сил численно равен произведению модуля силы на расстояние между линиями действия сил плеча пары.

Момент считается положительным, если пара вращает тело по часовой стрелке.

M(f,f') = Fa; M > 0.

Плоскость, проходящая через линии действия сил пары, называется плоскостью действия пары.

Свойства пар сил.

1. Пару сил можно перемещать в плоскости ее действия.

2. Эквивалентность пар. Две пары, моменты которых равны, эквивалентны (действие их на тело аналогично).

3. Сложение пар сил. Систему пар сил можно заменить равнодействующей парой.

Момент равнодействующей пары равен алгебраической сумме моментов пар, составляющих систему:

MΣ = F1a1 + F2a2 + F3a3 + … + Fna1;



Равновесие пар. Для равновесия пар необходимо и достаточно, чтобы алгебраическая сумма моментов пар системы равнялась нулю:



Момент силы относительно точки. Сила, не проходящая через точку крепления тела, вызывает вращение тела относительно точки, поэтому действие такой силы на тело оценивается моментом.

Момент силы относительно точки численно равен произведению модуля силы на расстояние от точки до линии действия силы. Перпендикуляр, опущенный из точки на линию действия силы, называется плечом силы.

Момент обозначается:

MO = (F) или mO(F).

Момент считается положительным, если сила разворачивается по часовой стрелке.

6. Плоская система произвольно расположенных сил

Теорема Пуансо о параллельном переносе сил.

Силу можно перенести параллельно линии ее действия, при этом нужно добавить пару сил с моментом, равным произведению модуля силы на расстояние, на которое перенесена сила.

Приведение к точке плоской системы произвольно расположенных сил.

Все силы системы переносят в одну произвольно выбранную точку, называемую точкой приведения. При этом применяют теорему Пуансо. При любом переносе силы в точку, не лежащую на линии действия, добавляют пару сил.

Появившиеся при переносе пары называют присоединенными парами.

Образующуюся систему пар сил можно заменить одной эквивалентной парой – главным моментом системы.

Главный вектор равен геометрической сумме векторов произвольной плоской системы сил.



Главный момент системы сил равен алгебраической сумме моментов сил системы относительно точки приведения.

MГЛ 0 = m1 + m2 + m3 + … + mn;

Влияние точки приведения. Точка приведения выбрана произвольно. При изменении положения точки приведения величина главного вектора не изменится.

Величина главного момента при переносе точки приведения изменится, так как меняются расстояния векторов-сил до новой точки приведения.

На основании теоремы Вариньона о моменте равнодействующей можно определить точку на плоскости, относительно которой главный момент равен нулю. Тогда произвольная плоская система может быть заменена одной силой – равнодействующей системы сил.

Численно равнодействующая равна главному вектору системы сил, но приложена к другой точке, относительно которой главный момент равен нулю. Равнодействующая обозначается FΣ.

Численно ее значение определяется так же, как главный вектор системы сил.

Возможно несколько вариантов при приведении системы сил к точке.

1. FГЛ = 0

МГЛ 0 ≠ 0  тело вращается вокруг неподвижной оси.

2. МГЛ = 0

FГЛ 0 ≠ 0; FГЛ = FΣ  тело движется прямолинейно ускоренно.

3. MГЛ = 0

FГЛ 0 = тело находится в равновесии.

7. Балочные системы

Балка – это конструктивная деталь в виде прямого бруса, закрепленного на опорах, и изгибаемая приложенными к ней силами.

Высота сечения балки незначительна по сравнению с ее длиной.

Виды нагрузок. По способу приложения нагрузки делятся на сосредоточенные и распределенные. Если реально передача нагрузки происходит на пренебрежимо малой площадке (в точке), нагрузка называется сосредоточенной.

Если нагрузка распределена по значительной площадке или линии (давление воды на плотину, снега на крышу и т. д.), то она является распределенной.

Жесткая заделка (защемление). Опора не допускает перемещений и поворотов. Заделку заменяют двумя составляющими силы RАх и RАу и парой моментов МR.

Шарнирно-подвижная опора. Опора допускает поворот вокруг шарнира и перемещение вдоль опорной поверхности.

Шарнирно-неподвижная опора. Опора допускает поворот вокруг шарнира и может быть заменена двумя составляющими силы вдоль осей координат.

Неизвестны три силы, две из них – вертикальные, следовательно, для определения неизвестных следует использовать систему уравнений во второй форме:

(1)

(2)

(3)

Составляются уравнения моментов относительно точки крепления балки. Поскольку момент силы, проходящей через точку крепления, равен 0, в уравнении остается одна неизвестная сила.

Из уравнения (3) определяется реакция RВх.

Из уравнения (1) определяется реакция RВу.

Из уравнения (2) определяется реакция RАу.

Для контроля правильности решения используется дополнительное уравнение:



При равновесии твердого тела, где можно выбрать три точки, не лежащие на одной прямой, используется система уравнений в третьей форме.

8. Пространственная сходящаяся система сил

Момент силы относительно оси равен моменту проекции силы на плоскость, перпендикулярную оси, относительно точки пересечения оси с плоскостью.

M00(F) = npFa,

где а – расстояние от оси до проекции F;

прF – проекция силы на плоскость, перпендикулярную оси 00.

Момент считается положительным, если сила разворачивает тело по часовой стрелке (смотреть со стороны положительного направления оси).

Если линия действия силы пересекает ось или линия действия силы параллельна оси, моменты силы относительно этой оси равны нулю.

Силы и ось лежат в одной плоскости, они не могут повернуть тело вокруг оси.

Вектор в пространстве. В пространстве вектор силы проецируется на три взаимно перпендикулярные оси координат. Проекции вектора образуют ребра прямоугольного параллелепипеда, вектор силы совпадает с диагональю.

Модуль вектора определяется из формулы:



где Fx = Fcosαx;

Fy = Fcosαy;

Fz = Fcosαz;

αx, αy, αz – угол между вектором F и осями координат.

Пространственная сходящаяся система сил – это система сил, не лежащих в одной плоскости, линии действия которых пересекаются в одной точке.

Равнодействующую пространственной системы сил можно определить, построив пространственный многоугольник:

FΣ = F1 + F2 + F3 ++ Fn.

Равнодействующая системы сходящихся сил приложена в точке пересечения линий действия сил системы.

Модуль равнодействующей можно определить аналитически, используя метод проекций – совмещая начало координат с точкой пересечения линий действия сил системы, и, проецируя все силы на оси координат. Суммируем соответствующие проекции, получаем проекции равнодействующей на оси координат.

Модуль равнодействующей системы сходящихся сил:



Направление вектора равнодействующей определяется углами.

9. Центр тяжести

Сила тяжести – равнодействующая сил, она распределена по всему объему тела.

Для определения точки приложения силы тяжести (равнодействующей параллельных сил) применим теорему Вариньона о моменте равнодействующей:

«Момент равнодействующей относительно оси равен алгебраической сумме моментов сил системы относительно любой точки».

Тело состоит из нескольких частей, силы тяжести которых gk приложены в центрах тяжести (ЦТ) этих частей.

Равнодействующая (сила тяжести всего тела) приложена в неизвестном пока центре G.

хС, уС и zС – координаты центра тяжести G.

хk, уk и zk – координаты центров тяжести частей тела.

Из теоремы Вариньона следует:





В однородном теле сила тяжести пропорциональна объему V:

G = γV,

где g – вес единицы объема.

Для однородных тел:





где Vk – объем элемента тела;

V – объем всего тела.

Выражение



называется статическим моментом площади (Sy).

10. Основные понятия кинематики

Основные кинематические параметры.

Траектория – это линия, которую очерчивает материальная точка при движении в пространстве; траектория может быть прямой и кривой, плоской и пространственной линией.

Пройденный путь. Путь (S) измеряется вдоль траектории в направлении движения.

Уравнение движения точки. Уравнение, которое определяет положение движущейся точки в зависимости от времени, называется уравнением движения точки.

Положение точки в каждый момент времени можно определить по расстоянию, пройденному вдоль траектории от некоторой неподвижной точки, рассматриваемой как начало отсчета. Такой способ задания движения называется естественным.

Скорость движения. Это векторная величина, характеризующая в данный момент быстроту и направление движения по траектории. Если точка за равные промежутки времени проходит равные расстояния, то движение называется равномерным.

Ускорение точки. Векторная величина, характеризующая быстроту изменения скорости по величине и направлению, называется ускорением точки. Скорость точки при перемещении из одной точки в другую меняется по величине и направлению.

Нормальное ускорение характеризует изменение скорости по направлению и определяется как



где r – радиус кривизны ускорения траектории в данный момент.

Касательное ускорение характеризует изменение скорости по величине и всегда направлено по касательной к траектории; при ускорении его направление совпадает с направлением скорости; при замедлении оно направлено противоположно направлению вектора скорости.

11. Кинематика точки

Равномерное движение – это движение с постоянной скоростью:

v = const.

Полное ускорение движения точки при этом равно нулю:

а = 0.

Полное ускорение равно нормальному ускорению:

а = аn.

Уравнение движения точки при равномерном движении в общем виде является уравнением прямой:

S = S0 + vt,

где S0 – путь, пройденный до начала отсчета.

Равнопеременное движение – это движение с постоянным касательным ускорением:

at = const.

Полное ускорение равно касательному ускорению.

Закон равнопеременного движения в общем виде, представляющий собой уравнение параболы:



где v0 – начальная скорость движения;

S0 – путь, пройденный до начала отсчета;

at – касательное ускорение.

Неравномерное движение. При неравномерном движении численные значения скорости и ускорения меняются.

Кинематические графики представляют собой графики изменения пути, скорости и ускорений в зависимости от времени.

Сложное движение точки. Движение точки можно разделить на абсолютное, относительное и переносное.

Абсолютным движением называется движение точки по отношению к системе отсчета, принимаемой за неподвижную.

Движение точки по отношению к подвижной системе отсчета называется относительным движением.

Движение подвижной системы отсчета и всех неизменно связанных с ней точек по отношению к неподвижной системе отсчета называется переносным движением.

12. Простейшие движения твердого тела

Поступательным движением называют такое движение твердого тела, при котором всякая прямая линия на теле при движении остается параллельной своему начальному положению.

При вращательном движении все точки тела описывают окружность вокруг общей неподвижной оси.

Неподвижная ось, вокруг которой вращаются все точки тела, называется осью вращения.

Для описания вращательного движения вокруг неподвижной оси используются только угловые параметры.

Положение тела в любой момент определяется из уравнения:

φ = f(t).

Угловая скорость:



Для оценки быстроты вращения используется также угловая частота вращения n, которая оценивается в оборотах в минуту.



Это физически близкие величины.

Изменение угловой скорости во времени определяется угловым ускорением ε.



Уравнение равномерного вращения:

v = v0 + ωe,

где v0, v – угол поворота до начала отсчета.

Уравнение равнопеременного вращения:



где v0 – начальная угловая скорость.

Угловое ускорение при ускоренном движении – величина положительная; угловая скорость будет все время возрастать.

Угловое ускорение при замедленном движении – величина отрицательная, угловая скорость убывает.

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> 1
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации