Электронная библиотека » Джоэл Леви » » онлайн чтение - страница 2


  • Текст добавлен: 19 апреля 2022, 04:48


Автор книги: Джоэл Леви


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 2 (всего у книги 14 страниц) [доступный отрывок для чтения: 4 страниц]

Шрифт:
- 100% +
Изобретатель газировки

Одним из первых ученых, сумевших выделить и описать газ, известный сегодня под названием кислород, был Джозеф Пристли (1733–1804), радикал и нонконформист, отличавшийся особым талантом проведения блестящих экспериментов. Некоторые аспекты выдающейся карьеры Пристли послужили мрачным прообразом биографии вымышленного Франкенштейна.

Проповедник и учитель Джозеф Пристли занялся научными исследованиями после напутствия, полученного от Бенджамина Франклина (американского исследователя электричества и одного из отцов-основателей Соединенных Штатов – см. страницу 37). Как и Блэк, Пристли выполнял свои опыты в пивоварне. Например, в одной из пивоварен по соседству с домом он доказал, что газ, поднимающийся в пузырьках на поверхность бочек с ферментирующимся пивом, – это тот же «неподвижный газ» Джозефа Блэка (то есть диоксид углерода). Наличие готового газа навело его на мысль смоделировать естественное выделение пузырьков в некоторых видах минеральной воды, что он и осуществил, растворив диоксид углерода под давлением в воде, создав таким образом газированную воду и положив начало европейскому помешательству на содовой, или газировке.


Оборудование (включая пневматическую ванну), которое Пристли использовал для экспериментов с новыми эфирами или газами.


Восстановление воздуха растениями

От диоксида углерода Пристли перешел к серии плодотворных и увлекательных экспериментов с новым, до сих пор не имевшим названия эфиром. Вещество казалось очень тесно связанным с таким жизненными явлениями, как рост растений и дыхание животных. В августе 1771 года Пристли сделал одно из первых открытий, связанных с биохимией фотосинтеза. Поместив горящую свечу под стеклянный колпак (герметичный стеклянный сосуд) вместе с растением мяты, Пристли наблюдал, как пламя свечи начало трепетать и вскоре окончательно угасло. Подождав 27 дней, он использовал зажигательное стекло – приспособление из двух линз, способное концентрировать солнечные лучи для создания точки интенсивного нагрева, – чтобы повторно поджечь фитиль свечи, после чего тот успешно зажегся. Под стеклянный колпак больше не попадал кислород, поэтому Пристли смог сделать вывод, что зеленое растение каким-то образом восстановило или способность воздуха к горению, или какой-то его ингредиент. Было известно, что при горении и дыхании (физиологической активности животных) задействованы одинаковые химические процессы и выделяется один и тот же продукт («неподвижный воздух» Блэка, или диоксид углерода), и Пристли осознал, что открыл какой-то важный принцип жизни с глобальными по своей важности выводами. Он предположил, что «ущерб, который непрерывно наносится [способности воздуха поддерживать дыхание] таким большим количеством животных, полностью или частично восстанавливается его производством в растениях».

Мышь пристли

Спустя три года Пристли зашел еще дальше в своем самом знаменитом эксперименте, исследовав связь между дыханием жизни и этим поддерживающим горение воздухом (который позже будет назван кислородом), производимым растениями. С помощью своего зажигательного стекла Пристли нагрел оксид ртути и собрал выделившийся газ, обнаружив, что вещество не имеет цвета и запаха, но способствует очень яркому горению. Дальнейшие испытания показали, что газ «превосходил» обычный воздух, потому что Пристли описал следующее:


«Я взял мышь и поместил ее в стеклянный сосуд, содержащий две унции воздуха… Если бы это был обычный воздух, то взрослая мышь, каковой она и была, прожила бы в нем примерно четверть часа. Однако в этом воздухе моя мышь прожила целый час… и, кажется, эксперимент не причинил ей никакого вреда».


Это отрывок демонстрирует, что ученый применял передовые методы исследования будто бы для того, чтобы бросить вызов смерти – или по крайней мере отсрочить ее – и играл в Бога с живым организмом. На этом сходство между Пристли и Франкенштейном не заканчивается. Несчастного Пристли в итоге постигла та же судьба, что и Франкенштейна в бесчисленных экранизациях: он был изгнан из дома толпой, вооруженной факелами, и был вынужден спасаться бегством, пока она сжигала его лабораторию дотла.


Вооруженная факелами толпа разрушает дом химика Джозефа Пристли в Бирмингеме. Эта сцена послужила прообразом многих кинематографических версий истории о Викторе Франкенштейне.


Воздух в раю: химия отравляет романтиков

Следующим британцем, принявшим эстафету в дальнейшем развитии пневматической химии, стал Гемфри Дэви, самый известный ученый своей эпохи и личность, большими буквами вписанная в культурный и научный сюжет «Франкенштейна». Как указано в главе 7, Дэви следует считать одним из основных прототипов самого Франкенштейна, несмотря на очевидное несоответствие между жизнерадостным провинциальным джентльменом, каковым был реальный ученый, и угрюмой байронической фигурой литературного героя. Дэви происходил из мещанской семьи, проживавшей в Корнуолле, в самом отдаленном уголке на юго-западе Англии, но благодаря огромной энергии и амбициям он самостоятельно освоил химию, читая книги и учась у местного аптекаря. Среди его величайших достижений можно назвать исследования в области электрохимии (см. страницу 49) и изобретение безопасной шахтной лампы, но еще в самом начале своей карьеры, во время работы в Пневматическом институте в Бристоле, Дэви, можно сказать, заложил основы иммерсивной гонзо-науки, которая станет путеводной звездой Франкенштейна.


Поэта и ученого Гемфри Дэви часто называют одним из прототипов Виктора Франкенштейна, хотя на самом деле с него был написан профессор Вальдман.


Танцы и вопли

Пневматический институт по лечению болезней медицинскими газами в Бристоле, на западе Англии, представлял собой филантропическое учреждение, основанное эксцентричным врачом по имени Томас Беддоус в 1798 году. Он считал, что вдыхание некоторых газов резко повышает их лечебные свойства, но не совсем определился, какие именно из постоянно пополнявшегося списка газов обладали терапевтическими свойствами.

Для изучения этого вопроса он нанял Дэви в качестве главного врача, и в 1799 году новый сотрудник взялся за испытания различных газов, главным образом на себе. Его приключения в мире биоактивных газов, в частности психотропных, стали эталоном деятельности ученых эпохи романтизма, сочетавших экспериментальную науку с психонавтическими исследованиями. Это были смелые, зачастую безрассудные и опасные эксперименты, как в том случае, когда Дэви обнаружил, что «погрузился в аннигиляцию» после вдыхания угарного газа.

ДЭВИ И ЗАКОНЫ ЖИЗНИ

Некоторые ранние записи Дэви содержат материалистические принципы, послужившие основой для ведущей концепции «Франкенштейна» – о том, что неодушевленную материю можно наделить способностью мыслить и даже душой. В своем очерке 1798 года он настаивал на том, что «законы разума… не отличаются от законов движения частиц [то есть физики]», что на то время представляло собой радикальную материалистическую позицию, обещавшую, что «путем экспериментального исследования органической материи тела… мы сможем узнать законы нашего существования… Таким образом, химия, находясь в связи с законами жизни, станет самой величественной и важной из всех наук».

Дэви определил оксид азота как один из наиболее перспективных «медицинских газов» и экспериментировал с ним, постепенно увеличивая дозу и наблюдая за своей психологической и физиологической реакцией. Сегодня оксид азота часто называют веселящим газом, и Дэви пришлось испытать на себе его эйфорическое действие: «Иногда мое удовольствие выражалось только в притопывании ногами и смехе, а бывало, я танцевал, носясь по комнате, и вопил». В мае 1799 года Дэви столкнулся с новым явлением – анестезией, отметив, что при вдыхании более шести литров оксида азота возникало «[на мгновение] ощущение такое сильное и чистое, как будто впитываешь в себя саму жизнь. В этот самый миг, не ранее, я потерял сознание; однако оно быстро вернулось…». Позднее Дэви писал о возможности использования газа для медицинской анестезии, но никогда не занимался исследованиями в этом направлении, и оно осталось без внимания почти на полвека.


Сатирическое изображение эйфории, вызываемой веселящим газом: научные эксперименты георгианской эпохи стирали границы между просвещением и сомнительного свойства развлечениями.


Этот чудодейственный газ

Вместо исследования анестетических свойств газов Дэви еще глубже погрузился в изучение психотропных возможностей оксида азота, сконструировав некое подобие газовой камеры для вдыхания газов в больших дозах. Во время одного печально известного сеанса в декабре он «совершенно отравился», вдохнув 57 литров, и пережил сильнейший галлюциногенный бред, после которого он «с гордым видом прошагал из лаборатории», чтобы сообщить доктору Роберту Кинглейку «с глубочайшей убежденностью и пророческим видом»: «Не существует ничего, кроме мыслей! Вселенная состоит из впечатлений, идей, удовольствия и боли!»

Таким образом, газ обладал ценностью как развлекательной, так и несколько более значимой: он менял восприятие, открывая двери в новый мир творческого вдохновения и исследований психики. Дэви представил его в кругу своих друзей-поэтов, среди которых вещество произвело фурор. Поэт Роберт Саути пришел в восторг: «Я уверен, что воздух в раю наполнен этим чудодейственным, восхитительным газом». В своем письме к брату он с восторгом сообщал: «Дэви на самом деле открыл новый источник удовольствия, для которого нет названия в языке. Сегодня вечером попробую еще!»

ВОДОРОД И ШАРОМАНИЯ

Одним из наиболее знаменательных проявлений химии эпохи романтизма стала ее роль в шаромании – помешательстве на воздухоплавании, которое захлестнуло Европу в конце XVIII столетия. Получение водорода и открытие его необычайной подъемной силы вдохновило на мысли об устройствах, весивших меньше воздуха, мысли, которые имели очень зрелищное продолжение в 1783 году, когда доктор Жак Александр Шарль и его ассистент взмыли в небо над Парижем на наполненном водородом шаре, собрав 400 000 зрителей (половина населения французской столицы). Бенджамин Франклин, находившийся в Париже в качестве американского посла, очень точно описал это событие: «Кое-кто спросил у меня: “Какова польза от шара?” Я в ответ поинтересовался: “А какова польза от новорожденного ребенка?”». Воздухоплавание показало, что романтическая наука способна вдохновлять на расширение границ познания, объединяя исследование ранее неизученных областей с самыми передовыми технологиями. В похожем ключе работала и Мэри Шелли, ведь дух той эпохи вдохновил и ее. Примечательно, что однажды в качестве подарка на день рождения Мэри построила для Перси небольшой воздушный шар.

Спустя годы эти рассказы об опьянении газом, скорее всего, «опьянили» молодых Шелли, которые знали Дэви и по его работам, и лично. Так, он был другом отца Мэри, в 14 лет она посещала лекции Дэви в Королевском институте в Лондоне, а в своем романе она почти дословно использует один из его панегириков о перспективах новой химии и людях науки, которые их открывают, вложив его в уста профессора Вальдмана. Более того, из дневника Мэри за 1816 год стало известно, что даже в разгар написания «Франкенштейна» она читала «Начала химической философии» Дэви.


Несмотря на то, что первый успех в воздухоплавании принадлежит братьям Монгольфье, именно профессор Шарль осуществил самый гениальный и революционный полет, использовав аэростат, наполненный водородом.


Глава 2
Электрические флюиды и животные духи. Гальванизм, вольтовы столбы, электрохимия и начало новой эры

Самым мощным открытием науки конца XVIII века стал волшебный, почти сверхъестественный мир электричества. Это было время ошеломляющих экспериментов – таких как, например, попытки оживить тела казненных – и опытов в домашних условиях, будораживших воображение молодых мечтателей вроде Мэри и Перси Шелли, наводя их на волнующие размышления о возможностях этой новой природной силы.

Опасно! Высокое напряжение! Электрический огонь и электростатические генераторы

История электротехники – области знаний, которая, должно быть, более всех других волновала воображение Мэри Шелли, когда она задумывала своего монстра, – началась в античные времена, практически с того же, с чего молодая писательница начала свое знакомство с ней: с биоэлектричества (электричества в живых организмах).

Исчадие ада в рыбьем обличие

Среди самых ранних письменных упоминаний электричества любого рода следует отметить древнеегипетское иероглифическое изображение существа, называемого «сом», в котором описывается, как оно «выпускает войско». Это считается отсылкой к зубатке, или кошачьему сому, – рыбе, способной испускать электрический заряд напряжением более 450 вольт, после удара которым рыбак либо выпускал ее обратно в воду, либо и вовсе погибал от электрического тока, произведенного попавшей к нему в сети рыбой.

Само слово «электричество» происходит от древнегреческого слова, означающего «янтарь» (застывшая смола сосны), который, как известно, приобретает странные свойства, если его потереть куском ткани или кожи. Подготовленный таким образом янтарь может притягивать мелкие предметы и, если смотреть на него в темноте, производить вспышки света. Древние и средневековые писатели, в том числе Плиний Старший и Джамбаттиста делла Порта, описывали подобное явление, но системных исследований не проводилось до тех пор, пока английский физик и натурфилософ Уильям Гильберт (1544–1603) не опубликовал свою замечательную книгу De Magnete («О магнитах») в 1600 году. Гильберт позаимствовал у древних предшественников термин «электрика» для описания силы притяжения, возникающей при натирании некоторых предметов. После этого английский натурфилософ Томас Браун стал использовать термин «электричество».

Серный шар

Главным инструментом в экспериментах Гильберта была террелла – шарик из магнитной руды. Возможно, именно Гильберт вдохновил немецкого изобретателя Отто фон Герике, прославившегося открытием вакуума (см. страницу 16), на изобретение в 1660 году серного шара – первого электростатического генератора. Он представлял собой большой шар из серы, уложенный на деревянную подставку и вращавшийся вокруг центрального стержня. Если шар терли руками при вращении, он приобретал заряд статического электричества, который можно было использовать в экспериментах.

Чтобы изготовить сам серный шар, расплавленную серу выливали в полую стеклянную сферу, которую раздавливали после охлаждения серы. Однако в какой-то момент было обнаружено, что и сама стеклянная сфера практически столь же эффективно удерживает заряд.


Фон Герике и его устройство с серным шаром – один из первых электростатических генераторов.


Следующий шаг был сделан Эванджелистой Торричелли, который изобрел ртутный барометр: длинную трубку с одним открытым концом, наполненную ртутью, переворачивали в чаше с ртутью для создания вакуума в верхней части трубки. Если трубку трясли, а затем смотрели на нее в темноте, на вакуумном конце наблюдалось свечение.

В 1709 году это открытие вдохновило английского натурфилософа Фрэнсиса Хоксби на создание вращающегося стеклянного шара, из которого был откачан весь воздух. Если на шар нажимали при вращении, он начинал светиться настолько ярко, что при его свете можно было читать. Это, наверное, был первый случай в истории, когда человек мог читать при искусственном источнике света, не использующем горение, и устройство Хоксби – это своего рода прообраз современных плазменных шаров. Возможно, оно также было первым из череды удивительных и эффектных изобретений в области электричества, которые впоследствии будут ассоциироваться со сценами создания существ, напоминавшими действие романа о Франкенштейне.

Электрический поцелуй

Электростатические генераторы становились все доступнее, и вследствие этого электричество приобретало все большую известность как занятная диковинка. Популярным салонным развлечением, например, стал «электрический поцелуй» – демонстрация того, как электрический заряд может проходить от одного человека к другому при контакте. Появилась возможность генерировать все больший заряд, но вместе с тем возник вопрос: можно ли его сохранить?

В 1745 году немецкий клирик и ученый Эвальд Юрген фон Клейст решил, что естественным местом хранения электричества, которое воспринималось главным образом как жидкость, является бутылка. Он обнаружил, что если сосуд или бутылку наполнить водой или ртутью и установить на металлическую основу, в нем действительно можно хранить заряд, которого будет достаточно, чтобы сбить человека с ног! Почти идентичное устройство было изобретено в то же самое время нидерландским физиком Питером ван Мушенбруком в Лейденском университете и стало известно как лейденская банка. Демонстрируя возможности устройства, ван Мушенбрук нанес настолько сильный удар током студенту по имени Андреас Кюнеус, что несчастный заявил, что не будет снова участвовать в подобном эксперименте даже ради короны Франции. Лейденские банки действительно могут быть опасными; банка объемом всего лишь ½ литра (1/2 галлона) способна нанести смертельный удар.


«Электрический поцелуй», популярное и несколько рискованное применение электростатической технологии. Устройство приводилось в движение при помощи рукояти и испускало разряд, проходящий сквозь даму через губы.


Франклин и его змей

Все более крупные и мощные искры, производимые подобными устройствами, наводили на мысль о параллели с молнией. И вот в одном из известнейших в мире эксперименте, изрядно обросшем легендами, американский ученый-энциклопедист Бенджамин Франклин (1706–1790) попытался доказать, что эти искры и молния – одно и то же. Франклин уже высказывал предположение, что молнии являются разновидностью «электрического огня», и предложил улавливать их с помощью длинного металлического стержня, установленного на земле вдоль стены высокого здания до самого верха. В то время он жил в Филадельфии, где подобных зданий не было, поэтому он заявил в письме, что придумал более простой способ, описав эксперимент по запуску в грозовое облако воздушного змея, привязанного к металлическому пруту. Прут, заявлял Франклин, привлекал удар молнии и сохранял полученный заряд, который можно было сгрузить в лейденскую банку и даже ощутить на себе в виде пощипывания. Ввиду невероятной опасности эксперимента имеются большие сомнения относительно того, производил ли его Франклин на самом деле. Существует теория, что он выдумал его из мести британскому ученому, обвинявшемуся в краже его идей.

ФРАНКЛИН И ГОД БЕЗ ЛЕТА

Бенджамин Франклин установил громоотвод на своем доме и использовал его для научных наблюдений. Он даже снабдил его рядом колокольчиков, которые звенели, когда молнию удавалось успешно отвести. Другие здания в городе также были оборудованы громоотводами. В 1816-м – в год, когда не было лета, что поспособствовало появлению на свет «Франкенштейна», – жители Филадельфии разработали фантастическую теорию заговора, сильно напоминающую современную обеспокоенность экспериментами Программы исследования радиочастотных воздействий на ионосферу (НААRР) на Аляске. В поисках объяснений нехарактерных для лета погодных явлений – в том числе снегопадов в июле – они обвиняли громоотводы Франклина в воздействии на погоду и в том, что они каким-то образом поменяли времена года местами.

К тому времени, когда Франклин, предположительно, запустил змея в грозу, его первоначальное предложение об устройстве проволочного громоотвода, описанное в 1750 году в письме в Европу, побудило европейских ученых сделать новые попытки в этой области, увенчавшиеся успехом. 10 мая 1752 года французский естествоиспытатель Тома-Франсуа Далибар использовал металлический стержень для улавливания электричества из молнии, таким образом подтверждая заявление Франклина, что молния – это форма электричества.

УДАР В ГОЛОВУ

Опасный эксперимент Франклина по улавливанию молнии бутылкой прошел успешно как минимум единожды, но именно он повлек за собой первую зарегистрированную жертву опытов с высоким напряжением. В 1783 году Георг Вильгельм Рихман, российский физик из балтийских немцев, погиб в Санкт-Петербурге, пытаясь зарядить лейденские банки от удара молнии. Скорее всего, это был первый официально зарегистрированный случай, когда шаровая молния сошла по проволоке от громоотвода и поразила испытателя. Она попала Рихману в голову, сожгла его легкие и один башмак и снесла с петель дверь лаборатории.

Гравюра с изображением доктора Рихмана после смертельного удара шаровой молнии в результате его неудачной попытки воссоздать эксперимент Франклина с воздушным змеем.


Франклин много писал об электричестве и придумал несколько важных терминов, в их числе: батарея, проводник, заряд – как положительный, так и отрицательный, обозначение электрически заряженных состояний «+» и «−», а также конденсатор (название накопительных емкостей, таких как лейденская банка). Но наибольшую известность он приобрел своим «добыванием молнии с небес», как охарактеризовал его нашумевший эксперимент британский ученый Джозеф Пристли в своем знаменитом докладе 1767 года. Пристли был другом отца Мэри Шелли, Уильяма Годвина, и она наверняка читала о его известном эксперименте. В романе прямо не упоминается роль электричества в процессе создания монстра, если не считать сцены, известной по киноверсии, где удар молнии оживляет его, однако можно с уверенностью утверждать о роли образа воздушного змея Франклина в фантазиях Мэри.


Страницы книги >> Предыдущая | 1 2 3 4 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации