Электронная библиотека » Елена Николаева » » онлайн чтение - страница 19


  • Текст добавлен: 1 декабря 2015, 03:00


Автор книги: Елена Николаева


Жанр: Биология, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 19 (всего у книги 58 страниц) [доступный отрывок для чтения: 19 страниц]

Шрифт:
- 100% +
Вестибулярная система

Вестибулярная система поставляет в мозг информацию о положении тела в пространстве, а также наличии или отсутствии вращательного движения. Как и улитка, вестибулярный аппарат располагается в костном лабиринте в пирамиде височной кости. Он состоит из преддверия и полукружных каналов (рис. 6.14). Преддверие передает информацию об ориентации головы в пространстве, а полукружные каналы позволяют определять угловое ускорение при вращении головы (находящиеся в них рецепторы не реагируют на равномерное прямолинейное движение). В меньшей степени они могут сигнализировать об изменениях положения головы и равномерном ускорении. Функция вестибулярной системы заключается в поддержании головы в правильном положении, а также приспособлении движения глаз для удержания изображения на сетчатке при движении головы в момент перемещения тела. Раздражение вестибулярной системы не вызывает какого-либо определенного чувства. Однако низкочастотная стимуляция преддверия может вызвать тошноту (морскую болезнь), а возбуждение полукружных каналов привести к головокружению и ритмическим движениям глаз (нистагм).

Вестибулярный аппарат

Полукружные каналы расположены в трех почти взаимно перпендикулярных плоскостях, и каждый из них заканчивается ампулой (рис. 6.15). В костном лабиринте находится повторяющий его форму перепончатый лабиринт, который в области преддверия делится на два мешочка – succulus и utriculus (рис. 6.14). Пространство между костью и перепончатым лабиринтом заполнено жидкостью – перилимфой. Жидкость внутри перепончатого лабиринта называется эндолимфой. Сенсорные клетки, похожие по своему строению на волосковые клетки улитки, располагаются в ампулах, в структурах, называемых cristae ampularis (рис. 6.15). Их волоски приходят в движение при колебании жидкости в полукружных каналах.


Рис. 6.14. Костный лабиринт внутреннего уха (Carlson, 1992).


Рис. 6.15. Сечение через полукружный канал (Carlson, 1992).

Рис. 6.16. Рецепторы succulus и utriculus (Carlson, 1992).


В мешочках преддверия находится отолитовый аппарат. Он представляет собой скопление волосковых клеток – macula. Каждая волосковая клетка имеет один подвижный волосок и 60–80 склеенных. Волоски проникают в желеобразную мембрану, покрывающую macula (рис. 6.16). В петлях этой мембраны расположены кристаллы карбоната кальция – отолиты. Они оказывают давление на волоски рецепторных клеток, которое меняется в зависимости от положения головы человека.

Передача информации в центральную нервную систему

К рецепторным клеткам подходят нервные волокна – отростки биполярных клеток, тела которых располагаются в ganglion scarpae. Рецепторные клетки формируют синаптическую связь с дендритами биполярных клеток. Аксоны биполярных клеток образуют вторую, вестибулярную, ветвь слухового нерва. Они идут в мозжечок, спинной мозг, продолговатый мозг, мост, вегетативные ганглии. Вестибулярные проекции есть в височной коре, однако точные пути до сих пор не определены. Большинство исследователей полагает, что эти проекции ответственны за головокружение. Активация проекций на более низких уровнях мозга вызывает тошноту и рвоту при «морской болезни» во время движения. Проекции в ядра ствола мозга участвуют в управлении шейными мышцами и контролируют положение головы.

Существуют связи с ядрами черепномозговых нервов (третьим, четвертым, шестым), которые участвуют в управлении мышцами глаз. При движении человека голова покачивается и постоянно меняет свое положение. Мышцы приспосабливают положение глаз относительно изменения положения головы. Это явление называется вестибулоокулярным рефлексом, и именно он обеспечивает стабильность изображения на сетчатке. У людей с поврежденным вестибулярным аппаратом возникают проблемы зрительного восприятия в процессе ходьбы или бега (Carlson, 1992).

Электрическая импульсация в волокнах вестибулярного нерва отмечается и в покое. Но она значительно повышается при поворотах головы или каких-то частей тела, что свидетельствует о синтезе информации, поступающей из различных источников. Вестибулорецепторы могут адаптироваться, поскольку при длительном вращении человека импульсация от них постепенно снижается.

Вкусовое восприятие

Клетки, чувствительные к химизму среды, по-видимому, первыми появились в процессе эволюции, потому что неосвещенная водная среда, являющаяся колыбелью жизни, создавала условия, в которых такого рода детекция была необходима (Ходгсон, 1974). Однако этот тип восприятия наименее исследован. Уже отмечалось, что не существует четкой физической или химической шкалы, позволяющей классифицировать воздействия на рецепторы вкуса, как это выявлено в отношении света и звука.

Вкусовые стимулы

Ощущение вкуса продукта возникает после растворения его в слюне. Вкусовые ощущения изменяются от вещества к веществу, однако число вариаций меньше, чем диапазон самих веществ. Различают четыре вкуса: сладкий, соленый, горький, кислый. Ощущение естественного вкуса неотделимо от запаха. Приправы как раз и сочетают в себе и вкус, и запах. У людей, не воспринимающих запахи, например из-за насморка, ухудшается и ощущение вкуса.

Большинство позвоночных, как и человек, обладает способностью различать также четыре вкуса (кроме кошек, у которых нет рецепторов для восприятия сладкого). Большая часть исследователей полагает, что у животных рецепторы сладости сигнализируют о съедобности материала, поскольку наиболее сладкие продукты – овощи и фрукты – в основном безопасны для пищи. Рецепторы солености помогают животным определять хлористый натрий в пище и тем самым регулировать его концентрацию.

Значительное число животных избегает кислого и горького. Деятельность гнилостных бактерий приводит к возникновению у продуктов кислого вкуса, поэтому наличие рецепторов, распознающих кислое, увеличивает жизнеспособность животных. Горькость обеспечивается алкалоидами, вырабатываемыми рядом растений для защиты от поедания, поэтому большинство животных не ест горького, что позволяет им избежать многих ядов (Carlson, 1992).

Рецепторы вкуса

Вкусовые рецепторы находятся на многих органах ротовой полости в различной концентрации: на языке, нёбе, миндалине, задней стенке глотки, надгортаннике. В общей сложности их около 10000, и наибольшее количество встречается на кончике, краях и задней части языка. На середине языка и нижней его поверхности вкусовых рецепторов нет.

Рецепторы располагаются на сосочках языка. Каждый сосочек окружен порой, необходимой для сбора и накопления слюны, в которой растворяется вещество (рис. 6.17). Рецепторы называются вкусовыми почками. Они имеют форму луковиц, состоящих из веретеновидных клеток, отделенных друг от друга опорными клетками. Каждая веретеновидная клетка обращена к поверхности поры своими микроворсинками.


Рис. 6.17. Сосочки на поверхности языка (а) и вкусовые почки (б) (Carlson, 1992).


На языке около 2000 вкусовых почек. К каждой подходит 2–3 эфферентных волокна, оканчивающихся на вкусовых клетках. Передняя часть языка иннервируется волокнами язычного нерва (веткой тройничного нерва), задняя треть – языкоглоточного, небольшая часть надгортанника – вагусом. Раздражение электрическим током этих нервов вызывает ощущение вкуса. Для ощущения едкого, вяжущего и терпкого вкуса дополнительно требуется раздражение обонятельных, болевых, тепловых и тактильных рецепторов полости рта. Для всех нервов, несущих информацию от вкусовых рецепторов, характерна адаптация, т. е. прекращение импульсации при длительном воздействии одного и того же вещества (Бабский и др., 1972).

Вкусовые рецепторы различного типа распределены на поверхности языка неравномерно. Кончик языка наиболее чувствителен к сладкому и соленому, боковые стороны языка сильнее реагируют на кислое, а задняя его часть, мягкое небо и глотка лучше воспринимают горькое (рис. 6.18).


Рис. 6.18. Области языка, чувствительные к различным вкусовым ощущениям (Carlson, 1992).


До сих пор точно неизвестно, один или два вида рецепторов имеется у человека для сладкого. Предполагается, что существуют отдельные рецепторы, реагирующие на сахарин и нечувствительные к глюкозе, а также рецепторы, активирующиеся при действии глюкозы (Schiffman e. a., 1986). По-видимому, нет одного типа рецепторов для горького. У людей с наследственной недостаточностью в определении вкуса фенилтиокарбамида одновременно снижена чувствительность к кофеину, но они могут ощущать горький вкус некоторых других веществ (Hall e. a., 1975).

Проводящая система вкусовых ощущений

Информация от рецепторов, расположенных в передней части языка, идет в составе барабанной струны (chorda tympani) ветви седьмого черепномозгового (лицевого) нерва; от рецепторов задней части языка – в составе язычной ветви девятого черепномозгового (языкоглоточного) нерва; десятый черепномозговой нерв (вагус) несет информацию от рецепторов неба и глотки. Первое переключение вкусовой информации происходит в ядре одиночного тракта в продолговатом мозге. Далее информация поступает в парабранхиальные ядра моста (Pfaffman e. a., 1979), откуда нейроны проецируются в таламическую вкусовую область в составе медиальной петли. Нейроны таламуса направляют проекции в область коры головного мозга, локализованную несколько вентральнее от лицевой области соматосенсорной коры (рис. 6.19) (Kalat, 1992). Обонятельные волокна также подходят к латеральному гипоталамусу и лимбической системе. Считается, что гипоталамус опосредует взаимосвязь вкусовой системы с обонятельной.


Рис. 6.19. Основные пути импульсов, направляющихся от вкусовых рецепторов в мозг (Kalat, 1992).


Существуют два представления о механизме вкусового восприятия. Одно предполагает, что каждое волокно, идущее от рецептора, несет в кору определенный вкус. Другая концепция опирается на идею, что информация о вкусе связана со специфическим распределением активности многих нейронов коры. Большее подтверждение фактическим материалом пока имеет вторая теория. Показано, например, что подавляющая часть нервов в составе барабанной струны отвечает более чем за один вкус и реагирует даже на колебания температуры (Nowlis, Frank, 1977).

Исследование, в котором фиксировали особенности электрической активности коры головного мозга при попадании различных веществ на язык, не противоречит обеим теориям. Показано, что при помещении на язык горького вещества активировались нейроны на одном конце вкусовой коры, при поедании сахара – на другом, при приеме соли возбуждались различные нейроны, распределенные по всей области коры (Yamamoto e. a., 1981).

Обонятельное восприятие

Обоняние, являясь центральным чувством животных, у человека утратило это значение, поскольку высоко развитые зрение и слух дают ему достаточно достоверное представление о среде. Тем не менее, часто не осознавая этого, человек в своих поступках опирается на информацию, идущую от органов обоняния (см. гл. 17). Ориентируясь на запах, он способен отличать доброкачественную пищу от недоброкачественной. Запах позволяет узнавать и идентифицировать людей, ситуации, пробуждает воспоминания.

Люди могут различать более 1000 запахов, хотя в языке отсутствуют слова, позволяющие передать эти ощущения. Несоответствие возможностей человека идентифицировать пахучие вещества и способности языка их описать обнаруживается у разных народов. Это позволяет предположить, что в былые времена, когда лингвистические способности только начинали формироваться, ориентация на запахи у человека имела большее значение, чем сейчас.

Уже упоминалось, что не существует единой классификации пахучих веществ и единицы измерения силы запаха. Нет и удовлетворительной теории, объясняющей, каким образом мозг анализирует обонятельную информацию. Чувствительность обоняния крайне высока: нос распознает вещество в количестве одной десятимиллионной грамма.

Вещества, вызывающие запах

Обычно пахучие материалы принадлежат к классу органических веществ с молекулярным весом от 15 до 300. Однако огромное количество веществ, соответствующих этим критериям, не имеет запаха, и пока нет обоснованного объяснения этому феномену. Чтобы пахучие вещества воспринимались органами обоняния, они должны обладать рядом свойств: быть летучими, растворяться в жирах и в воде хотя бы в ничтожных количествах (иначе они не достигнут нервных окончаний, поверхность которых покрыта водной пленкой).

Парфюмерная промышленность достигла больших успехов в создании новых запахов. Добавление боковой ветви к прямой цепи углеводородов в структурную формулу вещества усиливает запах духов.

Структура обонятельной системы

Поток воздуха, вдыхаемый через нос, проходит в верхней части носовой полости между тремя косточками, имеющими форму раковин, согревается и фильтруется. При обнаружении запаха новая порция воздуха сильнее втягивается вверх к двум щелям, в которых находятся обонятельные рецепторы, расположенные в стороне от главного дыхательного пути (рис. 6.20). Эти образования представляют собой два участка желтоватой ткани – обонятельного эпителия, каждый занимает площадь около 2,5 см2. В этой ткани находятся два типа нервных волокон, окончания которых воспринимают и обнаруживают пахучие молекулы.

Обонятельные рецепторы – это биполярные нейроны, аксоны которых составляют обонятельный нерв. Они окружены опорными клетками, поддерживающими структуру рецепторов. На поверхности каждой обонятельной клетки имеется утолщение – булава, из которого выступают волоски. Они погружены в слизь, вырабатываемую боуменовыми железами. Благодаря волоскам резко повышается вероятность встречи с молекулами пахучего вещества, поскольку воспринимающая поверхность увеличивается в 100–150 раз. Молекулы пахучего вещества первоначально растворяются в слизи, а затем активируют волоски. Кроме таких клеток обонятельный эпителий имеет свободные окончания тройничного нерва. Возможно, они опосредуют болевые ощущения при вдыхании некоторых веществ, например аммиака.

На поверхности волосков находится белок, взаимодействующий с молекулой пахучего вещества, как ключ и замок. Потенциал клетки в спокойном состоянии составляет 45 мВ. Стимуляция запахом открывает ионные каналы, вызывающие деполяризацию мембраны и развитие ПД (Lancet, 1984).

Каждая обонятельная клетка может ответить изменением активности на многие пахучие вещества. Аксоны от рецепторов заканчиваются на обонятельных луковицах, лежащих в основании мозга. В луковицах аксонные окончания обонятельных нейронов образуют синапсы с нейронами, аксоны которых затем в составе обонятельного тракта идут дальше в мозг. Проекции обонятельного тракта существуют в первичной обонятельной коре (пириформная кора – часть лимбической системы). Волокна этого тракта идут в переднее обонятельное ядро, обонятельный бугорок, амигдалярный комплекс. Нейроны пириформной коры в свою очередь проецируются в гипоталамус, дорзомедиальный таламус, откуда после переключения аксоны направляются в орбитофронтальную кору (Cain, 1988). Орбитофронтальная кора, кроме этого, получает информацию от областей коры, связанных с ощущением вкуса. Гипоталамус также получает разнообразную информацию от других сенсорных систем.


Рис. 6.20. На этих рисунках представлена «анатомия обоняния». А. Воздух, несущий молекулы пахучего вещества, втягивается в полость носа и проходит мимо трех косточек причудливой формы к островкам эпителия, в который погружены окончания многочисленных обонятельных нервов. Б. Гистологический срез обонятельного эпителия показывает обонятельные нервные клетки и их отростки, окончания тройничного нерва и опорные клетки. В. Согласно стереохимической теории, разные обонятельные нервные клетки возбуждаются различными молекулами в зависимости от размера, формы или заряда молекулы; эти свойства определяют, к какой из разнообразных ямок или щелей на окончаниях обонятельного нерва будет подходить молекула; здесь видно, что молекула l-ментола соответствует углублению «мятного» рецепторного участка (Эймур и др., 1974).


Соматосенсорная и висцеральная системы

Соматосенсорная система обеспечивает мозг информацией о событиях, происходящих на поверхности тела и внутри него. Кожная чувствительность обусловливает несколько видов ощущений, возникающих в процессе прикосновения. Кинестетическое чувство обеспечивает мозг информацией о положении тела в пространстве и связано с рецепторами, расположенными в связках, сухожилиях, суставах, мышцах. Мышечная рецепция будет рассмотрена в главе 7.

Висцеральная рецепция связана с многочисленными рецепторами, находящимися во внутренних органах тела человека и поэтому называющимися висцерорецепторами. Среди них могут быть рецепторы давления, растяжения, боли, температурные рецепторы, хеморецепторы и т. д. Ощущения, возникающие от возбуждения этих рецепторов, преимущественно не осознаются, хотя они влияют на настроение и поведение человека. На них можно выработать условные рефлексы.

Строение кожи и ее рецепторов

Кожа – наружная оболочка, покрывающая организм человека, выполняет, с одной стороны, функцию защиты от внешних воздействий, с другой – воспринимает эти внешние воздействия, поставляя в мозг информацию о многих параметрах среды. Кожа реагирует на давление, вибрацию, изменения температуры, повреждение ткани (боль). Чувство давления возникает в результате механической деформации кожи. Ощущение вибрации сопровождает движение по неровной поверхности.

Общая поверхность кожи достигает двух квадратных метров. Кожа включает верхний слой, или эпидермис, собственно кожу и подкожную клетчатку. Рецепторы имеются в каждом из этих слоев, однако их набор различается на покрытых волосами (рис. 6.21) и безволосых участках кожи (рис. 6.22).


Рис. 6.21. Сечение через покрытый волосами участок кожи, демонстрирующее расположенные в ней рецепторы (Carlson, 1992).


На покрытых волосами участках кожи, которые составляют 90 % всей ее поверхности, находятся свободные нервные окончания и тельца Руффини. Свободные нервные окончания представляют собой немиелинизированные или слабо миелинизированные волокна. Они располагаются вдоль мелких сосудов или вокруг волосяных сумок, обеспечивая ощущение боли и чувствительность к изменению температуры. Тельца Руффини реагируют на низкочастотную вибрацию (рис. 6.21).



Рис. 6.22. Сечение через безволосый участок кожи, демонстрирующее расположенные в ней рецепторы (Carlson, 1992).


Участки кожи, на которых отсутствуют волосы, имеют более сложный набор из свободных нервных окончаний и аксонов, которые заканчиваются внутри специализированных рецепторов (Iggo, Andreas, 1982). Большое разнообразие рецепторного набора безволосой поверхности кожи может отражать специфичность этих участков, которые человек активно использует в познании мира (пальцы, ладони, подошвы). Остальная поверхность кожи участвует в восприятии более пассивно.

На безволосых участках кожи располагаются тельца Пачини (рис. 6.23). Они являются самыми большими сенсорными окончаниями на теле. Их размер (приблизительно 0,5 х 1,0 мм) позволяет видеть эти рецепторы невооруженным глазом. Тельца Пачини находятся на безволосой коже, поверхности гениталиев, грудных железах и в различных внутренних органах. Они чувствительны к прикосновению и представляют собой почти 70 лукоподобных слоев, расположенных вокруг одной миелинизированной аксонной терминали. На прикосновение отчасти реагируют также Мейснеровы тельца и диски Меркеля. Мейснеровы тельца располагаются в сосочках кожи – местах внедрения собственно кожи в эпидермис. Каждое из них иннервируется двумя – шестью аксонами. Диски Меркеля найдены у основания эпидермиса поблизости от протоков потовых желез. Особенно много их встречается на кончиках пальцев и губах (рис. 6. 22).


Рис. 6.23. Тельце Пачини представляет собой почти 70 лукоподобных слоев, расположенных вокруг одной миелинизированной аксонной терминали (Левенстайн, 1974).


Чувства сдавливания и вибрации вызываются движением кожи. Наиболее изученным рецептором прикосновения является тельце Пачини, которое реагирует на вибрацию. Описан процесс превращения энергии давления в энергию электрического возбуждения в аксоне этого рецептора. При отклонении тельца Пачини относительно аксона его мембрана деполяризуется (рис. 6.24). Если эта деполяризация достигает порогового потенциала, в первом перехвате Ранвье миелинизированного волокна возникает ПД (Левенстайн, 1974).


Рис. 6.24. А. Генераторный потенциал возникает на ограниченном участке рецепторной мембраны нервного окончания в ответ на механическое раздражение участка. Этот потенциал быстро исчезает на нераздражаемой поверхности мембраны, но если он достаточно силен, чтобы достичь первого перехвата на проводящем волокне, то он приводит к возникновению нервного импульса. Б. Два (1 и 2) или несколько генераторных потенциалов, вызванных раздражением отдельных участков мембраны, суммируются и создают сильный потенциал у первого перехвата (Левенстайн, 1974).


Движущийся кончик нервного окончания тельца Пачини, по-видимому, вызывает рецепторный потенциал открытием ионных каналов на мембране, стенки которых закреплены под мембраной белковыми филаментами (тонкими волокнами), имеющими длинные углеводородные цепи. При изменении размера нервного окончания растет натяжение углеводородной цепи, которая открывает канал (рис. 6.25). Большая капсула тельца Пачини служит для усиления давления, о наличии которого сигнализирует рецептор. Тельце Пачини может адаптироваться, т. е. при длительном воздействии умеренного сигнала перестает на него реагировать и не посылает информацию в мозг (именно поэтому люди не чувствуют одежду, которую носят на своем теле).


Рис. 6.25. Гипотетическое объяснение передачи соматосенсорной информации (Carlson, 1992).

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
  • 4.8 Оценок: 5

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации