Автор книги: Евгений Краснодембский
Жанр: Биология, Наука и Образование
сообщить о неприемлемом содержимом
Текущая страница: 9 (всего у книги 12 страниц)
§ 3. Эволюция биосферы
Особое место в трудах В. И. Вернадского занимает концепция эволюции биосферы. Основная идея заключается в том, что биосфера формировалась под воздействием живых организмов. Начиная же с момента возникновения жизни происходит постоянный процесс эволюции живых существ: возникают многочисленные новые виды, осуществляется смена видов на нашей планете. Естественно, изменения затрагивают и саму биосферу.
На начальных этапах развития существовали гетеротрофные анаэробные организмы, существующие в Мировом океане за счет органических веществ, возникших в результате сложных химических процессов. Затем (по мере уменьшения запасов органических веществ) появляются автотрофные организмы, способные сами создавать органические вещества, используя энергию солнечного света. В результате их жизнедеятельности (фотосинтеза) в атмосферу стал выделяться кислород. Это стало предпосылкой появления аэробных организмов. Усложнение живого, увеличение его разнообразия приводили к изменению биосферы. Следовательно, эволюция биосферы сопряжена с эволюцией форм жизни на нашей планете.
В. И. Вернадский выделял три этапа развития биосферы:
Первый этап – возникновение жизни и первичной биосферы. Ведущие факторы здесь – геохимические и климатические изменения на Земле.
Второй этап – усложнение структуры биосферы в результате появления многочисленных и разнообразных эукариотных организмов – как одноклеточных, так и многоклеточных. Движущим фактором выступает биологическая эволюция.
Третий этап – возникновение человека, человеческого общества и постепенное превращение биосферы в ноосферу.
§ 4. Взаимоотношения человека и биосферы. Учение В. И. Вернадского о ноосфере
Место человека в биосфере отличается существенной спецификой, обусловленной самой природой человека. Его существование, как и всех других гетеротрофных организмов, зависит от наличия органической пищи, воздуха, воды и т. д. В то же время он обладает особенностями, выделяющими его, – способностями к труду, творческой деятельности, социальным отношениям.
На ранних этапах существования человека его деятельность не нарушала равновесия в биосфере. Потребляемые ресурсы природы и продукты человеческой жизнедеятельности циркулировали в общем круговороте веществ, так же как и других видов живых существ. Со временем же, по мере увеличения численности людей и развития цивилизации, интенсивность использования нашим обществом природных ресурсов сталя резко возрастать. Человек становится мощным экологическим фактором, нарушающим равновесие в биосфере.
Воздействие его на окружающую природу достигло к настоящему времени планетарных масштабов. В результате деятельности человека происходят изменения климата, ландшафтов, атмосферы, видового и численного состава живых организмов. Повсеместное уничтожение лесов приводит к снижению выделения кислорода и утилизации углекислого газа, нарушению водного режима, эрозии почв, изменению климата. Сжигая органическое топливо (уголь, торф, древесину, нефтепродукты), люди снижают содержание кислорода в атмосфере. Так, например, при пробеге автомобилем 100 км пути расходуется годовая норма кислорода, необходимая для дыхания одного человека.
За последние десятилетия отмечаются повышение содержания углекислого газа в атмосфере, накопление промышленной пыли. Это ведет к возникновению парникового эффекта – нарушению рассеивания тепла с поверхности Земли в космос, что оборачивается постепенным потеплением климата на планете. По некоторым данным, за последние 30 лет средняя температура приземной атмосферы повысилась на 1 °C. Если тенденция загрязнения атмосферы сохранится, то через 50 лет температура увеличится еще на 2–3 °C, что чревато таянием «полярных шапок» и катастрофическим повышением вследствие этого уровня Мирового океана (примерно на 50–60 м). При этом огромные пространства суши окажутся затопленными.
В атмосферу ежегодно выбрасываются миллионы тонн загрязняющих биосферу веществ. Особую опасность представляет сернистый газ, который, соединяясь с парами воды, образует сернистую кислоту и служит причиной выпадения кислотнъх дождей.
Повсеместно на нашей планете отмечается ухудшение состояния водных систем в результате ирригационных и мелиоративных мероприятий. Истощаются подземные воды, происходит массовая гибель малых рек, сокращается водосток крупных, высыхают обширные водоемы (например, Арал).
Промышленные и бытовые стоки, загрязняющие гидросферу ядовитыми веществами, радиоактивными отходами и т. п., составляют 700 км3 в год (примерно 3 % всего планетарного объема воды). Тяжелый ущерб природным водным системам наносит «тепловое загрязнение» – сброс горячих промышленных вод.
Значительно наше воздействие и на литосферу. Распахивание земель для сельскохозяйственных нужд (а сегодня около 30 % суши занято угодьями) приводит к эрозии почв, их засаливанию, поднятию грунтовых вод. Наконец, человек непосредственно уничтожает отдельные виды растений и животных. Так, были истреблены тур, морская корова, эпиорнис, дронт и многие другие. Немало видов животных, которые находятся на грани исчезновения, – зубры, куланы, белые медведи, синие киты, многие виды промысловых рыб.
Рассматривая переход биосферы в ноосферу («сферу разума»), В. И. Вернадский предполагал плановое, научнообоснованное использование природных ресурсов, предусматривающее «разумное» сочетание потребностей человеческого общества и нормального функционирования биосферы. До настоящего времени человечество явно недостаточно уделяло внимания проблемам охраны биосферы и рационального природопользования. Однако в последней четверти XX в. проблемы окружающей среды, регулирование взаимоотношений с природой становятся делом каждого. Общество вплотную приблизилось к возможности глобальной экологической катастрофы. Угроза собственному существованию заставляет человечество безотлагательно решать эти проблемы.
Ныне существуют многочисленные правительственные и общественные организации, научные коллективы, производящие оценку состояния биосферы, разработку программ и научно-технических проектов по устранению ущерба, нанесенного природе, проведению природоохранных мероприятий. В промышленности, сельском хозяйстве, на транспорте, в коммунальной сфере разрабатываются и внедряются новые технологии, направленные на снижение негативного влияния человека на биосферу. В политике проблемы экологии также занимают одно из ведущих мест. Заключаются многочисленные межгосударственные договоры и соглашения по поводу совместных действий в области охраны природы и рационального ее использования. Все эти процессы подтверждают идею В. И. Вернадского о превращении биосферы в ноосферу и дают основание человечеству с оптимизмом смотреть в будущее.
Глава 13. Происхождение жизни и эволюция ее форм
§ 1. История развития представлений о происхождении жизни на Земле
Вопрос о возникновении и развитии жизни на нашей планете – один из важнейших в биологии. Два подхода к ответу на него были сформулированы еще в древности. Многие античные авторы связывали возникновение жизни с божественным, творческим актом. Такая точка зрения находится вне сферы науки и нами обсуждаться не будет. Философы-материалисты рассматривали происхождение жизни как естественный процесс в развитии материи. Остановимся на трех наиболее распространенных гипотезах, в той или иной степени актуальных и сегодня.
Гипотеза самопроизвольного зарождения жизни. Она предполагает, что живые существа появлялись и продолжают возникать многократно (постоянно) из неживой материи. Таких взглядов придерживался, например, Аристотель (IV в. до н. э.). Согласно его представлениям, живые организмы могут образовываться не только в результате размножения, но и из неживого вещества (тины, слизи) под действием тепла и влаги. Гипотеза оказалась весьма живучей и просуществовала до конца XIX в. Ученые разных эпох дополняли ее новыми «наблюдениями», «фактами». Так, в трактатах XVI–XVII вв. фигурировали «рецепты» создания «мясных червей» в куске разлагающегося мяса или мышей в горшке, предварительно наполненном тряпьем и преющим зерном. Через две-три недели в нем «экспериментатор» мог обнаружить целый выводок мышей.
С критикой этих представлений выступил в 1688 г. итальянский врач Франческо Реди.
Им был проделан наглядный и убедительный опыт, подрывающий авторитет данной гипотезы (рис. 66). Ф. Реди взял несколько сосудов, поместил туда по мертвой змее, а затем половину сосудов закрыл кисеей (тканью, редкой, как марля), оставив другие открытыми. Наблюдая, он видел, что в открытые сосуды залетали мухи и долго ползали по трупу змеи. После этого Ц. Реди обнаружил отложенные мухами яички, а затем заметил появление из яиц личинок («мясных червей»), которые на его глазах превращались во взрослых насекомых. На основании подобных и иных своих исследований Ц. Реди сформулировал закон, суть которого выразил в лаконичной форме: «все живое от живого», т. е. новые организмы появляются в процессе размножения родительских.
Рис. 66. Опыт Франческо Реди(1668 г.). Некоторые из банок, в которых лежали мертвые змеи, были накрыты кисеей, тогда как другие оставались открытыми. Личинки мух появились только в открытых банках; в закрытых их не было. Реди объяснил этотем, что мухи проникали в открытые банки и откладывали здесь яйца, из которых вылуплялись личинки (цикл развития мухи см. в нижней части рисунка). В закрытые банки мухи проникнуть не могли, и потому ни личинок, ни мух в этих банках не оказалось[1]
После появления его работ популярность гипотезы существенно снизилась, но ненадолго. Уже при его жизни благодаря изобретению микроскопа перед исследователями открылся новый мир живых существ – микроорганизмов. Кажущаяся простота, слабая изученность этих существ послужили поводом для «воскрешения» идеи самозарождения. Многие исследователи того времени сообщали научному миру о том, что «наблюдали» возникновение живых микроорганизмов (в отварах трав, бульонах) «из ничего».
Более века тянулась дискуссия по этому поводу, начиная с остроумных экспериментов Лаццаро Спалланцани (1765 г.), отвергавшего идею самозарождения. Производя длительное кипячение колб с питательным отваром и запаивая их, он в течение нескольких недель выдерживал колбы в таком виде и не наблюдал появления в них каких-либо признаков жизни. Однако при обламывании горлышек у запаянных колб в них через 2–3 дня в огромном числе обнаруживались микроорганизмы. Л. Спалланцани справедливо заключил, что они развиваются из спор, в изобилии имеющихся в воздухе и падающих в колбы. Его противники возражали, утверждая, что при запаивании сосудов прекращается доступ воздуха, поэтому организмы не могут «зародиться».
Окончательно гипотеза самозарождения была опровергнута лишь в 1862 г. Луи Пастером.
Он нашел простой и остроумный прием для того, чтобы разбить аргументы своих противников (рис. 67). Им была сконструирована особая колба – с тонким и длинным горлышком в виде сильно изогнутой трубки. В нее воздух мог беспрепятственно поступать, но в прокипяченном бульоне никаких микроорганизмов не развивалось, поскольку попадающие из воздуха споры задерживались в изгибе горлышка. Если же оно обламывалось, то скоро в бульоне кишели многочисленные микробы. Л. Пастер вслед за Л. Спалланцани утверждал, что развитие бактерий происходит вследствие попадания в раствор спор этих организмов. Убедительность его опытов и авторитет как основоположника микробиологии полностью «закрыли» гипотезу самозарождения. Однако ответа на вопрос, существует ли жизнь вечно или когда-то произошло ее возникновение, получено не было.
Рис. 67. Колбы с изогнутым горлышком, применявшиеся в опытах ЛуиПастера. Воздух свободно входил через открытый кончик трубки, но он не мог достаточно быстро пройти по изогнутой ее части, увлекая за собой относительно тяжелые бактерии. Бактерии или другие находившиеся в воздухе клетки оседалив этой нижней изогнутой части горлышка, тогда как воздух проходил дальше и поступал в саму колбу. Проникнуть в колбу и вызвать разложение бульона бактерии могли лишь в том случае, еслигорлышко колбы отламывали[1]
Сам Л. Пастер прекрасно осознавал неразрывную связь неживой и живой природы. По его представлениям, жизнь возникла на нашей планете из неживой природы. Но это было однократным событием, обусловленным уникальным сочетанием условий, определивших ее зарождение. Появление же каких-либо существ на Земле постоянно, при наличии уже живущих организмов, невозможно. Во-первых, потому, что они тут же поедались бы многочисленными существами, не успев размножиться. А во-вторых, образование живого из неживого могло произойти только при очень специфических условиях на нашей планете.
Вторая гипотеза – панспермии – была высказана шведским физиком-химиком С. Аррениусом в 1908 г. (сходных взглядов придерживался и В. И. Вернадский). Ее сущность заключается в том, что жизнь существует во Вселенной вечно. На Землю «семена» живого были занесены из космоса с метеоритами и космической пылью.
Эта гипотеза опирается на данные, свидетельствующие о высокой устойчивости некоторых земных бактерий к высоким и низким температурам, безвоздушной среде, радиации и т. д. Однако до сих пор нет достоверных фактов обнаружения таких «семян» жизни в материале метеоритов, упавших на поверхность Земли.
§ 2. Современная гипотеза (Опарина-Холдейна) о происхождении жизни на Земле
Наиболее полно разработанной, аргументированной и имеющей широкое признание следует признать гипотезу происхождения жизни путем биохимической эволюции, или «гипотеза Опарина-Холдейна».
А. И. Опарин, русский биохимик, академик, еще в 1924 г. опубликовал свою первую книгу по данной проблеме. Дж. Холдейн, английский генетик и биохимик, с 1929 г. развивал идеи, созвучные представлениям А. И. Опарина.
Она постулирует, что жизнь возникла на Земле именно из неживой материи, в условиях, имевших место на планете миллиарды лет назад. Эти условия включали наличие источников энергии, определенного температурного режима, воды и других неорганических веществ – предшественников органических соединений. Атмосфера тогда была бескислородной (источником кислорода в настоящее время являются растения, а тогда их не было).
В рамках данной теории можно выделить пять основных этапов на пути к возникновению жизни, которые приведены в табл. 9.
Таблица 9
Этапы развития жизни на Земле по гипотезе Опарина-Холдейна
Идеи о формировании и составе первичной атмосферы Земли базируются на объективных данных разных наук, на изучении газовых оболочек других планет Солнечной системы. Весьма убедительные доказательства возможности осуществления 2–го и 3–го этапов развития жизни получены в результате многочисленных экспериментов по искусственному синтезу биологических мономеров. Так, впервые в 1953 г. С. Миллер (США) создал достаточно простую установку, на которой ему удалось из смеси газов и паров воды под действием ультрафиолетового облучения и электрических разрядов синтезировать ряд аминокислот и других органических соединений (рис. 68).
Рис. 68. Установка Стэнли Миллера, в которой он синтезировал аминокислоты из газов, создав условия, предположительно существовавшие в атмосфере первобытной Земли. Газы и водяные пары, циркулировавшие в установке под высоким давлением, подвергали в течение недели воздействию высокого напряжения. После этого вещества, собранные в «ловушке», исследовали методом хроматографии на бумаге. В общей сложности было выделено 15 аминокислот, в том числе глицин, аланин и аспарагиновая кислота [1]
В опыте С. Миллера в его установке были воспроизведены условия, существовавшие на Земле в предполагаемое время. В приборе присутствовала смесь газов: водорода, аммиака, метана и пары воды. В одну из камер были введены электроды для получения разрядов, имитировавших молнии, как возможный источник энергии для химических реакций. В другой камере была налита вода, и эта камера подогревалась (для насыщения газовой смеси парами воды). Еще одна камера подвергалась охлаждению, и здесь вода конденсировалась («дождевые осадки»). Уже через неделю в конденсате и были обнаружены различные органические вещества.
В последующие десятилетия во многих лабораториях мира был осуществлен искусственный синтез разных аминокислот, нуклеотидов, простых сахаров, а затем и более сложных органических соединений. Все это подтверждает возможность образования органических веществ на Земле в отдаленные времена без участия живых организмов. При отсутствии свободного кислорода (который разрушал бы их) и живых организмов (которые могли бы использовать их в виде пищи) эти вещества накапливались в первичном океане в высоких концентрациях.
На следующем этапе происходило образование более сложных соединений – белковоподобных веществ (цепочки из аминокислот) и коротких полинуклеотидных молекул. Вероятность этого многократно подтверждена: сегодня подобное получают экспериментально. При достижении определенной концентрации органических веществ в первичном океане могли возникать сложные агрегаты разнообразных соединений – коацерваты, мелкие шаровидные образования.
Изучение искусственно создаваемых коацерватов (очень широко исследованных А. И. Опариным и его сотрудниками) показало, что они проявляют некоторые свойства живых систем. Имея уплотненный наружный слой, некое подобие клеточной мембраны, коацерваты способны избирательно поглощать разные вещества из окружающей среды, которые участвуют в химических реакциях внутри коацерватных капель, а часть продуктов этих реакций выделяется обратно в среду. Накапливая вещества, коацерваты «растут» и, увеличившись в размерах, могут распадаться на несколько частей – «размножаться».
Коацерваты, различные по своему составу, характеризуются разной степенью устойчивости. Более устойчивые сохраняются, прочие исчезают, разрушаются.
Эти наблюдения дали основание А. И. Опарину предположить возможность действия естественного отбора (см. ниже) уже на этой стадии становления живого.
Тем не менее коацерваты при всей сложности их организации не могут считаться живыми существами прежде всего потому, что у них нет стабильного самовоспроизведения.
На следующем этапе в коацерватах образовались взаимосвязи нуклеиновых кислот и белков. Синтез белков определенного состава стал осуществляться на основе информации, заключенной в нуклеиновых кислотах.
Возникает способность нуклеиновых кислот к самовоспроизведению при участии специфических белков – ферментов. То есть можно говорить уже о появлении протобионтов – первичных форм жизни, не имеющих еще клеточной организации, но способных к самовоспроизведению и обмену веществ.
Дальнейшее развитие протобионтов, усложнение их организации привели к появлению организмов, обладающих клеточным строением, – первичных прокариот, бактерий. С этого момента начинается биологическая эволюция. По-видимому, первоначально существовали гетеротрофные организмы (поскольку в первичном океане содержалось много различных органических веществ). По мере увеличения их числа происходило уменьшение пищевых ресурсов и между ними возрастала конкуренция. Это привело к появлению автотрофов – организмов, синтезирующих необходимые им органические вещества из неорганических.
Вначале появились организмы, которые использовали энергию, полученную в результате окисления минеральных веществ. Этот процесс известен как хемосинтез, а организмы получили название хемосинтетиков. Затем, в ходе последующих эволюционных преобразований, возникли автотрофные организмы, использующие энергию солнечного света, – это фотосинтезирующие организмы (фотосинтетики). Дальнейшая биологическая эволюция обусловила формирование того многообразного мира живой природы, который мы и видим сегодня.
Разнообразие видов как результат биологической эволюции. Эволюционное учение (теория эволюции) – биологическая дисциплина, исследующая причины и движущие силы, закономерности и механизмы развития живых организмов.
Под биологической эволюцией понимают необратимый и закономерный процесс исторического развития живого от простого к более сложному начиная с момента возникновения первых живых организмов на Земле.
В ходе эволюции одни виды сменялись другими, происходило усложнение и повышение организации живых организмов, увеличивалось их разнообразие, появился человек.
Велико мировоззренческое значение эволюционного учения: оно утверждает идею единства происхождения всего живого, объясняет причины многообразия видов, обитающих на Земле, целесообразность организации живых существ (т. е. соответствие строения и функционирования всех их систем и органов условиям существования), одновременное наличие в природе и простых, и высокоорганизованных организмов.
Эволюционное учение служит теоретической основой современной биологии, объединяя, обобщая результаты, полученные многочисленными частными биологическими науками.
Очевидно его значение и для человека при решении проблем взаимодействия с биосферой.
Наконец, знание законов и механизмов эволюции – база для развития селекции – науки, разрабатывающей методы создания и улучшения сортов культурных растений и пород домашних животных.
История развития представлений о естественном происхождении жизни и эволюции организмов может быть подразделена на три этапа: додарвиновский, дарвиновский и по-следарвиновский (современный).
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.