Автор книги: Гордон Шеперд
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 16 (всего у книги 22 страниц)
Затем исследователи поместили подопытных в фМРТ и регистрировали их мозговую активность, когда те принимали решения. Было обнаружено, что активность в вентромедиальном участке префронтальной коры зависела от целеустремленности подопытных, вне зависимости от того, склонялись ли они к здоровой или вредной пище. У подопытных из группы с высоким самоконтролем активность коррелировала преимущественно с оценкой полезности, в то время как у подопытных с низким самоконтролем подобной корреляции не прослеживалось. При проверке самоконтроля активность наблюдалась как в дорсолатеральном, так и в вентромедиальном участках префронтальной коры; но активность дорсолатерального участка была выше в тех случаях, когда подопытные успешно сдерживали свои позывы и делали выбор в пользу полезной пищи.
Авторы исследования выдвинули интересную гипотезу: возможно, вентромедиальный участок эволюционировал для присвоения пище сиюминутной ценности (в данном случае ценность зависела от вкусовых ощущений пищи), в то время как дорсолатеральный участок развился для оценки долгосрочных перспектив, таких как польза для здоровья. Дорсолатеральный участок префронтальной коры связан со многими иными центрами высшей мыслительной деятельности; ученые предполагают, что именно благодаря этим связям самоконтроль при принятии решений во многом зависит от общего интеллекта подопытного и способности контролировать свое эмоциональное состояние. Резюмируя результаты своего исследования, Хэр, Камерер и Рэнгель отмечают:
«…И наконец, углубленное понимание нейробиологических механизмов самоконтроля при принятии решений имеет прикладную ценность в различных сферах жизни, начиная от клинической практики лечения ожирения и зависимостей, заканчивая экономикой и социальной политикой, где оно пригодится в анализе неоптимального планирования бюджета и поведения, подрывающего здоровье; полезно оно будет и при формировании критериев юридической оценки состояния индивида в ситуациях, когда нужно установить, в какой мере он управляет собой при принятии решений и может ли отвечать за свои действия перед законом».
Самоконтроль при принятии решений во многом зависит от общего интеллекта и способности контролировать свое эмоциональное состояние.
СИСТЕМА КОНТРОЛЯ ПРИ ВЫБОРЕ ПИЩИ
Относительно недавно Нора Волкова, Джин-Джек Ванг и Рубен Балер свели воедино данные по системам мозга, вовлеченным в процесс выбора пищи. Специализация и квалификация Норы Волковой делают ее идеальным кандидатом для проведения исследований такого толка. Она посвятила долгие годы изучению наркотической зависимости и к тому же является директором Национального института по вопросам злоупотребления наркотиками (NIDA). Как уже упоминалось в главе 19, исследования механизмов наркозависимости во многом способствуют пониманию мозговых механизмов, сопряженных как с непреодолимой тягой к наркотикам, так и с «образами желаний» и жаждой к пище. Сходство механизмов этих процессов подтолкнуло Волкову к созданию модели систем мозга, участвующих в выборе пищи, и противопоставлению здорового и нездорового питания (рис. 22.1). Эту модель отражают элементы блок-схемы системы восприятия вкусовых ощущений человеческим мозгом (рис. 18.2) в виде более динамичной системы контроля.
Проиллюстрированная динамичная модель контроля состоит из четырех ключевых элементов. Первым ее элементом является приоритетность – этим термином психологи обозначают силу и степень привлекательности сенсорного стимула. К приоритетным стимулам относятся эйфоричные соленые или сладкие вкусовые ощущения от высококалорийного, насыщенного фастфуда; аромат кофе и шоколада; сбалансированные манящие вкусовые ощущения блюд традиционной кухни всех народов мира. Приоритетность этих стимулов отражает охват входящих сигналов сенсорных систем, показанных на рис. 18.2, и зависит в том числе от механизмов работы орбитофронтальной коры и сопряженных зон, участвующих в оценке стимулов.
Рис. 22.1. Блок-схема системы сенсорного контроля человеческого мозга. Изначально эта схема была разработана для демонстрации системы сенсорного контроля при наркотической зависимости; здесь же представлен адаптированный вариант, демонстрирующий контроль при принятии пищи. (Составлено по материалам статьи N. D. Volkow, G.-J. Wang, and R. D. Baler, Reward, dopamine, and the control of food intake: Implications for obesity, Trends in Cognitive Science 15 [2011]: 37–45.
Входящие сигналы распределяются по трем основным подсистемам. Первая из подсистем работает с памятью – здесь хранятся предпочтения, обусловленные сформированными условными рефлексами индивида. Вторая подсистема является мотивационной, она определяет потребности индивида и то, насколько страстно он жаждет ту или иную пищу. Третья подсистема отвечает за процессы ингибиции, эмоциональный контроль и выполняет роль «исполнительной власти» системы контроля, обеспечивая вертикальный когнитивный контроль над выбором. На рис. 22.1 показано, что в здоровой системе исполнительный контроль оказывает существенное влияние на весь процесс выбора. В своем исследовании Хэр, Камерер и Рэнгель называли тех, чья исполнительная функция работала в полную силу, людьми с нормальным самоконтролем.
А вот у людей с ожирением в системе контроля наблюдаются неполадки. На рис. 22.1 вы видите, что для них первостепенное значение имеет приоритетность, которая нередко затмевает прочие побуждения, охватывая все сенсорные системы целым потоком мощных импульсов. При ожирении существенно возрастает влияние закрепленных до рефлекторного уровня воспоминаний о слишком притягательных стимулах вкупе с потребностью в них и увеличивается поток информации, поступающей в подсистему контроля. Помимо всего прочего, воспоминания о вызывающей непреодолимую тягу пище в аномальной системе имеют прямой доступ к подсистеме контроля; и это при том, что подсистема контроля у таких индивидов ослаблена. Получается, что единственным препятствием для повышенной потребности в приоритетных стимулах является лишь ослабленная система ингибиции. Вновь обратившись к заключениям Хэра и его коллег, можно сказать, что при дефиците самоконтроля индивид испытывает столь мощную потребность в вожделенной пище, что мозг не в силах оказать ей адекватное сопротивление.
Эта модель является превосходной основой для дальнейших исследований и экспериментов. Авторы упоминают и другие факторы, влияющие на систему сенсорного контроля, в том числе циклы управления эмоциями и циклы внутренней осознанности. Помимо них существует и крайне сложная система регулирования гормонов желудочно-кишечного тракта, циклов концентрации лептинов и грелинов[69]69
Лептин – гормон, отвечающий за регуляцию сытости; грелин – гормон, отвечающий за регуляцию голода.
[Закрыть], а также прочих гормонов в нашем теле. К тому же язык и речь тоже влияют на наш выбор пищи, и их влияние поистине огромно.
* * *
В заключение этой главы мы возвращаемся к изначальному вопросу: что же делает вкусовые ощущения от некоторых видов пищи столь неотразимо притягательными для нас? Вспомните эксперименты по жажде к пище из главы 19. В 2009 году, пересматривая статьи об этих опытах, Марсия Пелчат отметила: «Эта работа подтверждает основную гипотезу о пищевой и наркотической “жажде”. В этом исследовании ключевая роль отводится воспоминаниям и структурам сенсорной интеграции, что в полной мере соответствует первостепенному влиянию сенсорной памяти на непреодолимую тягу к пище. Когда индивид испытывает непреодолимую тягу, в его мозге есть своего рода сенсорный шаблон того, что надо съесть, чтобы в полной мере удовлетворить свою жажду к пище».
Круг замкнулся; мы снова вернулись к тому, как мозг формирует вкусовые ощущения: создает сенсорные проекции образов и объектов запаха – они же «сенсорные шаблоны» – в структурах ассоциативной памяти обонятельного тракта; интегрирует проекции запаха с проекциями иных сенсорных систем в ряде зон коры больших полушарий; повышает активность в эмоциональных цепочках, находящихся вне сферы влияния основных центров принятия решений нашего мозга, усиливая таким образом тягу к пище. Схемы мозговой активности, в том числе системы восприятия вкусовых ощущений (рис. 18.2) и сенсорного контроля (рис. 22.1), приоткрывают нам некоторые механизмы и потаенные элементы систем человеческого мозга, о которых нужно помнить при планировании любой социальной стратегии, нацеленной на продвижение здорового питания.
Глава 23
Пластичность человеческой системы восприятия вкуса
Чем больше мы узнаем о нашем мозге, тем очевиднее становится для нас его способность меняться под влиянием активности и опыта. Не так давно я побывал на конференции, посвященной переломным этапам формирования пластичности зрительной системы в процессе взросления молодых животных, и докладчик резюмировал тему следующим образом: мы традиционно воспринимаем мозг как стабильный орган с ограниченными пластическими свойствами; новый же подход подразумевает, что пластичность является естественным состоянием мозговых клеток, а мозг прикладывает огромные усилия, чтобы сдерживать эту пластичность и управлять ею.
В системе восприятия вкусовых ощущений человеческим мозгом пластичность наиболее ярко проявляется в двух аспектах: во-первых, клетки некоторых зон этой системы неустанно обновляются за счет стволовых клеток; а во-вторых, при получении нового опыта меняются как свойства клеток, так и характер их взаимодействий друг с другом.
СТВОЛОВЫЕ КЛЕТКИ, КОТОРЫЕ СОЗДАЮТ НОВЫЕ КЛЕТКИ СИСТЕМЫ ВОСПРИЯТИЯ ВКУСОВЫХ ОЩУЩЕНИЙ
Когда мы появляемся на свет, в нашем мозге уже имеется полный набор нервных клеток – во всех зонах, за исключением четырех, где процесс формирования нервных клеток на основе клеток стволовых продолжается на протяжении всей нашей жизни. Невероятно, но все эти «обновляющиеся» зоны напрямую задействованы в формировании вкусовых ощущений.
Первой зоной являются клетки вкусовых почек (см. главу 13). Нам уже давно известно об их «возобновляющейся» природе: они рождаются из стволовых клеток у основания вкусовых почек, постепенно достигают зрелости и становятся функциональными, а затем отмирают, уступая место новым, молодым клеткам. Продолжительность жизни клеток вкусовых почек составляет порядка двух недель. Считается, что столь быстрое замещение обусловлено наличием у этих клеток прямого контакта со всем, что попадает к нам в рот. Четвероногие животные особенно склонны брать в рот разные вредные для здоровья вещи, вполне способные убить клетки вкусовых почек; вполне логично, что уничтожение клеток должно компенсироваться неким стабильным механизмом, обеспечивающим непрерывное восстановление их численности. К тому же некоторые привычки наших четвероногих питомцев, такие как употребление экскрементов в рамках социальных взаимодействий, тоже не способствуют выживаемости клеток вкусовых почек.
Вторая зона также состоит из рецепторных клеток, но расположена она в полости носа (см. главу 5). Относительно недавно исследователи обнаружили, что эти клетки тоже обновляются. Всякий раз, когда мы принюхиваемся или делаем очередной вдох, наши обонятельные рецепторы контактируют со всевозможными запахами, в том числе и вредными, а потому вполне логично, что поврежденные клетки должны периодически заменяться. В отличие от вкусовых рецепторных клеток, которые целиком находятся внутри вкусовых почек, обонятельные являются истинными нервными клетками – их покрытые чувствительными молекулами жгутики пронизывают слизистые оболочки носа и соприкасаются с поступающими в обонятельный тракт молекулами запаха, а аксоны обонятельных клеток уходят вглубь мозга, прямиком в обонятельную луковицу. Скорость обновления обонятельных рецепторных клеток зависит от токсичности окружающей среды; у крыс, выросших в стерильной среде, скорость обновления крайне низкая, в то время как в обычных условиях обонятельные рецепторные клетки обновляются за несколько недель. За счет прямохождения у человека нос содержится в относительной чистоте, так что скорость обновления обонятельных рецепторных клеток в теории должна быть достаточно низкой; на данный момент мы просто не располагаем экспериментальными данными, способными подтвердить или опровергнуть эту гипотезу.
Все клетки организма обновляются с разной скоростью. И скорость обновления обонятельных рецепторных настолько низкая, что нос человека остается в чистоте исключительно благодаря прямохождению.
Третьим видом обновляющихся нервных клеток являются маленькие промежуточные нейроны, находящиеся в обонятельной луковице, а именно – перигломерулярные и гранулярные клетки, которые ингибируют активность более крупных митральных и пучковых клеток, участвуя таким образом в обработке обонятельных сигналов (см. главы 7 и 10). То, что промежуточные нейроны тоже обновляются, было установлено относительно недавно, в ходе экспериментов на животных. Они обновляются благодаря стволовым клеткам, расположенным у основания черепа, на изрядном расстоянии от обонятельной луковицы, где находятся в том числе и стволовые клетки, формирующие клетки коры больших полушарий головного мозга. Та часть стволовых клеток, что формирует кору больших полушарий, перестает создавать новые клетки еще до нашего рождения, в то время как часть расположенных рядом с ними стволовых клеток собирается в «ростральный миграционный поток», позволяющий им переместиться в обонятельную луковицу и влиться в пласт перигломерулярных и гранулярных клеток. В наши дни стволовые клетки мозга взрослого человека представляют огромный интерес для исследователей, так что эти скрытые в обонятельной луковице клетки изучаются самым тщательным образом.
Если рецепторные клетки, поставляющие информацию в обонятельную луковицу, и находящиеся в ней промежуточные нейроны постоянно обновляются, получается, что единственными неизменными клетками в ней являются крупные нейронные клетки – митральные и пучковые. Следовательно, обонятельная луковица, один из наиболее важных компонентов системы восприятия вкусовых ощущений человеческим мозгом, одновременно является и наиболее пластичной его частью. Вызвано ли обновление клеток необходимостью поддерживать численность, компенсируя потери от инфекций? Или же обновление клеток обусловлено необходимостью подстраиваться под уникальные качества обонятельных стимулов? Прежде чем мы сможем ответить на этот важный вопрос, нам еще многое предстоит изучить и узнать.
Четвертый и последний участок мозга, в котором наблюдается обновление нервных клеток, находится в гиппокампе, а именно в одной из его частей, известной как зубчатая извилина. Гиппокамп играет крайне важную роль в изучении и запоминании сенсорной информации, в том числе обонятельных и вкусовых ощущений. Как мы уже убедились на примере Комбре, именно в этой части мозга сводятся воедино воспоминания о запахах, видах и звуках, каждое из которых до этого момента хранится изолированно от остальных в соответствующей сенсорной зоне мозга; именно в гиппокампе эти следы памяти объединяются в целостное, мультисенсорное воспоминание (см. главу 20). Мы пока что не знаем, как именно участвуют в этом процессе обновляющиеся нервные клетки зубчатой извилины; эта загадка тоже ждет своего исследователя.
ПЛАСТИЧНОСТЬ В СИСТЕМЕ ВОСПРИЯТИЯ ВКУСА
Второй ключевой вид пластичности мозга проявляется в том, как меняются качества клеток в зависимости от их активности. Разумеется, в первую очередь искать такие клетки следует в тех зонах, где уже действует механизм обновления нервных клеток. Пожалуй, можно начать с клеток вкусовых почек.
Линда Кеннеди и ее коллеги в Университете Кларка задались следующим вопросом: если человек употребляет много сладкой пищи, меняется ли его чувствительность к сахару и восприятие сладкого вкуса? Для начала они проверили отобранных для эксперимента людей на чувствительность к сахару с помощью глюкозы и обнаружили у некоторых из них достаточно низкую чувствительность. Тогда исследователи решили попробовать повысить чувствительность этих испытуемых и установили, что при многократной стимуляции сахаром чувствительность – а заодно и восприимчивость к сладкому вкусу – у подопытных действительно повысилась. Это позволило им предположить существование основанного на опыте «индуцируемого механизма ощущений», а это, в свою очередь, позволяло выдвинуть гипотезу о существовании некоей «индукции человеческого вкусового восприятия», подразумевающей, что многократный контакт с определенным вкусовым стимулом повышает чувствительность к нему.
Развивая эту гипотезу, исследователи провели еще один эксперимент; в этот раз для многократной стимуляции вкусовых рецепторов подопытных использовалась как глюкоза, так и фруктоза (другой вид сахара, на вкус примерно в два раза слаще привычной нам глюкозы). Их гипотеза получила еще одно подтверждение: фруктоза действительно повысила чувствительность подопытных как к фруктозе, так и к родственной ей глюкозе. Они установили, что этот механизм имеет обобщающий характер и охватывает сразу несколько сахаров. Им также удалось продемонстрировать, что пяти эпизодов стимуляции глюкозой в течение нескольких минут достаточно, чтобы сформировать сенсибилизацию (повысить чувствительность) на почти две недели. После завершения цикла экспериментальной стимуляции чувствительность подопытных вернулась к изначальным показателям уже через несколько недель. Таким образом, было установлено, что эффект повышенной чувствительности обратим и эта обратимость свидетельствует в пользу того, что пластичность является закономерной составляющей нормальной реакции восприятия вкуса. Последующие опыты показали, что повысить чувствительность можно и для других вкусовых групп; к примеру, с помощью глутамата натрия можно повысить чувствительность как ко вкусу умами, так и к веществу под названием глутаральдегид.
При многократной стимуляции сахаром чувствительность – а заодно и восприимчивость к сладкому вкусу – у людей повышается.
Где же возникает этот эффект? Логично было бы предположить, что он зарождается во вкусовых почках, где происходит интенсивное обновление нервных клеток. Может статься, что молодые клетки более чувствительны к повышенной концентрации сахаров, чем старые рецепторные клетки, ожидающие замены. Возможно, при прекращении стимуляции высокими дозами сахара рецепторы становятся более чувствительными и лучше подстраиваются под восприятие меньших доз. Изменение чувствительности подтвердилось во время исследований на животных, в ходе которых регистрировалась импульсная активность в барабанной струне – так называемом вкусовом нерве, одной из ветвей лицевого нерва; при многократном воздействии стимула интенсивность нервного отклика повышалась. Может, этот эффект и вовсе имеет централизованную природу. Функциональная визуализация мозга выявила усиливающиеся реакции в центральных частях системы – например, в области вкуса коры. Для полноценного понимания различий между процессами на этих двух уровнях потребуются дополнительные исследования.
Дальнейших исследований этой проблемы пока что почти не проводилось, а сама она фактически не удостоилась внимания общественности. В то же время, если многократное употребление богатой сахаром пищи и впрямь вызывает повышение чувствительности к сахарам, то ученые должны донести это до сведения диетологов, ведь сегодня индустрия безалкогольных напитков продвигает на рынок больше насыщенных сахаром напитков, чем когда-либо ранее. Похоже, справедливость гипотезы «индукции человеческого вкусового восприятия» сейчас обосновывается за пределами лабораторных стен, а подопытными в этом поистине беспрецедентном эксперименте выступают многие миллионы потребителей.
ПЛАСТИЧНОСТЬ СИСТЕМЫ ВОСПРИЯТИЯ ЗАПАХА
Обновление клеток обонятельных рецепторов в полости носа позволяет предположить, что они, наряду со вкусовыми, могут подстраивать свою чувствительность при многократной стимуляции. Исследователи из Монельского центра химических ощущений в Филадельфии протестировали это предположение на примере нескольких видов молекул запаха. Для первого эксперимента они использовали феромон адростенон, присутствующий в поте и моче самцов и определяемый большинством самок, для которых он может послужить сигналом к поведенческой реакции продолжения рода. Ученые обнаружили, что многократная стимуляция обоняния адростеноном действительно повышает чувствительность к этому феромону, в том числе и у самцов. В той же серии экспериментов установили, что многократная стимуляция одним обонятельным раздражителем повышает восприимчивость к нему и у людей; в числе использованных исследователями стимулов был и популярный альдегидный цитрусовый ароматизатор «Цитралва»[70]70
Citralva.
[Закрыть], знакомый многим обывателями по бытовой химии и косметике.
В какой именно части системы восприятия запахов происходит это приращение восприимчивости? Эксперименты на животных и людях показали, что чувствительность повышается в рецепторных клетках, расположенных в полости носа. А что насчет активности более глубоких структур мозга? В случае если чувствительность повышается именно в рецепторных клетках, выявить наличие дополнительного, отдельного механизма усиления восприимчивости в центральных структурах мозга достаточно сложно, ведь туда и так поступают сигналы с рецепторного уровня систем восприятия. Тем не менее в 2002 году Ноам Собель и его коллеги из Беркли придумали простой и изящный способ, позволивший им изолированно рассмотреть локальный и центральный механизмы усиления чувствительности. Они провели эксперимент, в котором андростенон подавался только в одну ноздрю, а вторая тем временем была зажата; затем они регистрировали чувствительность к этому феромону в ранее заблокированной ноздре. И установили, что восприимчивость к веществу повысилась и в зажатой ноздре, следственно, увеличение чувствительности происходит все же в центральных структурах системы обонятельного восприятия.
Многократная стимуляция одним обонятельным раздражителем повышает восприимчивость к нему у людей.
В этих опытах исследователи работали исключительно с ортоназальным обонянием. Можно предположить, что аналогичное изменение чувствительности происходит и при стимуляции ретроназального обоняния, а значит, влияет на наше восприятие вкусовых ощущений. Чем больше мы контактируем с обонятельным компонентом вкусовых ощущений некой пищи, тем чувствительнее к ней мы становимся. Полагаю, этот вывод тоже должен заинтересовать диетологов.
ОБУЧЕНИЕ ОБОНЯНИЯ
В обусловленной опытом пластичности восприятия запаха и вкуса определенно задействованы механизмы центральных структур сенсорных систем. Что же представляют собой эти механизмы? Одна их категория, скорее всего, напоминает реакцию мозга на наркотики: как мы уже знаем на примере «образов желаний», в этих случаях свойства нервных клеток изменяются на клеточном уровне. Ученые продолжают разрабатывать эту тему, но пока мы не можем утверждать, что вкусовые ощущения способны инициировать такую реакцию.
Одну из ведущих гипотез о механизмах пластичности восприятия, обусловленной опытом, лежащих в основе обучения и запоминания, выдвинул психолог Дональд Хебб. В 1949 году он опубликовал книгу «Организация поведения: нейропсихологическая теория»[71]71
Hebb, Donald O. The Organization of Behaviour.
[Закрыть], где предложил следующую схему взаимодействия: нейрон, переносящий сигнал, может по синаптической связи просигнализировать соседнему нейрону о повышении сигнальной активности; затем оба нейрона усиливают проводимость своего синаптического соединения, тем самым повышая ее эффективность при последующей активации. В 1970-х годах подобные соединения были обнаружены в гиппокампе – было установлено, что при стимуляции одной группы нейронов гиппокампа их связь с другой группой усиливается. Это явление назвали длительной или долговременной потенциацией (ДВП).
Долговременную потенциацию можно наблюдать во многих частях центральной нервной системы; помимо гиппокампа, она присутствует в обонятельной и новой коре мозга. В рамках изучения центральных механизмов проводимости сигналов систем восприятия обонятельных и вкусовых стимулов нас в первую очередь интересуют соответствующие микросистемы этих структур, о которых мы уже говорили в прошлых главах. Этой же гипотезы придерживаются Дональд Уилсон и Ричард Стивенсон; в своей книге «Научиться нюхать: обонятельное восприятие в нейробиологии, бихевиоризме и прочих науках» они, подводя итоги своего исследования механизмов обучения и запоминания в обонятельной коре мозга, резюмируют: «Наиболее удивительным свойством человеческой системы обонятельного восприятия является ее пластичность».
Пластичность эта проявляется не только в изменении свойств клеток, но и в способности распределенных систем восприятия смещаться для формирования сенсорных откликов. Уилсон и Стивенсон рассказывают о том, что наш опыт способен кардинально изменить как само наше восприятие запаха, то есть способность отличать его от других, так и то, является ли конкретный запах для нас притягательным или отталкивающим. Они подчеркивают, что контекст обонятельного восприятия зависит от формы проекции «объекта запаха» в обонятельном тракте, которые мы рассматривали в главе 11.
В настоящее время наука рассматривает нервную систему как чрезвычайно пластичную табличку, на которой отпечатываются образы и воспоминания пережитого нами опыта.
На самом деле потенциалом пластичности обладают все сенсомоторные системы нашего организма. В начале этой главы уже упоминалось, что в настоящее время наука рассматривает нервную систему как чрезвычайно пластичную табличку, на которой отпечатываются образы и воспоминания пережитого нами опыта. Если эти воспоминания и образы изменяют саму структуру этой таблички, то похоже, что Брийя-Саварен был на верном пути, когда писал: «Скажи мне, что ты ешь, и я скажу тебе, кто ты».
Стоит отдать должное и поэтам, задолго до нейронауки отметившим пластичность нашего мозга. В The Dry Salvages, третьей поэме своих «Четырех квартетов», Т. С. Элиот пишет:
Для большинства из нас существует
Лишь неприметный момент, входящий
Во время и выходящий из времени,
Теряясь в столбе лучей из окна,
В невидимом диком тмине,
В зимней молнии, в водопаде,
В музыке, слышимой столь глубоко,
Что ее не слышно: пока она длится,
Вы сами – музыка[72]72
Перевод А. Сергеева.
[Закрыть].
Мы же можем дополнить его текст кратким перефразированием:
Во вкусе, столь глубинно ощутимом,
Что вовсе мы не чувствуем его: пока он длится,
Вы сами – вкус.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.