Электронная библиотека » Игорь Кароль » » онлайн чтение - страница 10


  • Текст добавлен: 8 апреля 2014, 13:59


Автор книги: Игорь Кароль


Жанр: География, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 10 (всего у книги 15 страниц)

Шрифт:
- 100% +

«Ну, хорошо, один раз совпало, – усомнится читатель, – но изменения климата напрямую зависят от содержания в атмосфере парниковых газов – CO2, метана и других. Понятно, их концентрации в моделях учитывают. Только кто может знать, сколько будет в атмосфере, скажем, того же метана через полвека – он же попадает туда и с газо– и нефтедобывающих установок, и из болот, и с рисовых полей, и даже от крупного рогатого скота… Как все это учтешь?» Действительно, эволюция содержания в атмосфере парниковых газов во многом определяет изменения климата, а то, какими будут их концентрации, зависит от интенсивности и методов хозяйствования ведущих мировых держав, а также от международных соглашений, регламентирующих выбросы таких газов в атмосферу. Неопределенность в этом вопросе очень велика, поэтому экспертами МГЭИК были разработаны несколько десятков сценариев эмиссии парниковых газов – от наиболее вероятных до весьма экзотических и в соответствии с каждым из них были сделаны модельные расчеты изменения климатических элементов вплоть до конца XXI в.

Относительно недавно было высказано опасение, что парниковое потепление поверхности океана со временем (через 100–200 лет, так как океан обладает много большей инерцией, чем атмосфера) способно изменить скорость водооборота в системе глубинных течений Мирового океана, и это может привести к отклонению течения Гольфстрим от Европы. Известно, что Гольфстрим «обогревает» Западную Европу, и, случись такое отклонение, оно может серьезно отразиться на европейском климате. Однако, как показали модельные расчеты, отклонение Гольфстрима от Европы не приведет тем не менее к климатической катастрофе, поскольку к тому времени уровень глобального парникового потепления перекроет ожидаемое похолодание Западной Европы от ухода Гольфстрима. Несомненно, случай проверить этот вывод представится еще очень нескоро, но констатируем: модели – единственный инструмент, позволяющий оценивать результат сложного многофакторного взаимодействия частей климатической системы.

Еще с советских времен известен такой анекдот. «Сладкая парочка» в составе Героя Гражданской войны В. И. Чапаева (руководитель) и его ординарца П. Исаева (ассистент) – оба в белых халатах – проводит научный эксперимент. Василий Иванович берет блоху и командует: «Блоха, прыгай!», после чего обращается к помощнику: «Петька, пиши – блоха прыгнула высоко». Снова берет блоху, отрывает ей одну лапу, повторяет команду и затем констатирует: «Петька, пиши – блоха прыгнула чуть-чуть ниже». Далее процедура повторяется, но каждый раз блоха лишается еще одной лапы. Наконец, когда удалена последняя лапа, приказ «Блоха, прыгай!» остается невыполненным. И Василий Иванович, слегка подумав, заключает: «Петька, пиши – блоха оглохла!». «К чему это?» – спросит читатель. А вот к чему. Важнейшим аспектом при работе с моделями является искусство правильно истолковывать полученные модельные результаты.

Допустим, модель успешно отработала и выдала безошибочные результаты в виде набора чисел, количество которых вполне соизмеримо с многомегабайтным объемом спутникового мониторинга. Поэтому прежде чем предстать «пред светлы очи» моделиста, этот набор чисел преобразуется в карты, графики, диаграммы. Графическое представление результатов сопровождается стандартным «сглаживанием» исходного набора, причем зачастую алгоритм этого сглаживания разработчику модели детально неизвестен. Другими словами, процедура обработки данных может «пройтись катком» по важному модельному результату и уничтожить его. Отсюда имеющийся риск (правда, небольшой) «выплеснуть с водой и младенца». Но вот перед группой моделистов – десятки карт, отражающих результаты проведенного модельного эксперимента. Каждый – физик и химик, гидролог и радиационщик, оптик и биолог – анализируют свою «зону ответственности», после чего наиболее опытный и знающий специалист – координатор – делает обобщающие выводы. Качество этих выводов целиком зависит от квалификации всех членов группы и ее «сыгранности». Как правило, усложняет ситуацию временной фактор: результаты должны быть подготовлены к определенному сроку (к крупной конференции, к заранее оговоренному моменту публикации сравнения модельных результатов и т. д.), а устранить обнаруженные «шероховатости» нет возможности, так как время, необходимое на проведение дополнительного или повторного расчета, составляет несколько месяцев.

Повторимся, интерпретация модельных результатов – архиважный момент в исследованиях. Только специалист, хорошо знающий особенности модели, в состоянии корректно установить соответствие между полученными модельными значениями и данными мониторинга.

К примеру, казалось бы, естественно напрямую сравнить результаты, полученные в модельной ячейке, с наблюдениями в ближайшей географической точке. Однако так поступать нельзя, поскольку модельное решение соответствует среднему значению по всей модельной ячейке. Так, отношение массы сажи, выброшенной из заводской трубы, к объему воздуха в окрестности этой трубы (т. е. концентрация сажи в окрестности трубы) значительно выше отношения той же массы к объему модельной ячейки, охватывающей, скажем, уже упоминавшуюся Московскую область (средней концентрации по модельной ячейке).

Еще одной «головной болью» моделистов является неравномерность расположения метеостанций на поверхности Земли. «А какая-тут связь?» – возможно, удивится читатель. Прямая: информация, поступающая с этих метеостанций, необходима для работы моделей, но модель «привязана» к узлам регулярной сетки, не совпадающим с местоположением станций. На практике это означает, что в окрестности одного модельного узла может не оказаться ни одной станции, в то время как около другого «роится» сразу несколько. Однако значения метеопараметров должны быть присвоены каждому узлу. В первом случае не понятно, откуда такие значения брать, а во втором – какому из них отдавать предпочтение (или по какому правилу учесть все из них). Во многом ситуацию спасает спутниковый мониторинг, но все же не полностью, поскольку он не охватывает измерениями абсолютно всю поверхность земного шара.

Для восполнения дефицита данных и получения взаимосогласованных полей метеорологических характеристик применяют разные методы, например интерполяцию на основе объективного анализа или ныне наиболее популярный ре-анализ. Ре-анализы представляют собой результаты модельных расчетов атмосферных полей, произведенные с учетом всего комплекса имеющихся данных наблюдений таких ключевых характеристик, как температура, влажность, атмосферное давление и др. Там, где такие данные отсутствуют, они восполняются соответствующими модельными результатами. После этого весь комплекс значений каждой из характеристик подвергается процедуре ассимиляции – созданию такого результирующего «гладкого» взаимосогласованного поля в заданных точках поверхности земного шара и атмосферы (в узлах модельной сетки), которое максимально приближено к значениям исходного комплекса. Достоверность ре-анализов для разных атмосферных характеристик неодинакова, а для некоторых характеристик (например, для осадков или облачности) данные наблюдений плохо или совсем не ассимилируются, несмотря на их наличие. Вместо этого указанные характеристики рассчитываются – с погрешностями, присущими их модельным описаниям.

Однако «лучше один раз увидеть, чем сто раз услышать». Рис. 19 и 20 цв. вклейки иллюстрируют возможности современных климатических моделей. На них показаны попарно модельные и наблюдаемые распределения годовых сумм осадков (рис. 19) и температуры приземного воздуха (рис. 20) по поверхности земного шара. Модельные распределения – это средние величины, полученные в результате работы 19 моделей, а наблюдаемые – данные ре-анализа за период 1980–1999 гг. Конечно, теория и практика расходятся, но, согласитесь, «картинки» во всех основных деталях получаются весьма похожими и вполне подошли бы для популярной игры «Найди десять отличий».

Обнаружение расхождений между модельным и наблюдаемым климатами чаще всего не позволяет сразу же внести исправления в модель. Высокая сложность взаимодействий в модельной климатической системе маскирует связь между причиной и следствием. Это вынуждает разработчиков проводить многочисленные, подчас дорогостоящие и не всегда успешные эксперименты для оценки того, насколько чувствительны полученные с помощью модели результаты к изменению ее параметров. Улучшение воспроизведения моделью некоего среднего состояния, отвечающего, например, современному климату, может быть достигнуто, в частности, путем так называемой «настройки», состоящей в подборе свободных (недостаточно известных или изменяющихся в широких пределах) параметров модели в целях наилучшего соответствия как можно большего числа характеристик модельного климата наблюдаемым значениям (нелишне заметить, что улучшение воспроизведения моделью одной характеристики может сопровождаться ухудшением другой).

«Настройка» моделей традиционно является объектом критики со стороны исследователей, скептически относящихся к физико-математическому моделированию как методу исследования и предсказания климата. Однако повторимся, в контексте исследований будущих изменений климата удовлетворительное воспроизведение его современного среднего состояния не является самоцелью. Дело в том, что даже при использовании одного и того же сценария внешнего воздействия современные модели демонстрируют значительный разброс в оценках возможных изменений климата в будущем. А контролировать чувствительность модели к внешним воздействиям – задача куда более сложная, нежели воспроизведение современного состояния климатической системы.

Если же помимо современного климата модель позволяет воспроизводить различные состояния климатической системы, наблюдавшиеся в далеком прошлом (когда внешние воздействия сильно отличались от современных), а также известную эволюцию климатической системы (например, в течение ХХ и предыдущих веков), можно надеяться, что полученные с помощью этой модели оценки изменений климата при тех или иных ожидаемых в будущем сценариях внешнего воздействия заслуживают доверия.

Сегодня не существует модели, лучше прочих описывающей, например, современный климат. Обычно каждая модель хорошо воспроизводит лишь часть искомых климатических величин, в то время как остальные воспроизводятся значительно хуже. Сравнительный анализ показывает, что наиболее высокую успешность, как правило, демонстрирует «средняя» (по ансамблю) модель. Это связано с тем, что систематические ошибки разных моделей (а они присущи каждой) не зависят друг от друга и при осреднении по ансамблю могут взаимно компенсироваться. Например, если две модели регулярно «завышают» температуру воздуха на 0,3 °C и 0,4 °C, а две другие ее «занижают» на 0,25 °C и 0,3 °C соответственно, то средняя ошибка (0,3 + 0,4–0,25 – 0,3 = 0,15 °C) окажется меньше, чем у любой из четырех моделей.

Разумеется, при всем огромном и далеко не исчерпанном потенциале моделей, их возможности не безграничны.

На многие вопросы, связанные с предсказуемостью климатической системы, еще предстоит получить ответы. Кроме того, мы вряд ли когда-нибудь будем уверены в том, что модели включают надлежащее описание всех климатически значимых процессов. Не исключено, что сегодня мы недооцениваем роль каких-либо факторов в будущих изменениях климата, и, возможно, на этом пути нас еще ждут сюрпризы.

Тем не менее не подлежит сомнению то, что современные модели отвечают наивысшему уровню знаний, накопленных человечеством за время исследований климатической системы.

Когда-то Уинстон Черчилль говорил, что демократия несовершенна, но ничего лучше человечество пока не придумало. Аналогичное утверждение справедливо и в приложении к климатическим моделям: они несовершенны, но им нет альтернативы в оценках возможных изменений климата в будущем.

Глава десятая
Путешествие в мир предположений

Здравомыслящий человек пытается, учитывая все привходящие обстоятельства, высказывать предположения и делать выводы, но вот произошло нечто непредвиденное (а все учесть немыслимо), что смешало его планы, и он уже в полной растерянности, бестолковый и наивный.

Джонатан Свифт

Климат и экономика

Чередование успехов и неудач – неотъемлемый атрибут модельных прогнозов. Так было, и так, увы, будет. Все, на что мы способны, – стараться, чтобы успехов было больше. О причинах такого положения дел шла речь в предыдущем разделе. Но только ли от качества модели зависит, оправдается прогноз или нет? Есть, по крайней мере, еще одно необходимое условие высокой успешности предсказания – хороший сценарий. Термин, ассоциирующийся прежде всего с театром и кинематографом, он уже давно перекочевал и в другие сферы человеческой деятельности. Видно, прав был У. Шекспир, поставивший знак равенства между жизнью и театром, игрой в нем. Да и сам сценарий является плодом «игры ума» его создателя – эксперта. И если реалистичный сценарий служит отличным плацдармом для удачного прогноза, то сценарные ошибки не в состоянии исправить даже самая лучшая модель. Поэтому, говоря о прогнозировании будущих изменений климата, так важно иметь верное представление о тенденциях развития природы и общества и точно отразить их в числах, «наполняющих» сценарий.

По сути, сценарий для прогноза грядущих изменений климата представляет собой… предварительный прогноз поведения климатоформирующих факторов (Солнца, альбедо и пр.) в интересующий нас промежуток времени. Предсказать естественные колебания климата относительно несложно: их всесторонне изучают уже достаточно давно, и необходимый материал накоплен (речь идет только об общей картине – предвидеть, например, где, в каком году и с какой силой начнет извергаться «новый Везувий», конечно, невозможно). Но вот парадокс: куда труднее человеку предвосхитить поведение… человека, т. е. эволюцию антропогенных факторов, в первую очередь концентрации парниковых газов. Эти концентрации, очевидно, должны зависеть от общей направленности развития человечества – развития экономического, социального, экологического. Другими словами, прежде чем прогнозировать изменения климата, надо предугадать, что «натворят» люди в обозримом будущем. И не забыть при этом об обратной связи, ведь эти человеческие деяния также зависимы от изменений климата.

Появление первых подобных сценариев пришлось на конец 1980-х – начало 1990-х гг., когда климатические модели уже «выросли из коротких штанишек» и начали давать вполне пригодные для анализа результаты. Они были опубликованы в первом отчете МГЭИК (1990 г.). В последующих отчетах МГЭИК сценарии пересматривались и совершенствовались, сегодня используется третий вариант таких сценариев.

Существует около четырех десятков сценариев, из которых наиболее употребимы сценарии А1, А2, В1 и В2, обобщающие четыре возможных варианта эволюции антропогенных выбросов.

Сценарий А1 исходит из примерно линейной экстраполяции существующей современной тенденции. Причем рассматриваются три его разновидности: A1F (преимущественного использования ископаемого углеродного топлива и большого выброса CO2 в атмосферу), A1T (эксплуатации возобновляемых источников энергии с минимальным выбросом CO2) и A1B (промежуточный вариант между A1F и A1T). Сценарий А2 соответствует «пестрому миру с большим разнообразием региональных экономик и относительно слабым развитием новых технологий». Минимальные выбросы парниковых газов и сульфатных аэрозолей предполагаются в сценарии В1 «с конвергенцией (схождением) разных социальных систем к экономике информации и сервиса и внедрением чистых «зеленых» и энергоэффективных технологий». Сценарий В2 «описывает мир с промежуточным народонаселением и экономическим ростом, подчеркивая при этом локальные решения проблемы экономической, социальной и экологической устойчивости». В каждом из сценариев были определены ожидаемые эмиссии основных парниковых газов – CO2, СН4, N2O и SO2 как предшественника сульфатных аэрозолей, а по ним и концентрации этих газов. То, что при этом получилось, показано на рис. 25. Для сравнения на рисунке приведен и наиболее популярный из ранее использовавшихся сценарий IS92а.

Эмиссии, а с ними и концентрации имеют большой разброс, причем для большинства газов максимальный и минимальный уровни значений достигаются в сценариях A1F и A1T с использованием ископаемого углеродного и возобновляемых источников энергии соответственно. Для сценариев В1 и В2 характерны замедление роста и даже падение эмиссий, особенно заметное для отсутствующего на рис. 25 SO2. Концентрации углекислого газа и оксида азота(I), «время жизни» которых в атмосфере составляет 100 лет и более, растут с разной скоростью во всех сценариях вплоть до 2100 г., но при этом примерно до 2040 г. их различия от сценария к сценарию мало заметны. Куда более чувствителен к сценариям метан, время пребывания которого в атмосфере много короче – 10–12 лет.

Рис. 25. Тренды концентраций основных парниковых газов, рассчитанные в соответствии с указанными сценариями


Содержание в атмосфере другой большой группы парниковых газов – озоноразрушающих химикатов – подчинено ограничениям, накладываемым Монреальским протоколом. Что же касается самого озона, то изменения его концентрации в сценарии, как правило, не включаются и подлежат расчету в каждом модельном прогнозе. Виной тому – отсутствие потока озона в атмосферу от наземных источников (напомним, что его образование и разрушение происходит в самой атмосфере) и короткое «время жизни».

На рисунке 21, а цв. вклейки отображена в некотором смысле итоговая характеристика каждого из шести основных сценариев – глобальный выброс всех парниковых газов в эквиваленте CO2. Для того чтобы унифицировать выбросы различных парниковых газов, обычно используется специфическая единица измерения – эквивалентный выброс CO2. Согласно Обобщающему докладу МГЭИК (2007)[18]18
  Изменения климата, 2007 г. Обобщающий доклад. Вклад рабочих групп I, II и III в Четвертый Доклад об оценке Межправительственной группы экспертов по изменению климата. Ред. Пачаури Р. К., Райзингер А. и др. МГЭИК. Женева, Швейцария, 2007.


[Закрыть]
, «эквивалентный выброс CO2 – это объем выброса CO2, который вызвал бы такое же комплексное радиационное воздействие за данный период времени, как и объем выброса какого-либо долгоживущего парникового газа или смеси парниковых газов. Эквивалентный выброс CO2 получают путем умножения объема выброса какого-либо парникового газа на его потенциал глобального потепления за данный период времени». Уже упоминавшийся потенциал глобального потепления показывает, во сколько раз молекула какого-либо парникового газа (метана, оксида азота(I) или др.) эффективнее поглощает радиацию по сравнению с молекулой CO2. Пунктиром выделена область, в пределах которой этот выброс имеет место при рассмотрении почти всех четырех десятков сценариев. Рисунок демонстрирует происходящие с течением времени изменения, при этом наиболее экологически «грязными» оказываются сценарии A1F и A2: в них к 2100 г. выбросы примерно в 3–4 раза превышают эмиссию в сценариях A1T и B1. Однако если сравнивать все сценарии (среди которых есть и весьма экзотические), то в них можно обнаружить и значительно большее превышение. Рис. 21, б цв. вклейки иллюстрирует рассчитанный с использованием группы климатических моделей отклик температуры приземного воздуха на указанное в левой части рисунка изменение эмиссии парниковых газов в течение XXI века. Справа в столбцах показаны наиболее вероятные приросты приземной температуры к 2100 г. для каждого из шести сценариев (выделены в столбце более насыщенным цветом) и разброс таких приростов, полученный разными группами моделистов (остальные части столбцов). К примеру, при выбросах по сценарию A1F большинство моделистов сошлись на том, что наиболее вероятно увеличение температуры на 4–4,2 °C, но какая-то из моделей показала рост лишь на 2,4 °C, а другая модель оценила этот рост в 6,4 °C. Розовая линия на рисунке не соответствует никакому сценарию, она представляет модельную оценку изменения приземной температуры при предположении, что атмосферные концентрации сохраняются постоянными на уровне величин 2000 г. (интересно, каким образом этого достичь на практике?). Даже при таких «щадящих» условиях имеет место небольшое (~0,2 °C в течение XXI века) увеличение приземной температуры. Это продолжение потепления «обеспечили» парниковые газы, уже накопленные в атмосфере в ХХ веке и постепенно из нее удаляемые.

Другой величиной, характеризующей прогнозируемые изменения климата, как вы помните, является радиационный форсинг. Его вычислением исправно сопровождаются многие модельные исследования. Когда речь идет о форсинге от прогнозируемых изменений климата, в качестве отправной точки отсчета обычно выбирают начало так называемой «индустриальной эпохи» (середину XVIII или XIX века). Следуя этой традиции, были произведены оценки величин радиационного форсинга для вышеупомянутых сценариев. Разумеется, наличие прямой связи между значениями радиационного форсинга и сценарных концентраций парниковых газов едва ли может кого-то удивить, что и подтверждает рис. 22 цв. вклейки. Но если рост температуры хорошо понятен каждому из нас и потому не нуждается в каких-либо разъяснениях, то об увеличении радиационного форсинга так не скажешь.

С незапамятных времен бытует мнение, что все познается в сравнении. Не станем пренебрегать этой истиной. Согласно рис. 22 цв. вклейки, для максимального сценария (т. е. сценария с самым быстрым ростом эмиссий парниковых газов) среди вышеупомянутых сценариев – A1F радиационный форсинг к 2100 г. достигнет 9 Вт/м2. Много это или мало? Обратимся еще раз к таблице 4 (с. 148). Нетрудно видеть, что антропогенному выбросу всех парниковых газов в 2005 г. соответствовал радиационный форсинг, приблизительно равный 3 Вт/м2. Таким образом, при осуществлении сценария A1F радиационный форсинг превзойдет имеющийся на данный момент примерно в три раза. Аналогично, в самом «слабом» сценарии (т. е. в сценарии с самым медленным ростом эмиссий парниковых газов (опять же среди вышеупомянутых) – сценарии В1) радиационный форсинг увеличится по отношению к современному примерно на 34 %.

Суровый «модельный приговор», устанавливающий рост приземной температуры на 1,8–4 °C/столетие (см. рис. 21 цв. вклейки), пока неокончательный и «подлежащий обжалованию» (совместными интернациональными усилиями, противодействующими глобальному потеплению). Существует мнение ряда специалистов, представляющих экономически развитые страны, что необходимо установить крайний допустимый предел (порог) увеличения среднегодовой среднеглобальной температуры приземного воздуха в размере 2 °C относительно ее доиндустриального значения. Считается, что при таком пределе может сохраниться современная климатическая система Земли без искажения ее естественных и антропогенных внутренних связей. Если это так, то развитие событий ни по одному из сценариев не может нас устроить, поскольку из этих «пороговых» двух градусов 0,7–1 °C уже «съедены» веком минувшим (т. е. на XXI век допустима «добавка» лишь в 1–1,3 °C).

Все приведенные выше оценки сделаны с помощью лучших современных трехмерных климатических моделей, впитавших в себя многие научные достижения последних лет. Однако, как мог заметить внимательный читатель, сами сценарии содержат только средние глобальные значения эмиссий парниковых газов и их концентраций. А это означает, что упомянутые эмиссии, равно как и эмиссии других атмосферных газов и аэрозолей, нужно предварительно «размазать» по поверхности земного шара (по узлам модельной сетки) с учетом рельефа, региональных особенностей промышленного и сельскохозяйственного производства, плотности населения и пр. Например, выбросы метана различны над местами нефте– и газодобычи и над морскими просторами, при наличии и отсутствии снежно-ледяного покрова над болотами в северных областях и т. д. Значительно большая неоднородность распределения имеет место для выбросов «предшественников» озона – оксидов азота и оксида углерода. Но еще хуже то, что интенсивность загрязнения атмосферы в тех или иных регионах может сильно изменяться всего за несколько десятилетий. Скажите, имелись ли основания в середине XIX века полагать, что в начале XXI столетия лидерами по эмиссии парниковых газов окажутся Китай и США, а не наиболее промышленно развитые в ту пору страны Европы? Обратимся к более поздним примерам. Вернемся, допустим, в 1950-е гг. Мог ли кто-нибудь тогда предсказать массовый перенос многими крупнейшими концернами своего производства из США и Европы в Юго-Восточную Азию? Ныне же львиная доля бытовой техники, компьютеров и не только их производится именно там. Например, всемирно известная компания Reebok размещает заказы на изготовление правых кроссовок в Тайване, а левых – в Таиланде. (Кстати, догадались, почему? Чтобы не воровали!) И уж полный конфуз случился в 1990-х гг., когда при разработке положений Киотского протокола многоопытные эксперты не разглядели предпосылок для начинавшегося тогда и продолжающегося по сей день рывка китайской экономики, сопровождаемого интенсивной эмиссией парниковых газов (см. раздел «Политики – климату»).

Все эти примеры подталкивают нас к мысли об осторожности, с которой следует относиться к публикуемым прогнозам. Чрезмерная детализация не всегда и необязательно улучшает их качество. Возвращаясь к последнему примеру, констатируем: реальная сегодняшняя экологическая ситуация в Китае, конечно же, заметно отличается от ее модельной оценки, проведенной в предположении китайской эмиссии парниковых и других газов и аэрозолей на достаточно низком уровне, соответствующем началу 1990-х гг. Но в то же самое время, исходя из общих законов развития мировой экономики, можно в целом верно оценить темпы роста глобального загрязнения атмосферы (и всей природной среды). Скажем, «непредусмотренное» увеличение объема производимых в Китае товаров массового потребления сопровождается одновременным сокращением (или закрытием) производства этих товаров (а значит, и выбросов парниковых газов) в других уголках нашей планеты.

Поэтому средние по земному шару модельные прогнозы, весьма вероятно, окажутся вполне адекватными реальной действительности, даже при постигшей их неудаче в отдельных регионах.

Принимая во внимание упомянутые каверзы «размазывания» источника загрязнения по узлам модельной сетки, а также относительно равномерное распределение главного парникового газа CO2, некоторые исследователи сосредоточились на изучении именно его поведения. Они рассмотрели условия эмиссии CO2, при которых через какое-то число лет в глобальной атмосфере установилась бы постоянная среднегодовая концентрация этого газа на том или ином уровне в диапазоне от 450 до 850 ppmv (попутно напомним: современная концентрация составляет 392 ppmv). В ходе их расчетов было установлено, что для достижения стабилизации содержания CO2 в атмосфере следует полностью прекратить антропогенные выбросы углекислого газа уже в ближайшие десятилетия. Необходимость таких жестких мер следует из общих соображений и понятна без моделирования. Однако как углеродный цикл, так и атмосфера (не говоря уже обо всей климатической системе), имеют довольно большую инерцию, и модельные расчеты помогли оценить величину скорости сокращения и период времени, необходимые для достижения заданных постоянных уровней концентрации CO2. Причем чем раньше такое сокращение эмиссии углекислого газа будет начато, тем менее болезненным окажется этот процесс и тем быстрее может быть достигнута цель.

В связи с этим среди обеспокоенных ситуацией ученых и политиков распространяются призывы к быстрому переходу от слов к делу. Намеченные Киотским протоколом нормы сокращения выбросов в атмосферу парниковых газов (в эквиваленте CO2), очевидно, вовсе недостаточны, но даже они плохо выполняются многими странами. Движение «зеленых», многие экологические организации призывают «лица, принимающие решения» (от англ. policymakers) – правительства не затягивать с началом действий.

С недавних пор эти призывы нашли отражение и в подходах к составлению сценариев. Все предыдущие сценарии строились по принципу: «предположим размер эмиссии, чтобы оценить, к чему это приведет». Идеология, закладываемая в сценарии нового поколения, иная: «зададим предельно допустимую планку изменения климата, чтобы оценить, при каких условиях (эмиссиях) удастся остаться в заданных границах».

Другими словами, если прежде в рамках предположений о развитии народонаселения, экономики, экологии и т. д. выстраивались сценарии выбросов парниковых газов, то теперь социально-экономическое развитие ограничивается лимитом на такие выбросы, обеспечивающим невыход за установленную границу изменений климата.

При построении новых сценариев в качестве критерия изменений климата вновь предпочтение было отдано нашему давнему знакомцу – радиационному форсингу. Сегодня обсуждаются и уже используются четыре базовых сценария нового поколения: RCP 8.5; RCP 6.0; RCP 4.5; RCP 2.6. RCP – это Representative Concentration Pathways или Характерные пути [изменения] концентраций [газов]. (В квадратных скобках указаны части названия, подразумеваемые, но не включенные в него.) Цифры указывают на ожидаемую величину радиационного форсинга (в Вт/м2) в 2100 г. от начала «индустриальной эпохи». Из этих цифр следует, что RCP 8.5 – сценарий с максимальными антропогенными выбросами, а RCP 2.6 – с минимальными. Эти эмиссионные сценарии с соответствующими изменениями радиационного форсинга являются основой для развития климатических моделей разной размерности и подробности. Кроме того, на данной основе определяются возможности дальнейшего развития народонаселения, экономики, экологии, социальной сферы.

Следует обратить внимание на то, что в старых сценариях – А1, А2, В1 и В2, даже при разных экономических и социальных предпосылках, эмиссии парниковых газов получались близкими по значениям или даже почти совпадали, хотя бы на части рассматриваемого периода XXI века. Поэтому на практике обычно используют не больше чем три сценария, из которых в двух предполагаются очень быстрый и очень медленный рост выбросов парниковых газов соответственно, а в третьем рассматривают некоторую «среднюю» скорость выбросов. При этом моделисты не обращают внимания на социально-экономические «корни» сценария.

Зато новые сценарии, в отличие от их предшественников, достаточно сильно разнятся между собой. На рис. 23 цв. вклейки показаны предельно допустимые расчетные концентрации CO2, СН4 и N2O, при которых не нарушаются «форсинговые» требования новых сценариев. Для выполнения этого условия признано необходимым, чтобы величина антропогенных эмиссий CO2 для минимального сценария RCP 2.6 стала нулевой к 2070 г, а затем – и отрицательной, для сценария же RCP 4.5 – вернулась в том же 2070 г. к современному уровню (уровню 2010 г.). В целом же различия между попарно соответствующими кривыми, демонстрирующими изменения концентраций на рис. 25 и 23 цв. вклейки, все же не очень велики (в том числе и для оксида азота – отдельно оговариваем этот факт, так как может сложиться иное впечатление из-за разницы на осях в масштабах концентрации N2O на рис. 25 и 23 цв. вклейки). В частности, соотношение концентраций для максимального и минимального сценариев на 2100 г. составляют примерно 2,0; 2,3 и 1,3 (рис. 26) и 2,3; 2,8; 1,3 (рис. 23 цв. вклейки) для CO2, СН4 и N2O соответственно. Таким образом, несмотря на разницу в «идеологии» при создании сценариев старого и нового образцов, последние являются эволюционным, но не революционным (!) продолжением первых.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | Следующая
  • 0 Оценок: 0

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации