Электронная библиотека » Коллектив Авторов » » онлайн чтение - страница 10


  • Текст добавлен: 12 апреля 2016, 20:20


Автор книги: Коллектив Авторов


Жанр: Медицина, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 10 (всего у книги 45 страниц) [доступный отрывок для чтения: 13 страниц]

Шрифт:
- 100% +
4.7 Сборка вирусных частиц

Синтез компонентов вирусных частиц в клетке разобщен и может протекать в разных структурах ядра и цитоплазмы. Вирусы, репликация которых проходит в ядрах, условно называют ядерными. В основном это ДНК-содержащие вирусы: аденовирусы, паповавирусы, парвовирусы, вирусы герпеса. Вирусы, реплицирующиеся в цитоплазме, называют цитоплазматическими. К ним относятся из ДНК-содержащих вирус оспы и большинство РНК-содержащих вирусов, за исключением ортомиксовирусов и ретровирусов. Однако это разделение весьма относительно, потому что в репродукции тех и других вирусов есть стадии, протекающие соответственно в цитоплазме и ядре.

Внутри ядра и цитоплазмы синтез вирусспецифических молекул также может быть разобщен. Так, например, синтез одних белков осуществляется на свободных полисомах, а других – на полисомах, связанных с мембранами. Вирусные нуклеиновые кислоты синтезируются в ассоциации с клеточными структурами вдали от полисом, которые синтезируют вирусные белки. При таком дисьюнктивном способе репродукции образование вирусной частицы возможно лишь в том случае, если вирусные нуклеиновые кислоты и белки обладают способностью при достаточной концентрации узнавать друг друга в многообразии клеточных белков и нуклеиновых кислот и самопроизвольно соединяться друг с другом, т.е. способны к самосборке.

В основе самосборки лежит специфическое белокнуклеиновое и белокбелковое узнавание, которое может происходить в результате гидрофобных, солевых и водородных связей, а также стерического соответствия. Белокнуклеиновое узнавание ограничено небольшим участком молекулы нуклеиновой кислоты и определяется уникальными последовательностями нуклеотидов в не кодирующей части вирусного генома. С этого узнавания участка генома вирусными капсидными белками начинается процесс сборки вирусной частицы. Присоединение остальных белковых молекул осуществляется за счет специфических белок-белковых взаимодействий или неспецифических белокнуклеиновых взаимодействий (рисунок 27).

В связи с разнообразием структуры вирусов животных разнообразны и способы формирования вирионов, однако можно сформулировать следующие общие принципы сборки.


Рисунок 27 – Структура и самосборка частицы вируса табачной мозаики из белковых субъединиц и молекул РНК (Биологический энциклопедический словарь / гл. ред. М. С. Гиляров; редкол.: А. А. Бабаев [и др.]. – 2-е изд., исправл. – М.: Сов. Энциклопедия, 1986)


1 У просто устроенных вирусов формируются провирионы, которые затем в результате модификаций белков превращаются в вирионы. У сложно устроенных вирусов сборка осуществляется многоступенчато. Сначала формируются нуклеокапсиды или сердцевины, с которыми взаимодействуют белки наружных оболочек.

2 Сборка сложно устроенных вирусов (за исключением сборки вирусов оспы и реовирусов) осуществляется на клеточных мембранах. Сборка ядерных вирусов происходит с участием ядерных мембран, сборка цитоплазматических вирусов – с участием мембран эндоплазматической сети или плазматической мембраны, куда независимо друг от друга прибывают все компоненты вирусной частицы.

3 У ряда сложно устроенных вирусов существуют специальные гидрофобные белки, выполняющие функции посредников между сформированными нуклеокапсидами и вирусными оболочками. Такими белками являются матриксные белки у ряда «минус-нитевых» вирусов (ортомиксовирусов, парамиксовирусов, рабдовирусов).

4 Сборка нуклеокапсидов, сердцевин, провирионов и вирионов происходит не во внутриклеточной жидкости, а в специальных структурах, предсуществующих в клетке или индуцированных вирусом («фабриках»).

5 Сложно устроенные вирусы для построения своих частиц используют ряд элементов клетки-хозяина, например липиды, некоторые ферменты, у ДНК-геномного SV40 – гистоны, у оболочечных РНК-геномных вирусов – актин, а в составе ареновирусов обнаружены даже рибосомы. Клеточные молекулы несут определенные функции в вирусной частице, однако включение их в вирион может явиться и следствием случайной контаминации, как, например, включение ряда ферментов клеточных оболочек или клеточных нуклеиновых кислот.

Сборка РНК-содержащих вирусов. Сборка просто устроенных РНК-содержащих вирусов заключается в ассоциации вирусного генома с вирусными капсидными белками с образованием нуклеокапсида.

У сложно устроенных РНК-содержащих вирусов процессы сборки нуклеокапсидов, сердцевин и зрелых вирионов обычно разобщены. Нуклеокапсиды мигрируют к месту сборки вирусных частиц – плазматической мембране (или мембранам эндоплазматической сети) и упорядочение выстраиваются под участками мембран, с наружной стороны которых уже встроены вирусные суперкапсидные белки. Сборка заключается в том, что участки, содержащие гликопротеиды с примыкающими к ним нуклеокапсидами, постепенно выпячиваются через модифицированную клеточную мембрану. В результате выпячивания образуется «почка», содержащая нуклеокапсид и оболочку с суперкапсидными белками. «Почка» отделяется от клеточной мембраны с образованием свободной вирусной частицы. Такой способ формирования вирусных частиц называется почкованием. Почкование может происходить – через плазматическую мембрану клетки в наружную среду, как у ортомиксовирусов, парамиксовирусов, рабдовирусов и альфа-вирусов, либо через мембраны эндоплазматической сети в вакуоли, как у аренавирусов и буньявирусов, В основе выпячивания почки через мембрану лежат обычные клеточные процессы, направленные на отторжение непригодного для клетки материала в обновление мембран. Участок будущей почки содержит фиксированный нуклеокапсид, ассоциированный с суперкапсидными белками, но движение мембранных липидов продолжается в силу их текучести, липиды обволакивают будущую почку и вместе с ними из «почки» вытесняются клеточные мембранные белки. В результате этого движения происходит выбухание «почки» над клеточной мембраной. Механизм образования «почки» объясняет, почему в составе почкующихся вирусов не содержится клеточных мембранных белков.

Все вирусные компоненты – нуклеокапсиды и суперкапсидные белки прибывают к месту сборки независимо друг от друга. Первыми к месту сборки прибывают суперкапсидные белки. Обычно этими белками являются гликопротеиды, которые синтезируются в полисомах, связанных с мембранами, и через шероховатые, а затем гладкие мембраны в результате слияния с ними везикул комплекса Гольджи транспортируются на наружную поверхность плазматических мембран или остаются в составе везикул.

Включение гликопротеидов в определенные зоны клеточных мембран приводит к модификациям мембран. Нуклеокапсид узнает эти участки и подходит к ним с внутренней стороны липидного бислоя. Узнавание осуществляется с помощью одного из двух механизмов: 1) нуклеокапсид взаимодействует с участком гликопротеида, пронизывающим клеточную мембрану и вышедшим на ее внутреннюю поверхность. Такой механизм имеет место у альфа-вирусов; гидрофобный фрагмент гликопротеида Е1 проникает через липидный слой на его внутреннюю поверхность, и с этим фрагментом связываются нуклеокапсиды, которые позже войдут в состав «почки»; 2) в сборку вовлекается еще один вирусный белок, являющийся медиатором сборки, который называется мембранным, или матриксным белком. М-белок синтезируется на свободных полисомах, но сразу после синтеза встраивается в клеточные мембраны с внутренней цитоплазматической стороны липидного бислоя. Этот белок в высокой степени гидрофобен и поэтому способен к белок-белковым и белоклипидным взаимодействиям.

Включение М-белка в клеточные мембраны является сигналом для сборки вирусной частицы: вслед за включением немедленно следует связывание нуклеокапсидов с мембранами и почкование вирусной частицы. Тем самым М-белок обладает функцией лимитирующего сборку фактора.

Сборка ДНК-содержащих вирусов, В сборке ДНК-содержащих вирусов есть некоторые отличия от сборки РНК-содержащих вирусов. Как и у РНК-содержащих вирусов, сборка ДНК-содержащих вирусов является многоступенчатым процессом с образованием промежуточных форм, отличающихся от зрелых вирионов по составу полипептидов. Первый этап сборки заключается в ассоциации ДНК с внутренними белками и формировании сердцевин или нуклеокапсидов. При этом ДНК соединяется с предварительно сформированными «пустыми» капсидами.

В результате связывания ДНК с капсидами появляется новый класс промежуточных форм, которые называются неполными формами. Помимо неполных форм с разным содержанием ДНК, существует другая промежуточная форма в морфогенезе – незрелые вирионы, отличающиеся от зрелых тем, что содержат не нарезанные предшественники полипептидов. Таким образом, морфогенез вирусов тесно связан с модификацией (процессингом) белков.

Сборка ядерных вирусов начинается в ядре, обычно – с ассоциации с ядерной мембраной. Формирующиеся в ядре промежуточные формы вируса герпеса почкуются в перинуклеарное пространство через внутреннюю ядерную мембрану, и вирус приобретает таким путем оболочку, которая является дериватом ядерной мембраны. Дальнейшая достройка и созревание вирионов происходит в мембранах эндоплазматической сети и в аппарате Гольджи, откуда вирус в составе цитоплазматических везикул транспортируется на клеточную поверхность.

У не почкующихся липидсодержащих вирусов – вирусов оспы сборка вирионов происходит в уже описанных цитоплазматических вирусных «фабриках». Липидная оболочка вирусов в «фабриках» формируется из клеточных липидов путем автономной самосборки, поэтому липидный состав оболочек значительно отличается от состава липидов в клеточных мембранах.

4.8 Выход вирусных частиц из клетки

Существуют два способа выхода вирусного потомства из клетки: 1) путем «взрыва»; 2) путем почкования.

Выход из клетки путем взрыва связан с деструкцией клетки, нарушением ее целостности, в результате чего находящиеся внутри клетки зрелые вирусные частицы оказываются в окружающей среде. Такой способ выхода из клетки присущ вирусам, не содержащим липопротеидной оболочки (пикорна-, рео-, парво-, папова-, аденовирусы). Однако некоторые из этих вирусов могут транспортироваться на клеточную поверхность до гибели клетки.

Выход из клеток путем почкования присущ вирусам, содержащим липопротеидную мембрану, которая является дериватом клеточных мембран. При этом способе клетка может длительное время сохранять жизнеспособность и продуцировать вирусное потомство, пока не произойдет полное истощение ее ресурсов.

5 Основные процессы, контролирующие наследственность и изменчивость вирусов

Вирусам, как и всем живым организмам, свойственны наследственность и изменчивость. Так же как и у прочих форм жизни нуклеиновые кислоты вирусов подвержены мутациям.

Модификации. Модификациями называются не наследуемые (фенотипические) изменения у вирусов, обусловленные клеткой-хозяином. Эти изменения лежат в основе адаптации вируса к новому хозяину и преодоления зависимого от хозяина ограничения. Модификации нуклеиновых кислот вирусов осуществляют клеточные ферменты, ответственные за ограничение (рестрикцию) репродукции вируса.

Мутации. В основе изменчивости вирусов лежат мутации, т.е. изменения состава и последовательностей нуклеотидов вирусного генома. Мутации происходят у всех вирусов, независимо от того, является ли их генетическим аппаратом ДНК или РНК. В результате мутаций отдельные вирионы могут приобретать новые свойства. Дальнейшая судьба таких вирусов зависит от естественного отбора, сохраняющего популяцию, наиболее приспособленную к условиям существования.

Мутации могут иметь разные последствия. В одних случаях они ведут к изменению фенотипических проявлений в нормальных условиях. Например, увеличивается или уменьшается размер бляшек под агаровым покрытием; увеличивается или ослабляется нейровирулентность для определенного вида животных; вирус становится более чувствительным к действию химиотерапевтического агента и т.п.

В других случаях мутация является летальной, так как вследствие ее нарушается синтез или функция жизненно важного вирусспецифического белка, например вирусной полимеразы.

В некоторых случаях мутации являются условно летальными, так как вирусспецифический белок сохраняет свои функции в определенных, оптимальных для него, условиях и теряет эту способность в неразрешающих (непермиссивных) условиях. Типичным примером таких мутаций являются температурно-чувствительные (temperature sensitive) – ts-мутации, при которых вирус теряет способность размножения при повышенных температурах (от 39 °С до 42 °C), сохраняя эту способность при обычных температурах выращивания (от 36°С до 37 °C).

По своему механизму мутации могут быть тоже разными. В одних случаях происходит деления, т.е. выпадение одного или нескольких нуклеотидов, в других случаях происходит встраивание одного или нескольких нуклеотидов, а в некоторых случаях – замена одного нуклеотида другим.

Мутации могут быть прямыми и обратными. Прямые мутации меняют фенотип, а обратные мутации – реверсии – его восстанавливают. Возможны истинные реверсии, когда обратная мутация происходит в месте первичного повреждения, и псевдореверсии, если мутация происходит в другом участке дефектного гена (интрагенная супрессия) или в другом гене (экстрагенная супрессия). Реверсия не является редким событием, так как ревертанты обычно более приспособлены к данной клеточной системе. Поэтому при получении мутантов с заданными свойствами, на пример вакцинных штаммов, приходится считаться с возможной их реверсией к дикому типу.

Мутации носят случайный характер и объясняются статистическими законами.

В качестве физических мутагенов наиболее часто применяется ультрафиолетовое облучение, так как его энергия сопоставима с энергией химических связей.

Реже применяются более жесткие виды облучения – рентгеновское и g-облучение, а также обработка вирусных суспензий нейтронами, протонами, электронами и ядрами гелия, так как они вызывают сильные разрушения вирусных геномов и их инактивацию.

В качестве химических мутагенов применяют аналоги оснований (бромурацил, бромдезоксиуридин, 2-аминопурин, нитрозогуанидин и пр.), алкилирующие и флуоресцирующие соединения (профлавин), интеркалирующие агенты (актиномицин, этидий бромид), азотистую кислоту, гидроксиламин и многие другие.

5.1 Генетические и негенетические взаимодействия между вирусами

Как в естественных, так и в экспериментальных условиях одна клетка может быть заражена не одним, а несколькими вирусами. В процессе такой смешанной инфекции могут иметь место различные формы взаимодействия как между вирусными геномами, так и между продуктами генов. При взаимодействии геномов могут наблюдаться такие формы генетических взаимодействий, как множественная реактивация, рекомбинация, пересортировка генов, кросс-реактивация, гетерозиготкость. При взаимодействии на уровне продуктов генов могут иметь место негенетические взаимодействия: комплементация, интерференция, фенотипическое смешивание и др.

Множественная реактивация. Вирусная инфекция может возникнуть при заражении клетки несколькими вирионами с поврежденными геномами вследствие того, что функцию поврежденного гена может выполнять вирус, у которого этот ген не поврежден. Этот феномен был вначале обнаружен на бактериофагах и получил название множественной реактивации. В основе множественной реактивации лежит кооперативный процесс, при котором вирионы с поражением разных генов дополняют друг друга путем генетической рекомбинации, в результате чего репродуцируется исходный неповрежденный вирус.

Эффективность множественности реактивации зависит от многих причин: степени повреждения генома вирионов, числа проникших в клетку вирионов, концентраций их в определенных участках клетки, аутоинтерференции поврежденных вирионов. Для множественной реактивации важное значение имеет расстояние между вирионами с поврежденными геномами внутри клетки. Обработка вирионов двухвалентными ионами металлов, ведущая к их агрегации, усиливает множественную реактивацию.

Рекомбинация. Генетической рекомбинацией называют обмен генетическим материалом, происходящий между родительскими вирусами. Возможен обмен полными генами (межгенная рекомбинация), так и участками одного и того же гена (внутригенная рекомбинация). Образующийся вирус-рекомбинант обладает свойствами, унаследованными от разных родителей.

Обычно рекомбинируемые штаммы обладают характерными признаками, которые обозначаются как маркеры. Например, были получены рекомбинанты между вирусами полиомиелита, обладающие повышенной устойчивостью и повышенной чувствительностью к гуанидину, разной ней-ровирулентностью, разной устойчивостью к повышенной температуре, разной чувствительностью к ингибиторам сывороток лошадей и коров и т.п. Для получения рекомбинантов используют штаммы, содержащие два или большее число маркеров.

Тест рекомбинации применяют для генетических исследований вирусов. С его помощью возможно построение генетических карт вирусов, в которых определяется, в каких участках генома произошли мутации, а также в условных единицах измеряется расстояние между разными мутациями.

Пересортировка генов. Вариантом рекомбинации является феномен, получивший название пересортировки генов. Она наблюдается при генетических взаимодействиях между вирусами, имеющими сегментированный геном. Образующиеся при этом гибридные формы вирусов называют реассортантами. Реассортанты вирусов гриппа получают при совместном культивировании вирусов с разными генами гемагглютинина и нейраминидазы. В этом случае из общего потомства путем нейтрализации соответствующих антигенов можно выделить интересующие исследователя варианты.

Существуют определенные группировки (констелляции или созвездия) генов, которые в данной системе клеток более стойки и делают вирус более жизнеспособным.

Сходные процессы пересортировки генов имеют место у вирусов гриппа типов А, В и С и у других вирусов с фрагментарным геном – у буньявирусов, аренавирусов (однонитчатые РНК) и реовйрусов (ротавирусов) (двунит-чатая РНК), Однако эти процессы не столь интенсивны и доступны изучению, как у вирусов гриппа.

Перекрестная реактивация. Перекрестная реактивация, кросс-реактивация или реактивация при скрещивании, происходит в том случае, когда у одного из штаммов вируса часть генома повреждена, а другой геном интактен. При смешанной инфекции двумя такими вирусами возможна рекомбинация неповрежденных участков генома инактивированного вируса с геномом интактного вируса, и в результате этого процесса появляются штаммы вируса со свойствами обоих родителей. Описываемый феномен также обозначается как «спасение маркера», поскольку реактивируется (рекомбинирует) лишь часть генома инактивированного вируса, несущая какой-нибудь признак (маркер).

Гетерозиготность. При совместном культивировании двух штаммов вируса может происходить формирование вирионов, содержащих в своем составе два разных генома или по крайней мере один полный геном и часть второго генома. Это явление названо гетерозиготностью.

Комплементация. Комплементация (дополнение) является таким видом негенетического взаимодействия при смешанной инфекции двумя вирусами, которое стимулирует репродукцию обоих партнеров или одного из них, но не изменяет генотипы вирусов. Принцип комплементации заключается в том, что вирус снабжает партнера недостающими компонентами, обычно белками, структурными или неструктурными.

Комплементация может быть односторонней и двусторонней. Двусторонняя комплементация заключается в репродукции обоих партнеров, каждый из которых не способен к самостоятельной репродукции. При односторонней комплементации один из партнеров обеспечивает другого необходимыми для его репродукции продуктами. Вирус, стимулирующий репродукцию другого вируса, называется «вирус-помощник», а вирус, репродуцирующийся только в присутствии помощника, называется «вирус-сателлит».

Комплементация широко распространена среди вирусов и встречается как между родственными, так и неродственными вирусами. Феномен тесно связан с проблемой дефектности вирусов.

Поскольку в вирусной популяции помимо стандартных обычно присутствуют дефектные неинфекционные вирусные особи, в частности дефектные частицы, утратившие часть генетического материала, комплементация имеет место в инфекционном цикле многих вирусов и заключается в том, что члены популяции снабжают друг друга продуктами генов, которые дефектны у партнеров (негенетическая реактивация). Отличие комплементации от генетической рекомбинации заключается в отсутствии обмена генетическим материалом.

Комплементация встречается и у неродственных вирусов, принадлежащих к разным семействам. Одним из семейств, вирусы которого наиболее часто участвуют в комплементации, является семейство аденовирусов. В одних системах аденовирусы могут действовать как дефектные вирусы, в других – как помощники. Например, в культуре клеток почек макак резусов аденовирусы могут репродуцироваться только в присутствии SV40, который является в данном случае вирусом-помощником. В других системах сами аденовирусы действуют как вирусы-помощники, а вирусомсателлитом является аденоассоциированный вирус, относящийся к семейству парвовирусов. Репродукция этого вируса полностью зависит от комплементирующего действия аденовирусов. Вирус гепатита В является помощником для дельта-агента, который покрывается его наружным белком – HBs-антигеном. Сочетание обоих вирусов обнаружено при наиболее тяжелых формах гепатита.

Возможна не только межцистронная, но и внутрицистронная комплементация в том случае, когда один ген кодирует несколько белков.

Фенотипическое смешивание. При совместном культивировании двух вирусов может наблюдаться феномен фенотипического смешивания, когда геном одного вируса бывает заключен в капсид, состоящий частично или полностью из белков другого вируса.

Фенотипическое смешивание наблюдается при смешанной инфекции многими вирусами, причем эти вирусы могут быть как близкими друг другу (например, вирусы гриппа А и В или разные серологические подтипы вируса гриппа А), так и весьма далекими (онковирусы и рабдовирусы).


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 | Следующая
  • 3 Оценок: 1

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации