Автор книги: Леонард Млодинов
Жанр: Зарубежная образовательная литература, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 10 (всего у книги 18 страниц)
При оценке любого диагностического испы та ния важно знать, каков показатель «ложной положительности». Например, анализ, который выявляет 99 % всех злокачественных опухолей, производит сильное впечатление, однако я с легкостью могу придумать анализ, который выявляет 100 % всех злокачественных опухолей. Для этого мне только и надо что находить у каждого осматриваемого пациента опухоль. Статистический показатель, отличающий мой анализ от действительно полезного, заключается в следующем: в результате моего анализа показатель «ложной положительности» окажется высоким. Однако вышеприведенный пример демонстрирует: осведомленности о показателе «ложной положительности» недостаточно для того, чтобы определить, полезен анализ или не полезен. Необходимо также знать, как показатель «ложной положительности» соотносится с истинной распространенностью заболевания. Если заболевание обычное, положительный результат будет гораздо более убедительным. Чтобы увидеть, как истинная распространенность связана с положительными результатами анализа, предположим, что я гомосексуалист, и результаты анализа у меня положительные. Предположим, что в сообществе гомосексуалистов вероятность заражения среди тех, кто сдал анализы в 1989 г., была около 1 %. Что значит: среди результатов 10 000 анализов мы должны обнаружить не 1 (как ранее), а 100 «истинно положительных» вместе с 10 «ложно положительными». Таким образом, в данном случае вероятность того, что положительный результат означал мою инфицированность, должна была равняться 10 из 11. Вот почему при оценке результатов неплохо выяснить: относитесь вы к группе повышенного риска или нет.
Теория Байеса говорит о следующем: вероятность того, что А произойдет, если произойдет В, обычно отличается от вероятности того, что В произойдет, если А произойдет[119]119
Если быть точным, вероятность того, что А произойдет, если произойдет В, равна вероятности того, что В произойдет, если произойдет А, помноженной на поправочный коэффициент, который уравнивает между собой вероятность А и вероятность В.
[Закрыть]. Что не принимается во внимание и является частой ошибкой среди врачей. Например, во время исследований в Германии и США терапевтов попросили подсчитать вероятность того, что не обнаруживающая симптомов рака женщина в возрасте между 40 и 50, чья маммограмма показывает рак, на самом деле больна раком груди, если при этом в 7 % случаев маммограммы диагностируют рак, когда на самом деле его нет[120]120
Gerd Gigerenzer, Calculated Risks: How to Know When Numbers Deceive You (New York: Simon & Schuster, 2002), pp. 40–44.
[Закрыть]. Кроме того, врачам сообщили, что в реальности частота возникновения заболевания равна примерно 0,8 % и что «ложно отрицательные» результаты равны примерно 10 %. Принимая все вышесказанное во внимание, можно с помощью метода Байеса определить, что «положительная» маммограмма диагностирует рак лишь примерно в 9 % всех случаев. Однако в немецкой группе треть врачей пришли к выводу, что вероятность равна примерно 90 %, а срединное значение оказалось равно 70 %. В американской группе у 95 из 100 врачей вероятность оказалась равна примерно 75 %.
Подобная же ситуация складывается и с проверкой спортсменов на допинг. Цифры, на которые часто ссылаются, на самом деле не соответствуют действительности, являясь относительным числом ложно положительных заключений. И дают искаженное представление о вероятности того, что спортсмен виноват в приеме допинга. Например, Мэри Дэкер Слэни, бегунья мирового класса и чемпионка 1983 г. в забегах на 1.500 и 3.000 м, пыталась снова вернуться в спорт, когда на отборочных соревнованиях в Атланте в 1996 г. ее обвинили в приеме допинга – вещество попало в организм при употреблении тестостерона. После всевозможных обсуждений ассоциация (с 2001 г. официально именуемая Международной ассоциацией легкоатлетических федераций) вынесла решение: Слэни «была виновна в злоупотреблениях, связанных с приемом допинга», которое по сути дела поставило крест на ее спортивной карьере. Согласно некоторым свидетельским показаниям в деле Слэни, «относительное число ложно положительных заключений» применительно к анализу мочи спортсменки могло доходить до 1 %. Видимо, поэтому многие легко согласились со следующим: вероятность вины спортсменки равна 99 %. Однако мы уже убедились в том, что это неверно. Предположим, анализы сдали 1.000 спортсменов, 1 из 10 был признан виновным, а результаты анализа, выданные признанному виновным спортсмену, представляли собой 50 % вероятность злоупотребления допингом. Далее из каждой 1.000 проверенных спортсменов 100 оказались бы виновными, а результаты анализов указали бы на 50 из этих 100. Тем временем из 900 невиновных спортсменов по результатам анализов выделились бы 9 человек. Таким образом, в действительности анализы на выявление допинга означали вовсе не то, что вероятность вины спортсменки равнялась 99 %, скорее всего, цифра была: 50/59 = 84,7 %. Другими словами, если иметь в виду свидетельства, у вас должна быть такая же степень уверенности в том, что Слэни виновна, как и в том, что если она подбросит кость, число 1 не выпадет. Это, конечно же, не исключает разумные основания для сомнения, но важно вот что: соответствующие заключения, основанные на масштабной проверке (90.000 спортсменов ежегодно сдают мочу на анализы), равносильны обвинению большого числа невиновных спортсменов[121]121
Donald A. Barry and LeeAnn Chastain, “Inferences About Testosterone Abuse Among Athletes”, Chance 17, no. 2 (2004): 5–8.
[Закрыть].
В сфере права такую ошибку перестановки двух элементов иногда называют «ошибкой обвинения», поскольку обвинитель часто прибегает к подобному типу ошибочного довода, подводя присяжных заседателей к обвинительному приговору подозреваемого, хотя доказательства и неубедительны. Например, рассмотрим имевшее место в Британии дело Салли Кларк[122]122
John Batt, Stolen Innocence (London: Ebury Press, 2005).
[Закрыть]. Первый ребенок Кларк умер в возрасте 11 недель. Как было сказано, смерть ребенка наступила в результате синдрома внезапной смерти ребенка грудного возраста – этот диагноз ставится, когда ребенок умирает внезапно, а вскрытие не проясняет причины смерти. Кларк снова забеременела. Ее второй ребенок прожил 8 недель, а затем умер по той же причине – синдром внезапной смерти. После этого случая Кларк была арестована: ей предъявили обвинение в том, что она задушила обоих детей. Во время судебных слушаний обвинение вызвало в качестве эксперта педиатра, Роя Мидоу, который свидетельствовал: учитывая редкость синдрома, вероятность того, что оба ребенка умерли именно по этой причине, равны 73 млн к 1. Обвинитель не предъявил никакого другого существенного свидетельства против Кларк. Могло ли такое свидетельство эксперта оказаться достаточным для вынесения обвинительного приговора? Присяжные решили, что могло, и в ноябре 1999 г. Кларк посадили.
Мидоу подсчитал: вероятность того, что ребенок умрет от синдрома внезапной смерти, равна 1 из 8.543. Свою цифру – 73 млн к 1 – он получил путем умножения этих двух факторов, по одному на каждого ребенка. Однако согласно его подсчетам выходит, что смерти детей были независимы друг от друга – то есть, ни факторы окружающей среды, ни наследственность не играли роли, увеличивавшей риск заболевания второго ребенка синдромом, от которого умер первенец. В действительности, в статье, опубликованной в «Бритиш медикал джорнел» через несколько недель после суда, вероятность того, что оба ребенка умрут в результате синдрома внезапной смерти, была определена как 2.75 млн к 1[123]123
Stephen J. Watkins, “Conviction by Mathematical Error? Doctors and Lawyers Should Get Probability Theory Right”, BMJ 320 (January 1, 2000): 2–3.
[Закрыть]. Но даже эта цифра слишком велика.
Чтобы понять, почему так получилось, что Салли Кларк посадили, нужно разобраться в ошибке перестановки двух элементов: мы пытаемся выяснить не вероятность того, что двое детей умрут в результате синдрома, а вероятность того, что двое умерших детей действительно умерли в результате синдрома. Спустя два года после заключения Кларк в тюрьму, Королевское общество статистиков рассмотрело ее дело и в сообщении для печати заявило: в своем решении присяжные «допустили серьезную логическую ошибку, именуемую „ошибкой обвинения”. Присяжные должны рассмотреть два разных объяснения детских смертей: от синдрома или же в результате умышленного убийства. И два смертельных исхода от синдрома, и два убийства в равной степени маловероятны, однако одно из двух все же случилось. В данном случае значение имеет относительное правдоподобие смертей…, а вовсе не то, насколько маловероятно… [объяснение смертей синдромом внезапной смерти[124]124
“Royal Statistical Society Concerned by Issues Raised in Sally Clark Case”, Royal Statistical Society, London, news release, October 23, 2001; http://www.rssorg.uk/PDF/RSS%20Statement%20regarding%20statistical%20issues%20in%20the%20Sally%20Clark%20case,%20October%2023rd%202001.pdf.
[Закрыть] ]». Позднее математик подсчитал относительное правдоподобие того, что семья теряет двух детей в результате синдрома внезапной смерти или же умышленного убийства. И на основании имевшихся данных заключил: вероятность того, что двое младенцев умрут в результате синдрома, в 9 раз выше, нежели то, что они станут жертвами убийства[125]125
Ray Hill, “Multiple Sudden Infant Deaths – Coincidence or beyond Coincidence?” Paediatric and Perinatal Epidemiology 18, no. 5 (September 2004): 320–26.
[Закрыть].
Семья Кларк подала на апелляцию, а в качестве экспертных свидетелей наняла собственных специалистов-статистиков. Апелляцию они проиграли, однако не сдались и решили добиваться врачебных разъяснений относительно причины смертей. В результате открылось, что патологоанатом, привлеченный обвинением, утаил тот факт, что второй ребенок на момент смерти страдал от бактериальной инфекции, каковая и могла вызвать летальный исход. Основываясь на данном обстоятельстве, судья отменил обвинительный приговор – Салли Кларк, просидевшая в заключении почти три с половиной года, была освобождена.
Известный адвокат и профессор юридического факультета в Гарварде Алан Дершовиц также с успехом воспользовался «ошибкой обвинения» во время защиты О.Дж. Симпсона, обвинявшегося в убийстве своей бывшей жены, Николь Браун Симпсон, и ее спутника. Судебный процесс с участием Симпсона, бывшей футбольной знаменитости, был одним из самых громких событий в прессе за 1994-95 гг. У полиции имелось достаточно улик, свидетельствовавших против Симпсона. Одну перчатку, испачканную в крови, они нашли у него дома, другую обнаружили на месте преступления. Пятна крови, совпадающей по группе с кровью Николь, были найдены на перчатках, в его машине, на носках в его спальне, а также на подъездной аллее у дома и в самом доме. Более того, образцы ДНК крови, обнаруженной на месте преступления, совпали с образцами ДНК крови Симпсона. Защита была бессильна, она разве что обвинила полицейское управление Лос-Анджелеса в расизме (О. Дж. Симпсон – афроамериканец), а также нечестности и усомнилась в подлинности улик.
Обвинение решило напирать на склонность Симпсона к агрессии по отношению к Николь. Первые десять дней обвинители говорили о многочисленных случаях насилия и заявляли о том, что одно уже это является достаточным основанием, чтобы подозревать Симпсона в убийстве. Как они выразились, «начинается с пощечины, а заканчивается убийством»[126]126
Quoted in Alan Dershowitz, Reasonable Doubts: The Criminal Justice System and the O. J. Simpson Case (New York: Simon & Schuster, 1996), p. 101.
[Закрыть]. Защита воспользовалась этой стратегией, усмотрев в ней двойные стандарты – адвокаты указали на то, что обвинение две недели пыталось сбить присяжных с толку, а свидетельства о том, что Симпсон раньше бил Николь, ничего не значат. Вот доводы Дершовица: в США 4 млн женщин ежегодно терпят побои от своих мужей и парней, и однако согласно общей сводке ФБР по преступлениям, совершенным в 1992 г., убитыми оказались в общей сложности 1 432 женщины, то есть 1 женщина из каждых 2 500[127]127
Federal Bureau of Investigation, “Uniform Crime Reports”, http:// www.fbi.gov/ucr/ucr.htm.
[Закрыть]. Следовательно, возразила защита, очень немногие мужчины, поколачивающие своих жен, способны убить их. Верно? Да. Убедительно? Да. Имеет ли отношение к делу? Нет. Нас интересует не вероятность того, что мужчина, который бьет жену, зайдет так далеко, что убьет ее (1 из 2.500), а скорее вероятность того, что избитая и убитая жена была убита именно тем, кто ее избивал. Согласно сводке по совершенным в США преступлениям в 1992, а также 1993 гг., вероятность, которую Дершовиц (или обвинение) должны были привести, звучала бы следующим образом: из всех избитых женщин, убитых в США в 1993 г., около 90 % были убиты теми, кто их бил. Эти статистические данные во время судебного процесса обнародованы не были.
По мере того, как приближался час вынесения приговора, вдвое сократилось количество междугородних звонков, объем торгов на Нью-йоркской фондовой бирже упал на 40 %, а около 100 млн человек включили телевизоры и радио, чтобы услышать: невиновен. Возможно, Дершовиц считал оправданной стратегию введения присяжных в заблуждение, потому как по его словам «клятва, произносимая в зале судебных заседаний – говорить правду, всю правду и ничего, кроме правды» касается только свидетелей. Адвокаты со стороны защиты, обвинения, а также судьи не дают этой клятвы… и конечно же, справедливо сказать, что в основе американской судебной системы лежит принцип – не говорить всю правду»[128]128
Alan Dershowitz, The Best Defense (New York: Vintage, 1983), p. xix.
[Закрыть].
Хотя условная вероятность произвела среди идей о теории случайности революцию, Томас Байес не был революционером, его работа, пусть даже и опубликованная в престижном издании «Philosophical Transactions» в 1764 г., осталась незамеченной. Пока другой человек, французский математик Пьер-Симон де Лаплас, не привлек внимание ученых к идеям Байеса: так мир узнал, как неразличимые на первый взгляд вероятности могут быть вычислены благодаря очевидным исходам.
Возможно, вы помните: «золотая теорема» Бернулли позволяет вычислить еще до самого эксперимента с подбрасыванием монет степень уверенности в том, что получится определенный исход (при условии, что монета идеальна, без изъянов). Возможно, вы также помните: теорема эта не скажет вам уже после проведенного вами эксперимента с монетой степень вероятности того, что монета была идеальной. Точно так же, если вам известно: вероятность того, что старик восьмидесяти пяти лет доживет до девяноста, равна 50/50, «золотая теорема» подсказывает вероятность того, что половина из стариков восьмидесяти пяти лет в группе из 1.000 человек умрет в течение ближайших пяти лет. Однако если половина людей в группе умрет в течение ближайших пяти лет уже после того, как им исполнится восемьдесят пять, теорема не ответит на вопрос: насколько вероятно, что неявные шансы на выживание для людей из этой группы равны 50/50. Или такой пример. Если Форд знает, что у 1 из 100 его машин неисправна трансмиссия, при помощи «золотой теоремы» можно узнать вероятность того, что в партии из 1.000 машин 10 или более трансмиссий будут неисправными, однако если Форд обнаружит 10 неисправных трансмиссий в выборке из 1.000 машин, данный факт не сообщит автомобильной компании вероятность того, что среднее арифметическое неисправных трансмиссий равно 1 из 100. В жизни наиболее частой из данных примеров оказывается вторая постановка задачи: вне ситуации, связанной с азартными играми, мы обычно не обладаем теоретическими знаниями шансов, скорее нам приходится вычислять их, основываясь на серии наблюдений. Ученые тоже оказываются в подобном положении: обычно они не пытаются найти (располагая размером физической величины) вероятность того, что измерения получатся такими либо другими, а вместо этого стараются распознать истинный размер физической величины, опираясь на ряд измерений.
Я специально выделил это различие – ввиду его важности. Оно определяет существенную разницу между вероятностью и статистикой: первая имеет дело с прогнозами на основе определенных вероятностей; последняя связана с заключениями на основе вероятностей, выведенных посредством серии наблюдений.
Именно к ряду вопросов, связанных со статистикой, и обращался Лаплас. Он не знал о существовании теории Байеса и, следовательно, вынужден был придумать ее снова. Как только Лаплас сформулировал теорию, встал следующий вопрос: имеется ряд измерений; каково наилучшее предположение, какое можно сделать из истинного размера измеренной величины, и какова вероятность того, что это предположение будет «близко» к истинному размеру, какие бы требования вы ни предъявляли к степени этой «близости»?
Лаплас с головой ушел в исследования; работа, начатая в 1774 г., затянулась на сорок лет. Вообще Лаплас был человеком неплохим, не чуждым широких жестов, однако иной раз неосознанно заимствовал идеи из чужих работ и без устали рекламировал себя. Лаплас располагал гибкостью травы на ветру – легко прогибался, что позволяло ему во время своего эпохального труда не отвлекаться на происходившие вокруг бурные события. Еще до Французской революции Лаплас занял выгодную должность преподавателя в Военной академии, где ему посчастливилось принимать экзамен у способного шестнадцатилетнего юноши по имени Наполеон Бонапарт. В 1789 г., когда грянула революция, Лаплас некоторое время находился под подозрением, однако не в пример многим другим уцелел, заявив о своей «страстной ненависти к королевскому дому», и позднее был не раз награжден уже республиканским правительством. Далее, когда в 1804 г. Наполеон провозгласил себя императором, Лаплас тут же забыл о своих республиканских взглядах; в 1806 г. ему дали титул графа. Когда же к правлению вернулась династия Бурбонов, Лаплас раскритиковал Наполеона в своем труде «Аналитическая теория вероятностей» издания 1814 г., написав: «падение империй, притязавших на вселенское господство, могло бы быть предсказано с очень высокой долей вероятности человеком, сведущим в вычислениях вероятностей[129]129
Pierre-Simon de Laplace, quoted in James Newman, ed., The World of Mathematics (Mineola, N.Y.: Dover Publications, 1956): 2:1323.
[Закрыть]». Предыдущее же издание, 1812 г., было посвящено «Наполеону Великому».
От гибкости Лапласа в политических вопросах только выиграла математика, поскольку анализ Лапласа оказался глубже и полнее, чем анализ Байеса. Имея в качестве основы работу Лапласа, мы в следующей главе оставим мир вероятности и познакомимся с миром статистики. Их область слияния является одной из самых важных во всех естественных науках – это колоколообразная кривая или же график нормального распределения. Кривая, а также сопутствующая ей новая теория измерения и станут темами следующей главы.
Глава 7. Измерение и закон распределения ошибок
Не так давно мой сын Алексей, вернувшись из школы, сообщил об оценке по английскому, полученной им за последнее сочинение. Ему поставили 93 балла. Будь все как обычно, я бы поздравил его с высшей оценкой – А. Но поскольку в пределах А это невысокий балл, а я знаю, что он способен на большее, я бы не преминул добавить: оценка говорит о том, что если в следующий раз он приложит чуть больше усилий, то получит более высокий балл. Однако все было отнюдь не как обычно, и я счел 93 балла возмутительной недооценкой сочинения. Здесь вам, верно, подумалось, что предыдущие несколько предложений говорят больше обо мне, нежели об Алексее. Что ж, вы совершенно правы. На самом деле, вся эта история обо мне, потому что сочинение за Алексея написал я.
О да, позор на мою голову! В свою защиту должен сказать, что в более мирных обстоятельствах скорее дотянулся бы за Алексея пяткой до подбородка на его занятиях по кунг-фу, чем писал бы за него сочинение. Но дело в том, что Алексей подошел ко мне с просьбой взглянуть на его работу как обычно, поздно вечером, в день перед сдачей сочинения. И я пообещал взглянуть. Начав читать сочинение с экрана компьютера, я поначалу внес несколько незначительных изменений – ничего такого, на что стоило бы обратить внимание. Однако затем редактор во мне начал шаг за шагом переставлять и перефразировать то и это, а когда дошел до конца, оказалось, что Алексей уже спит крепким сном, а я по сути написал новое сочинение. На следующее утро, смущенно признавшись, что поленился сохранить файл под новым именем, я сказал ему, чтобы он просто сдал мой вариант.
Сын протянул мне проверенное сочинение, похвалив его весьма сдержанно. «Неплохо, – сказал он. – Оно, конечно, 93 балла – это скорее А с минусом, чем А, но было уже поздно, и если бы у тебя не слипались глаза, наверняка справился бы лучше». Не сказать, чтобы я был рад. Во-первых, мало приятного в том, что твой пятнадцатилетний сын говорит тебе те самые слова, которые ты прежде обращал к нему, и при этом они кажутся тебе совершенно пустыми. Но кроме того, как могло мое сочинение – труд человека, которого даже собственная мать считает профессиональным писателем, – не получить достойной оценки у школьного учителя английского? Понятное дело, я был не одинок. Уже потом мне рассказали о другом писателе, с которым приключилась точно такая же история, с той лишь разницей, что его дочь получила еще более низкую оценку – В. Тексты, выходившие из-под пера этого писателя с докторской степенью по английскому языку, вполне удовлетворяли даже столь взыскательные издания, как «Роллинг Стоун», «Эсквайр» и «Нью-Йорк Таймс», но только не учителя средней школы. Алексей попытался утешить меня, поведав еще одну историю. Как-то раз двое его друзей сдали одно и то же сочинение. Сын решил, что они сглупили, и их немедленно разоблачат. Однако перегруженная учительница не только не заметила удвоения, но и поставила за одно сочинение 90 баллов (А), а за другое – 79 (С). На первый взгляд, странно, но только если вам не доводилось, как мне, ночь напролет проверять здоровенную стопку работ, гоняя по кругу, чтобы ненароком не заснуть, музыку из «Стар Трек».
Числам всегда приписывается особый вес. Рассуждение, во всяком случае, неосознанно, строится примерно так: если учитель оценивает сочинение по стобалльной шкале, эти незначительные различия и в самом деле что-то значат. Но если десять издателей сочли, что рукопись первого тома «Гарри Поттера» не заслуживает публикации, то каким образом бедная миссис Финнеган (на самом деле ее зовут не так) проводит тонкое различение между двумя школьными сочинениями, ставя за одно 92 балла, а за другое 93? Если мы допускаем, что качество сочинения в принципе поддается определению, то нам придется признать, что оценка – не описание качества сочинения, но его измерение, а измерение, как ничто другое, подвержено случайности. В случае с сочинением измерительный инструмент – учитель, а в выставляемых им оценках, как и в любом измерении, проявляются случайная дисперсия и ошибки.
Еще один вид измерения – голосование. В этом случае мы измеряем не столько количество людей, поддерживающих того или иного кандидата на момент выборов, сколько количество тех, кто не поленился прийти в избирательный участок и проголосовать. В этом измерении тоже множество источников случайной ошибки. Одни законные избиратели, приходя в участок, обнаруживают, что их имя не внесено в списки для голосования. Другие по ошибке голосуют не за того, за кого собирались. Конечно же, ошибки возникают и при подсчете голосов. Часть бюллетеней ошибочно признается недействительными или, напротив, действительными. Еще часть может быть утеряна. Как правило, даже все эти факторы в совокупности не могут повлиять на исход выборов. Однако в случае выборов, где у соперников шансы на победу приблизительно равны, они могут сыграть свою роль, и тогда голоса обычно подсчитываются не один, а несколько раз, как если бы второй или третий подсчет были меньше подвержены влиянию случайной ошибки, чем первый.
Например, в 2004 г. во время выборов губернатора штата Вашингтон победителем в конечном счете был объявлен кандидат от демократов, хотя при первом подсчете кандидат от республиканцев обходил его на 261 из приблизительно 3 млн голосов[130]130
Sarah Kershaw and Eli Sanders, “Recounts and Partisan Bickering Bring Election Fatigue to Washington Voters”, New York Times, December 26, 2004; and Timothy Egan, “Trial for Governor’s Seat Set to Start in Washington”, New York Times, May 23, 2005.
[Закрыть]. Поскольку результаты обоих кандидатов были столь близки друг к другу, по закону штата требовался повторный подсчет голосов. По результатам этого подсчета республиканец вновь обошел демократа, но только на 42 голоса. Неизвестно, счел ли кто-нибудь дурным предзнаменованием тот факт, что разница в 219 голосов между первым и вторым подсчетами в несколько раз превосходила новое значение перевеса в количестве голосов, но в итоге состоялся третий подсчет голосов, на сей раз полностью «вручную». Перевес в 42 голоса получался благодаря лишь одному голосу на каждые 70 000, а потому ручной пересчет голосов можно сопоставить с попыткой попросить 42 человек посчитать от 1 до 70 000 в надежде, что каждый сделает в среднем меньше 1 ошибки. Естественно, результат вновь изменился. На сей раз получился перевес в 10 голосов в пользу демократа. Впоследствии он вырос до 129 голосов, когда в подсчет было включено 700 вновь обнаруженных «утерянных бюллетеней».
Ни процесс подсчета голосов, ни сам процесс голосования нельзя назвать совершенным. Если, например, по причине ошибки в работе почтовой службы 1 из 100 потенциальных избирателей не получит извещения с адресом избирательного участка, а еще 1 на каждых 100 таких избирателей по этой причине не проголосует, то в вашингтонских выборах это вылилось бы в 300 избирателей, которые хотели бы проголосовать, но не получили такой возможности в силу ошибки правительства. Выборы, как и любое измерение, неточны, пересчеты тоже, поэтому когда кандидаты набирают близкое количество голосов, разумнее принять результаты выборов такими, какие они есть, или попросту подбросить монетку, а не тратить время на бесконечные пересчеты.
Вопрос неточности измерений приобрел особо важное значение в середине XVIII в., когда в центре внимания астрономов и математиков оказалась проблема согласования законов Ньютона и наблюдаемого движения Луны и планет. Один из способов получения единственного значения на основе целого ряда несовпадающих измерений – усреднение, или вычисление среднего значения. По всей видимости, первым эту процедуру использовал в оптических исследованиях молодой Исаак Ньютон[131]131
Jed Z. Buchwald, “Discrepant Measurements and Experimental Knowledge in the Early Modern Era”, Archive for History of Exact Sciences 60, no. 6 (November 2006): 565–649.
[Закрыть]. Однако, как и в целом ряде других случаев, Ньютон опередил здесь свое время. В ту пору, да и в следующем веке, большинство ученых не занимались подсчетом среднего. Вместо этого они выбирали среди своих измерений «золотой стандарт» – значение, которое интуитивно признавали наиболее надежным среди своих результатов. Дело в том, что отклонения в измерениях они рассматривали не как неизбежный побочный продукт процесса измерения, но как свидетельство небрежности, у которой могли быть последствия, в том числе и этического характера. Они даже избегали публиковать результаты множественных измерений одного и того показателя, полагая, что это будет сочтено проявлением неаккуратности в работе и вызовет недоверие. Но к середине VXIII в. положение дел начало меняться. В наши дни рассчитать примерные орбиты небесных тел, представляющие собой набор эллипсов, приближенных по форме к окружности, может любой сообразительный старшеклассник, который при этом даже не подумает снять наушники с громыхающей в них музыкой. Однако же описать движение планет с большей точностью, учитывая не только силу притяжения Солнца, но также и притяжение других планет, а кроме того, отклонения в форме Луны и планет от совершенной сферы, непросто даже сейчас. Чтобы достигнуть этой цели, необходимо согласовать сложные и приближенные математические вычисления с неточностями наблюдений и измерений.
Но есть еще одна причина, по которой в конце XVIII в. оказалась востребована математическая теория измерения: в 1780-х гг. во Франции начала складываться новая область точной экспериментальной физики[132]132
Eugene Frankel, “J. B. Biot and the Mathematization of Experimental Physics in Napoleonic France”, in Historical Studies in the Physical Sciences, ed. Russell McCormmach (Princeton, N.J.: Princeton University Press, 1977).
[Закрыть]. До этого времени в физике сосуществовали две не связанные друг с другом исследовательские традиции. С одной стороны, математики занимались изучением строгих следствий из ньютоновых теорий движения и тяготения. С другой стороны, те, кого принято именовать экспериментальными философами, проводили эмпирические исследования электричества, магнетизма, света и температур. Представителей экспериментальной философии, зачастую ученых-любителей, строгая научная методология занимала в значительно меньшей степени, нежели математически ориентированных исследователей, и потому возникло движение, направленное на то, чтобы реформировать и математизировать экспериментальную физику. И вновь ведущую роль здесь сыграл Пьер-Симон де Лаплас.
Лаплас заинтересовался физикой благодаря работам своего коллеги и соотечественника, французского ученого Антуана Лорана Лавуазье, которого считают отцом современной химии[133]133
Charles Coulston Gillispie, ed., Dictionary of Scientific Biography (New York: Charles Scribner’s Sons, 1981), p. 85.
[Закрыть]. Лаплас и Лавуазье много лет работали вместе, однако Лавуазье в значительно меньшей степени преуспел в искусстве выживания в то беспокойное время. Чтобы заработать деньги на свои многочисленные опыты, ему пришлось стать членом привилегированной частной коллегии откупщиков, работавших под защитой государства. Я не представляю себе времен, когда человека, занимающегося сбором налогов, жаждали бы пригласить домой на чашечку горячего кофе с имбирными пряниками, но когда грянула Французская революция, должность эта оказалась особенно ненадежным прикрытием. В 1794 г. Лавуазье арестовали вместе со всеми членами коллегии и приговорили к смертной казни. Будучи человеком до конца преданным науке, Лавуазье попросил об отсрочке исполнения приговора, чтобы закончить некоторые опыты и опубликовать результаты. На что председатель трибунала дал знаменитый ответ: «Республике ученые не нужны». Отца современной химии безотлагательно обезглавили, а тело бросили в общую могилу. По легенде, он поручил своему ассистенту подсчитать количество слов, которые попытается выговорить его лишенная тела голова.
Работы Лапласа и Лавуазье, а также ряда других ученых, прежде всего Шарля-Огюстена де Кулона, проводившего опыты с электричеством и магнетизмом, преобразили экспериментальную физику. Кроме того, эти работы внесли вклад в развитие в 1790-х гг. новой метрической системы, пришедшей на смену множеству разрозненных и несопоставимых систем, тормозивших развитие науки и нередко служивших причиной споров между торговцами. Новую метрическую систему, разработанную группой ученых, сформированной по указу Людовика XVI, революционное правительство узаконило уже после падения Людовика. По иронии судьбы, Лавуазье был одним из членов этой группы.
Требования как астрономии, так и экспериментальной физики были таковы, что на долю математиков конца XVIII – начала XIX вв. выпали прежде всего осмысление и подсчет случайной ошибки. Их усилиями возникла новая область – математическая статистика, занимающаяся разработкой методов для интерпретации данных наблюдений и опытов. Специалисты в области статистики зачастую считают, что рост современной науки начался именно с этих разработок – с развития теории измерения. Однако статистические методы используются и для решения задач повседневной жизни: например, для оценки эффективности лекарственных препаратов или популярности политиков. Поэтому понимание правил осуществления статистических выводов важно не только для тех, кто занимается наукой, но и для каждого из нас.
Один из парадоксов нашей жизни заключается в том, что хотя измерения всегда несут в себе некоторую погрешность, когда речь заходит об измерениях, реже всего говорят именно о погрешности. Если въедливый полицейский докладывает судье, что его радиолокатор показал, будто бы вы ехали со скоростью 62 км в час в зоне, где допустимый предел скорости – 56, то штрафа вам не избежать, хотя в показаниях прибора возможны отклонения на несколько км в час[134]134
Дискуссию на тему ошибок радиолокаторов смотрите: Nicole Weisensee Egan, “Takin’ Aim at Radar Guns”, Philadelphia Daily News, March 9, 2004.
[Закрыть]. И хотя большинство школьников (не говоря уже об их родителях) согласились бы даже спрыгнуть с крыши, если бы это увеличило балл на выпускном тесте по математике с 598 до 625, исследования, о которых вам расскажет редкий работник в области образования, показывают: достаточно высока вероятность получить лишних 30 баллов, если пройти тест еще разок-другой[135]135
Charles T. Clotfelter and Jacob L. Vigdor, “Retaking the SAT” (working paper SAN01-20, Terry Sanford Institute of Public Policy, Duke University, Durham, N.C., July 2001).
[Закрыть]. А иногда малозначащие различия попадают в выпуски новостей. Некоторое время тому назад в августе Статистическое управление министерства труда США сообщило, что безработица находится на уровне 4,7 %. В июле управление сообщало о показателе 4,8 %. Изменение показателя немедленно нашло отражение в газетных заголовках; к примеру, вот что напечатала на первой странице «Нью-Йорк Таймс»: «Количество рабочих мест и уровень заработной платы за прошлый месяц несколько выросли»[136]136
Eduardo Porter, “Jobs and Wages Increased Modestly Last Month”, New York Times, September 2, 2006.
[Закрыть]. Однако, как замечает Джин Эпштейн, редактор отдела экономики «Barron’s», «из того, что изменилась цифра, совершенно не обязательно следует, что изменилось положение дел. Например, всякий раз, когда показатель безработицы изменяется на десятую долю процента… изменение это столь незначительно, что никоим образом нельзя утверждать, будто бы оно вообще имело место»[137]137
Gene Epstein on “Mathemagicians”, On the Media, WNYC radio, broadcast August 25, 2006.
[Закрыть]. Иными словами, если Статистическое управление измерит показатель безработицы в августе и повторит измерение через час, то лишь благодаря случайной ошибке второе измерение будет с высокой вероятностью отличаться от первого по меньшей мере на десятую долю процента. И что, неужели мы прочитаем в «Нью-Йорк Таймс»: «Количество рабочих мест и уровень заработной платы к двум часам пополудни несколько выросли»?
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.