Автор книги: Леонард Млодинов
Жанр: Зарубежная образовательная литература, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 14 (всего у книги 18 страниц)
Глава 9. Иллюзия закономерности и закономерность иллюзий
В 1848 г. две девочки, Маргарет и Кейт Фокс, услышали странный шум, будто кто-то стучит или передвигает мебель. Ходили слухи, что в их доме живут приведения. Известно[200]200
See Arthur Conan Doyle, The History of Spiritualism (New York: G. H. Doran, 1926); and R. L. Moore, In Search of White Crows: Spiritualism, Parapsychology, and American Culture (London: Oxford University Press, 1977).
[Закрыть], что Кейт тогда решила пощелкать пальцами – вдруг призрак повторит за ней. Или стуком сообщит, сколько ей лет. Он сделал и то, и другое. В течение последующих дней сестры с матерью и соседями придумали код, чтобы общаться со стукачом (простите за невольный каламбур). Они пришли к выводу, что это дух коммивояжера, убитого несколькими годами ранее, еще до того, как они поселились в доме. Так появился современный спиритизм – представление о том, что мертвые могут общаться с живыми. В начале 50-х гг. XIX в. Соединенные Штаты и Европу охватила мода на спиритические сеансы, в ходе которых духи давали ответы при помощи стука, а также на схожее по принципу столоверчение. В сеансе участвовала группа людей: они садились вокруг стола, клали на него руки и ждали. Если общение происходило посредством стука, то через некоторое время они слышали стук, при столоверчении стол начинал наклоняться или передвигаться, иногда увлекая за собой сидящих. Воображение рисует серьезных бородатых господ в долгополых сюртуках и дам в кринолинах: широко раскрытыми от изумления глазами они следят за тем, как их руки двигаются вместе со столом.
Столоверчение стало настолько популярным, что летом 1853 г. ученые взялись изучать это явление. Группа врачей заметила: за то время, пока участники молча сидели, среди них возникало безотчетное согласие в отношении направления движения стола[201]201
Ray Hyman, “Parapsychological Research: A Tutorial Review and Critical Appraisal”, Proceedings of the IEEE 74, no. 6 (June 1986): 823–49.
[Закрыть]. Когда же внимание спиритуалистов отвлекали, единство ожидания среди них не сформировывалось – стол не двигался. Во время другого опыта создавали такие условия, при которых одна половина участников полагала, что стол будет двигаться налево, а другая – направо; стол снова остался на месте. Врачи пришли к выводу, что «движение было вызвано мышечным действием, по большей части неосознанным». Подробно данный вопрос изучал физик Майкл Фарадей, один из создателей электромагнитной теории, изобретатель электродвигателя и выдающийся экспериментатор[202]202
Michael Faraday, “Experimental Investigation of Table-Moving”, Athenaeum, July 2, 1853, pp. 801–3.
[Закрыть]. Фарадей первым обнаружил, что описанное явление имело место даже тогда, когда в сеансе участвовал только один человек. Затем, прибегнув к помощи «в высшей степени уважаемых» и опытных медиумов, он провел серию своеобразных, сложных экспериментов, доказавших: движение рук сидящих за столом во время сеанса предшествовало движению стола. В дальнейшем Фарадей создал прибор, который тут же оповещал спиритуалистов, если их руки начинали двигаться. Он обнаружил, что «как только [прибор] размещали перед самым убежденным [участником], власть [иллюзии] исчезала, и происходило это только потому, что спиритуалистов заставляли осознать свои действия»[203]203
Michael Faraday, quoted in Hyman, “Parapsychological Research”, p. 826.
[Закрыть].
Как и врачи, Фарадей пришел к выводу: сидящие неосознанно тянули и толкали стол. Возможно, движение начиналось с хаотичных подергиваний. Затем на определенном этапе участники сеанса усматривали в этой беспорядочности некую закономерность, которая усиливала их сбывшееся ожидание, когда руки подопытных следовали, как им казалось, за столом. Ценность своего прибора Фарадей видел в «корректирующем влиянии на сознание медиума»[204]204
Faraday, quoted ibid.
[Закрыть]. Он доказал: человеческое восприятие возникает не в результате объективных факторов, а благодаря воображению[205]205
See Frank H. Durgin, “The Tinkerbell Effect: Motion Perception and Illusion”, Journal of Consciousness Studies 9, nos. 5–6 (May – June 2002): 88–101.
[Закрыть].
Восприятие требует воображения, поскольку данные, с которыми люди сталкиваются, никогда не являются полными и однозначными. Например, по мнению большинства, получить самое достоверное доказательство события – значит увидеть его собственными глазами, и в суде свидетельские показания очевидца имеют наибольшее значение. Однако если вас попросят предъявить суду видеозапись такого же качества, как и необработанные данные с сетчатки человеческого глаза, судья просто не поймет, что же вы пытаетесь продемонстрировать. Во-первых, на изображении будет слепое пятно в том месте, где зрительный нерв соединяется с сетчаткой. Во-вторых, в поле человеческого зрения имеется лишь небольшая зона с хорошей четкостью изображения. Она ограничена углом зрения приблизительно в один градус вокруг центра сетчатки, а ее площадь шириной с большой палец, каким мы его видим на расстоянии вытянутой руки. За пределами данной зоны четкость изображения существенно падает. Компенсируя это, мы постоянно перемещаем взгляд, таким образом, в поле более высокой резкости попадают все части объекта, который мы хотим рассмотреть. Таким образом, последовательность необработанных данных, передаваемых в мозг – это нечеткое изображение с сильной зернистостью и слепым пятном. К счастью, мозг получает изображение с обоих глаз и достраивает его, исходя из того, что расположенные рядом зоны подобны и способны дополнять друг друга[206]206
Christof Koch, The Quest for Consciousness: A Neurobiological Approach (Englewood, Colo.: Roberts, 2004), pp. 51–54.
[Закрыть]. В результате – по крайней мере, до тех пор, пока не скажутся возраст, травма, заболевание или чрезмерное увлечение алкоголем – пребывающий в безмятежном неведении человек питает иллюзию, будто у него острое, четкое зрение.
Люди избирают кратчайший путь и прибегают к помощи воображения, чтобы заполнить пробелы в данных невизуального характера. Как и в случае с визуальной информацией, на основании неточных и неполных сведений мы делаем выводы и приходим к заключению, что наша «картинка» отчетлива и достоверна. Но так ли это на самом деле?
Разработав методы статистического анализа, ученые смогли оградить себя от ложных закономерностей и решить, поддерживает ли ряд наблюдений гипотезу или, напротив, мнимое подтверждение случайно. Например, когда ученому-физику нужно определить, являются ли показания суперколлайдера значимыми, он не рассматривает все графики в поисках столкновений частиц, которые выделяются на уровне помех, а применяет математические методы. Один из этих методов – оценка статистической значимости – был разработан в 20-е гг. XX в. Р. А. Фишером, одним из величайших статистиков. Также он известен вспыльчивым характером и враждой со своим коллегой Карлом Пирсоном, одним из основателей статистики; противостояние было настолько ожесточенным, что Фишер еще долгое время нападал на своего заклятого врага после кончины того в 1936 г.
Чтобы проиллюстрировать идеи Фишера, предположим, что студент в ходе эксперимента по экстрасенсорному восприятию предсказывает, как упадет монета. Если студент почти всегда прав, мы можем выдвинуть гипотезу, что он предсказывает осознанно, например, благодаря своим экстрасенсорным возможностям. С другой стороны, если студент оказывается прав приблизительно в половине случаев, это говорит о том, что он просто-напросто угадывает. Но что если данные оказываются где-то посередине или их недостаточно? В какой момент мы примем гипотезу либо откажемся от нее? Это и выясняется с помощью оценки статистической значимости: формальной процедуры, позволяющей оценить вероятность того, что наши наблюдения соответствуют действительности, если данная гипотеза верна. Если вероятность невелика, мы отклоняем гипотезу. Если высока – мы ее принимаем.
Предположим, мы настроены скептически и исходим из того, что студент не может заранее знать, как упадет монета. Допустим, во время эксперимента он несколько раз предсказывает правильно. Рассмотренные в главе 4 методы позволят вычислить вероятность того, что студент угадывает по чистой случайности. Если он верно предсказывал то, как упадет монета, так часто, что вероятность его исключительного везения составляет, скажем, всего 3 %, мы отклоняем гипотезу о том, что он всего-навсего угадывал. На языке оценки статистической значимости это означает, что уровень значимости отказа от гипотезы – 3 %, имея в виду, что в 3 % случаев данные ввели нас в заблуждение. 3 %-ный уровень значимости – это очень даже неплохо, и средства массовой информации, ухватившись за описанный эксперимент, раструбили бы о доказанности существования экстрасенсорных способностей. Все же те из нас, кто не верит в сверхъестественные силы, сохранили бы скептический настрой.
Приведенный пример демонстрирует важное положение: даже если данные значимы на, скажем, 3 %, тестируя 100 человек, не являющихся экстрасенсами, на наличие сверхъестественных способностей или 100 недейственных препаратов на эффективность, вы должны быть готовы к тому, что несколько человек проявят экстрасенсорные способности или некоторые лекарства проявят себя как действенные. Вот одна из причин, по которой результаты политических выборов или медицинских исследований, особенно не отличающихся масштабностью, противоречат данным предварительных опросов или более ранних исследований. И все же оценка статистической значимости и другие подобные методы являются большим подспорьем для ученых, особенно когда у тех есть возможность проводить широкомасштабные контролируемые исследования. В быту мы не проводим такие эксперименты, да и подсознание наше статистическим анализом не занимается, вместо этого мы полагаемся на инстинкт. Как-то оказалось, что приобретенная мной печь-камин фирмы «Викинг» – исключительное барахло, и случайно я узнал, что у одной моей знакомой сложилось ровно такое же впечатление. Тогда я стал предупреждать друзей, чтобы они не покупали товары этой марки. Когда, летая рейсами «Юнайтед эрлайнс», я несколько раз наткнулся на стюардесс, более раздражительных, чем на рейсах других авиакомпаний, я стал выбирать других перевозчиков. Располагая небольшим количеством данных, я инстинктивно вывел закономерность.
Иногда подобные закономерности имеют значение, иногда – нет. В обоих случаях тот факт, что наше восприятие закономерностей в повседневных ситуациях обладает в равной степени и большой убедительностью и высокой субъективностью, имеет под собой подоплеку. Данный факт предполагает некоторую относительность, то есть, как доказал Фарадей, у каждого свое представление о действительности. Например, в 2006 г. издание «The New England Journal of Medicine» обнародовало результаты исследования, на проведение которого было потрачено 12,5 млн. долларов. В исследовании приняли участие пациенты с диагнозом «остеоартрит коленного сустава». По итогам было выявлено, что комплекс биологически активных добавок с аминоглюкозой и хондроитином так же неэффективен в качестве болеутоляющего, как и плацебо. Тем не менее один именитый врач никак не мог расстаться с этим убеждением и продолжал настаивать на пользе добавок. Свои выводы он озвучил в выступлении по радио, убеждая слушателей в возможной пользе подобного лечения таким примером: «У врача моей жены есть кот, и жена говорит, что этот кот утром просто не может встать без небольшой дозы аминоглюкозы и хондроитинсульфата»[207]207
The study was D. O. Clegg et al., “Glucosamine, Chondroitin Sulfate, and the Two in Combination for Painful Knee Osteoarthritis”, New England Journal of Medicine 354, no. 8 (February 2006): 795–808. The interview was “Slate’s Medical Examiner: Doubts on Supplements”, Day to Day, NPR broadcast, March 13, 2006.
[Закрыть].
При более внимательном рассмотрении мы обнаружим, что в современном обществе многие расхожие мнения основаны, как и столоверчение, на общепринятых иллюзиях. В то время как в главе 8 рассматривалось, с какой поразительной регулярностью происходят случайные события, теперь мы подойдем к вопросу с другой стороны: проанализируем, каким образом события, на первый взгляд имеющие явную причину, могут на самом деле оказаться результатом случайности.
Человеку свойственно выискивать в событиях модели и приписывать им значения. Канеман и Тверский проанализировали множество методов быстрой оценки характера данных и принятия решения в условиях неопределенности. Они назвали такие методы «сокращенными эвристическими процедурами». В целом, эвристические процедуры полезны, но, как и наш способ обрабатывать визуальную информацию иногда приводит к зрительным иллюзиям, так и эвристические процедуры могут иногда приводить к систематическим ошибкам. Канеман и Тверский назвали такие ошибки «ошибками предвзятости». Все мы пользуемся эвристическими процедурами, и все страдаем от ошибок предвзятости. Если зрительные иллюзии мало что значат в нашей повседневной жизни, то ошибки предвзятости играют важную роль в принятии решений. Поэтому в конце XX в. появилось направление, изучающее, каким образом человеческий разум воспринимает случайность. Ученые пришли к выводу, что «у людей смутное представление о случайности, они не способны распознать и осознанно воспроизвести ее»[208]208
See Paul Slovic, Howard Kunreuther, and Gilbert F. White, “Decision Processes, Rationality, and Adjustment to Natural Hazards”, in Natural Hazards: Local, National, and Global, ed. G. F. White (London: Oxford University Press, 1974); see also Willem A. Wagenaar, “Generation of Random Sequences by Human Subjects: A Critical Survey of Literature”, Psychological Bulletin 77, no. 1 (January 1972): 65–72.
[Закрыть], и, что хуже всего, мы постоянно недооцениваем роль случая в нашей жизни и принимаем решения, которые нам явно не пойдут на пользу[209]209
See Hastie and Dawes, Rational Choice in an Uncertain World, pp. 19–23.
[Закрыть].
Представьте некую последовательность событий. Это могут быть квартальные дивиденды или ряд удачных или неудачных свиданий, организованных сайтом знакомств. В обоих случаях, чем длиннее последовательность или чем большее количество последовательностей вы анализируете, тем выше вероятность, что обнаружится любая закономерность, какую только можно себе вообразить, причем исключительно случайно. На самом деле, для последовательности «хороших» или «плохих» кварталов или удачных или неудачных свиданий вообще не требуется причина. Прекрасный пример привел математик Джордж Спенсер-Браун: в случайной последовательности 10 в степени 1 000 007 нулей и единиц следует ожидать по меньшей мере 10 непересекающихся подпоследовательностей 1 млн. следующих друг за другом нулей[210]210
George Spencer-Brown, Probability and Scientific Inference (London: Longmans, Green, 1957), pp. 55–56. Actually, 10 is a gross underestimate.
[Закрыть]. Представьте бедолагу, который натолкнулся на одну из этих цепочек, пытаясь использовать случайные числа в каких-нибудь научных целях. Его компьютерная программа генерирует сначала 5 нулей подряд, потом 10, 20, 1 000, 10 000, 100 000, 500 000. Будет ли он прав, если отошлет программу назад и потребует вернуть деньги? Какова будет реакция ученого, раскрывшего только что купленную таблицу случайных чисел и увидевшего, что все числа в ней – нули? Идея Спенсера-Брауна заключалась в том, что существует разница между случайным процессом и результатом такого процесса, который кажется случайным. Компания «Apple» столкнулась с подобной проблемой в связи с методом случайной тасовки, который она изначально применяла в своих плеерах «iPod»: истинная случайность приводила к повторам, поэтому, когда пользователи слышали подряд одну и ту же песню или песни одного и того же певца, они считали, что тасовка дала сбой. Тогда компания сделала эту функцию «менее случайной, чтобы она воспринималась как более случайная», – как сказал основатель компании Стив Джобс[211]211
Janet Maslin, “His Heart Belongs to (Adorable) iPod”, New York Times, October 19, 2006.
[Закрыть].
Философ Ганс Рейхенбах одним из первых стал изучать восприятие случайных моделей. В 1934 г. он заметил: те, кто не имел опыта в определении вероятности, с трудом распознают случайную последовательность событий[212]212
Hans Reichenbach, The Theory of Probability, trans. E. Hutton and M. Reichenbach (Berkeley: University of California Press, 1934).
[Закрыть]. Рассмотрим распечатку результатов последовательности 200 бросков монеты, где Х – это решка, а О – это орел: ooooxxxxoooxxxooooxxooxooo xxxooxxoooxxxxoooxooxoxoooooxooxoooooxxooxxxo xxoxoxxxxoooxxooxxoxooxxxooxooxoxoxxoxoooxoxoo ooxxxxoooxxooxoxxoooxoooxxoxooxxooooxooxxxxoo ooxxxoooxoooxxxxxxooxxxooxooxoooooxxxx. Можно с легкостью обнаружить в приведенных данных закономерность – например, четыре О, за которыми идут четыре Х, и ряд из шести Х ближе к концу. Согласно математической теории случайностей, такие ряды вполне можно ожидать в результатах 200 произвольно выбранных бросков. И все же многим это кажется удивительным. В итоге, когда за последовательностью Х и О стоят не результаты бросков монеты, а некие события, влияющие на жизнь, люди ищут весомые причины возникновения этих закономерностей. Когда ряд О обозначает достижения вашего любимого спортсмена, вы охотно верите комментатору, который убедительно вещает об удачной полосе в карьере игрока. И когда Х и О обозначают ряд провалившихся один за другим фильмов кинокомпаний «Парамаунт» и «Коламбия Пикчерз», все понимающе кивают, потому что бульварная пресса уже назвала ту, которая способна заинтересовать зрителей во всем мире.
Много усилий затрачивается на изучение моделей случайного успеха на финансовых рынках. Например, есть много доказательств того, что динамика котировок акций случайна или близка к случайной, а без доступа к внутренней информации и с учетом затрат на заключение сделок или управление инвестиционным портфелем вы не сможете заработать ни на каких отклонениях от произвольности[213]213
The classic text expounding this point of view is Burton G. Malkiel, A Random Walk Down Wall Street, now completely revised in an updated 8th ed. (New York: W. W. Norton, 2003).
[Закрыть]. Тем не менее на Уолл-стрит есть давняя традиция привлекать экспертов-аналитиков, чья средняя зарплата в конце 90-х гг. XX в. составляла порядка 3 млн долларов[214]214
John R. Nofsinger, Investment Blunders of the Rich and Famous – and What You Can Learn from Them (Upper Saddle River, N.J.: Prentice Hall, Financial Times, 2002), p. 62.
[Закрыть]. Чем же занимаются эти аналитики? По результатам исследования 1995 г., из двенадцати самых высокооплачиваемых «суперзвезд Уолл-стрит», приглашенных деловым изданием «Барронс», чтобы те за ежегодным круглым столом дали рекомендации по игре на рынке, восемь совпали лишь в прогнозе среднерыночной доходности[215]215
Hemang Desai and Prem C. Jain, “An Analysis of the Recommendations of the Superstar Money Managers at Barron’s Annual Roundtable”, Journal of Finance 50, no. 4 (September 1995): 1257–73.
[Закрыть]. Из исследований 1987 и 1997 гг. стало ясно: акции, рекомендованные аналитиками в телевизионном шоу «Неделя Уолл-Стрит», показали гораздо худшую динамику, сильно отстав от средних значений по рынку[216]216
Jess Beltz and Robert Jennings, “Wall $treet Week with Louis Rukeyser’s Recommendations: Trading Activity and Performance”, Review of Financial Economics 6, no. 1 (1997): 15–27; and Robert A. Pari, “Wall $treet Week Recommendations: Yes or No?” Journal of Portfolio Management 14, no. 1 (1987): 74–76.
[Закрыть]. Проанализировав 153 информационных бюллетеня, ученый из Гарвардского института экономических исследований не обнаружил «никаких весомых доказательств того, что существуют способности удачно подбирать объект для инвестиций»[217]217
Andrew Metrick, “Performance Evaluation with Transactions Data: The Stock Selection of Investment Newsletters, Journal of Finance 54, no. 5 (October 1999): 1743–75; and “The Equity Performance of Investment Newsletters” (discussion paper no. 1805, Harvard Institute of Economic Research, Cambridge, Mass., November 1997).
[Закрыть].
Только по воле случая некоторые аналитики и паевые инвестиционные фонды непрестанно демонстрируют впечатляющий успех. И хотя многочисленные исследования доказывают, что былые удачи на рынке не гарантируют хорошие результаты в будущем – так как в большинстве своем они случайны, – все же многие согласны платить за рекомендации брокеров или опыт управляющих паевыми инвестиционными фондами. Многие, в том числе и компетентные инвесторы, именно по этой причине покупают паи в фондах с непомерной комиссией за управление. Когда группа сообразительных студентов из бизнес-школы Уортона получила гипотетические 10 тыс. долларов и информационные проспекты четырех индексных фондов, оперирующих индексами компаний из списка 500, составляемого «Стэндард энд Пурз», в большинстве случаев студенты не смогли выбрать фонды с самой низкой комиссией[218]218
James J. Choi, David Laibson, and Brigitte Madrian, “Why Does the Law of One Price Fail? An Experiment on Index Mutual Funds” (working paper no. W12261, National Bureau of Economic Research, Cambridge, Mass., May 4, 2006).
[Закрыть]. Ежегодно выплачивая дополнительный 1 % в сумме комиссии за управление, мы год за годом уменьшаем свой пенсионный фонд на одну треть или даже половину, так что сообразительные студенты не проявили особой сообразительности.
Само собой разумеется (и пример Спенсера-Брауна это подтверждает), что если долго ищешь, обязательно найдешь того, кто благодаря одной лишь удаче в самом деле смог предсказывать будущее с потрясающей точностью. Если вы предпочитаете примеры из реальной жизни математическим выкладкам с невообразимым количеством случайных чисел, предлагаю в качестве примера историю, произошедшую с экономическим обозревателем Леонардом Коппеттом[219]219
Leonard Koppett, “Carrying Statistics to Extremes”, Sporting News, February 11, 1978.
[Закрыть]. В 1978 г. Коппетт обнародовал свою систему, заявив, что с ее помощью можно в конце января каждого года определять, вырастет или упадет фондовый рынок за данный календарный год. На тот момент он уже опробовал ее: по его словам, получились верные прогнозы за последние одиннадцать лет[220]220
By some definitions, Koppett’s system would be judged to have failed in 1970; by others, to have passed. See CHANCE News 13.04, April 18, 2004–June 7, 2004, http://www.dartmouth.edu/chance/chance_news/recent_news/chance_news_13.04.html.
[Закрыть]. Разумеется, случайно наткнуться на систему подбора объекта инвестиций реально, но будет ли она действенной? Система Коппетта действенна: она позволила верно оценивать рынок по индексу промышленных акций Доу-Джонса одиннадцать лет подряд, с 1979 по 1989 гг., дала сбой в 1990 г., а потом снова удачно прогнозировала рынок вплоть до 1998 г. Но хотя предсказания Коппетта подтверждались восемнадцать из девятнадцати лет, я с уверенностью заявляю: профессионализм тут ни при чем. Почему? Потому что Леонард Коппетт был обозревателем в «Спортинг Ньюз», и его система основывалась на результатах Суперкубка по футболу. Как только выигрывала команда из Национальной футбольной лиги, Коппетт предсказывал рост рынка. Как только выигрывала команда из Американской футбольной лиги, Коппетт предсказывал падение. Исходя из этой информации, мало кто станет спорить, будто Коппетту просто везло. И все же, если бы он исходил из иных предпосылок – и не раскрыл свой метод, – его бы провозгласили самым талантливым аналитиком со времен Чарльза Доу.
Для сравнения приведем историю человека по имени Билл Миллер, у которого имелись реальные заслуги. Годами Миллер был непобедим и его, в отличие от Коппетта, сравнивали с Джо Димаджио, который выиграл пятьдесят шесть игр подряд, а также с Кеном Дженнингсом, победившим в телешоу «Своя игра» семьдесят четыре раза. Но сравнения эти неудачны в одном: победная серия ежегодно приносила Миллеру больше денег, чем получили остальные от череды выигрышей за всю свою жизнь. Дело в том, что Билл Миллер был единственным управляющим инвестициями в трастовом фонде «Legg Mason Value» и в течение 15 лет ежегодные показатели доходности его фонда были выше, чем у ценных бумаг компаний из рейтинга 500, составляемого «Стэндард энд Пурз». За это журнал «Мани» назвал Миллера «Лучшим инвестиционным управляющим 90-х», «Морнинг Стар» – «Инвестиционным управляющим десятилетия», «Смарт Мани» включил его в список тридцати самых влиятельных людей в сфере инвестиций за 2001, 2003, 2004, 2005 и 2006 гг[221]221
As touted on the Legg Mason Capital Management Web site, http://www.leggmasoncapmgmt.com/awards.htm.
[Закрыть]. В четырнадцатый успешный для Миллера год на сайте «Си-Эн-Эн Мани» привели слова одного аналитика, который оценил вероятность случайного угадывания четырнадцать лет кряду как 372 529 к 1 (со временем – больше)[222]222
Lisa Gibbs, “Miller: He Did It Again”, CNNMoney, January 11, 2004, http://money.cnn.com/2004/01/07/funds/ultimateguide_ billmiller_0204.
[Закрыть].
Ученые могут не согласиться с тем, что полоса случайностей – это результат заблуждений под общим названием «легкой руки», или везучести. Многие случаи заблуждений «легкой руки» связаны со спортом из-за того, что спортивные соревнования легко поддаются наблюдению и оценке. Более того, есть четкие и ясные правила игры, данные доступны и достаточны, а интересные моменты можно увидеть при повторе. Не говоря уже о том, что подобный объект изучения позволяет ученым ходить на матчи и делать вид, будто они работают.
Интерес к иллюзии везучести возник приблизительно в 1985 г., после публикации исследования Тверского и его коллег в журнале «Когнитивная психология»[223]223
Thomas R. Gilovich, Robert Vallone, and Amos Tversky, “The Hot Hand in Basketball: On the Misperception of Random Sequences”, Cognitive Psychology 17, no. 3 (July 1985): 295–314.
[Закрыть]. В статье «”Легкая рука” в баскетболе: ложное восприятие случайных последовательностей» группа Тверского привела результаты исследования баскетбольной статистики. Разумеется, способности у игроков был разные. Кто-то попадал в половине случаев, кто-то – чаще, кто-то – реже. Время от времени у каждого игрока случались серии попаданий и промахов. Исследователи сформулировали вопрос: как количество и продолжительность серий попаданий и промахов можно сопоставить с тем, что бы мы наблюдали, если бы результат каждого броска определялся случайным процессом. Например, как бы все обернулось, если вместо того, чтобы бросать мяч, игроки бросали бы монету и таким образом оценивали вероятность попадания в корзину. Обнаружилось, что, несмотря на удачные и неудачные серии, результаты бросков с площадки у игроков команды «Филадельфия 76», свободных бросков команды «Бостонских кельтов» и контролируемых в ходе эксперимента свободных бросков женской и мужской баскетбольных команд Корнелльского университета не предоставили никаких доказательств неслучайного поведения.
В частности, один прямой показатель «полосчатости» – это обусловленная вероятность успеха (то есть попадания в корзину), если предшествующая попытка игрока была удачной. Для нестабильного игрока шанс на успех сразу вслед за удачным броском будет выше, чем его общие шансы на успех. Но авторы обнаружили, что для каждого баскетболиста успех шел за успехом с той же вероятностью, как и успех за неудачей (промахом).
Через несколько лет после публикации исследования Тверского, лауреат Нобелевской премии физик Эдвард Пёрселл решил рассмотреть природу серий в бейсболе[224]224
Purcell’s research is discussed in Gould, “The Streak of Streaks.”
[Закрыть]. Как уже упоминалось в главе 1, он обнаружил, по словам гарвардского коллеги Пёрселла Стивена Джея Гоулда, что, за исключением победной серии из пятидесяти шести игр Джо Димаджио, «в бейсболе не происходило ничего, что принципиально отличало бы это занятие от подбрасываний монеты», даже проигранная командой Высшей лиги «Балтимор Ориолз» двадцать одна игра подряд в начале сезона 1988 г. У плохих игроков и команд продолжительные и частые полосы неудач случаются чаще, чем у хороших игроков и команд, а у сильных игроков и команд бывают более частые и продолжительные победные серии по сравнению с более слабыми командами и игроками. Но именно поэтому у них среднее соотношение побед и поражений выше, а чем выше средний коэффициент, тем более длинные и частые серии получаются в результате случайности. Чтобы понять, как это происходит, нужно понять принцип подбрасывания монет.
А что же с серией Билла Миллера? Возможность появления серии побед по чистой случайности, как у него, покажется менее удивительной, если рассмотреть статистические данные. Например, в 2004 г. трастовый фонд Миллера заработал чуть меньше 12 %, в то время как средняя ценная бумага в списке 500 «Стэндарт энд Пурз» выросла более чем на 15 %[225]225
Mark Hulbert, “Not All Stocks Are Created Equal”, www. MarketWatch.com, January 18, 2005, accessed March 2005 (site now discontinued).
[Закрыть]. Можно подумать, что компании из списка «Стэндарт энд Пурз» разгромили Миллера, но на самом деле это не помешало ему включить 2004 г. в свою победную серию. Дело в том, что в индексе «Стэндард энд Пурз» учитываются не просто средние цены на акции из списка, а взвешенное среднее значение, при котором акции оцениваются пропорционально капитализации каждой компании. Фонд Миллера показал результаты, худшие по сравнению со средним арифметическим из списка «Стэндард энд Пурз», но лучшие, чем средневзвешенное значение. На самом деле, за всю череду успешных лет Миллера наблюдалось более тридцати двенадцатимесячных периодов, в течение которых доходность фонда Миллера была ниже, чем средневзвешенное значение компаний из списка, но эти периоды не совпадали с календарными годами, тогда как победными Миллер объявлял именно периоды с 1 января по 31 декабря[226]226
Kunal Kapoor, “A Look at Who’s Chasing Bill Miller’s Streak”, Morningstar, December 30, 2004, http://www.morningstar.com.
[Закрыть]. Так что в каком-то смысле победную серию Миллер начал отсчитывать искусственно и только по случайности выбрал удачный для себя способ.
Но как согласовать эти разоблачающие факты и шансы 372 529 к 1? В 2003 г. в бюллетене «The Consilient Observer» (опубликованном «Credit Suisse – First Boston») проанализировали полосу удач Миллера и отметили, что «ни один другой фонд не показывал результаты выше рыночных двенадцать раз подряд за последние 40 лет». Был поставлен вопрос о том, мог ли фонд добиться таких выдающихся результатов случайно, и даны три оценки данной вероятности (в 2003 г. речь шла только о двенадцати годах подряд): 1 из 4096, 1 из 477 000 и 1 из 2,2 млрд[227]227
Michael Mauboussin and Kristen Bartholdson, “On Streaks: Perception, Probability, and Skill”, Consilient Observer (Credit Suisse – First Boston) 2, no. 8 (April 22, 2003).
[Закрыть]. Перефразируем Эйнштейна: если бы все их предположения были верны, им бы понадобилось только одно. Каковы же были шансы на самом деле? Приблизительно 3 из 4, или 75 %. Расхождение налицо, так что лучше пояснить.
Те, кто давал невысокую вероятность, в чем-то были правы: если вы выделяете именно Билла Миллера именно в начале 1991 г. и вычисляете вероятность того, что по чистой случайности именно тот человек, которого вы выбрали, покажет результаты выше рыночных строго за последующие пятнадцать лет, тогда возможность и в самом деле окажется невероятно низкой. У вас была бы такая же вероятность, если бы вы подбрасывали монету раз в год пятнадцать лет, поставив цель: чтобы каждый раз выпадал орел. Но, как и при анализе пробежек до дома, совершенных Роджером Марисом, эта возможность несущественна, так как работают тысячи управляющих паевыми инвестиционными фондами (более 6 тыс. на данный момент), и было много пятнадцатилетних периодов, когда подвиг Миллера мог бы быть повторен. Уместно задать вопрос: если тысячи людей подбрасывают монеты раз в год и делают это десятилетиями, каковы шансы, что у них в какой-то из периодов в пятнадцать лет или более будет выпадать только орел? Вероятность этого гораздо выше, чем вероятность получить пятнадцать орлов кряду при обычном подбрасывании монеты.
Конкретизирую: предположим, каждый из 1 тыс. инвестиционных управляющих – разумеется, на самом деле их гораздо больше – бросал монету раз в год начиная с 1991 г., когда у Миллера началась полоса удачных периодов. По прошествии первого года примерно у половины управляющих выпал бы орел, после двух лет приблизительно у четверти орел выпал бы дважды, после трех – где-то у одной восьмой орел выпал бы три раза, и так далее, затем кто-то, у кого выходила решка, начал бы выбывать из игры, но это не повлияло бы на результат, так как они уже проиграли. Шансы, что после пятнадцати лет у определенного участника эксперимента все время выпадал только орел, равны одному из 32 768. А шансы любого из 1 тыс. управляющих, кто начал подбрасывать монеты в 1991 г., получать только орла гораздо выше – примерно 3 %. Наконец, вовсе не обязательно принимать во внимание исключительно тех, кто начал бросать монеты в 1991 г. Управляющие могли бы начать в 1990 г., или 1970 г., или в любой другой год эры, ознаменованной деятельностью современных паевых инвестиционных фондов. Поскольку авторы «The Consilient Observer» анализировали только сорокалетний период, я подсчитал вероятность того, что по случайности некоторые управляющие в последние четыре десятилетия «обгоняли» рынок каждый год на протяжении некого отрезка в пятнадцать лет или более. Это допущение снова увеличивает вероятность, которая составила бы приблизительно 3 из 4. Таким образом, вместо того, чтобы удивляться удачной полосе Миллера, я бы сказал следующее: если никто не достиг его результатов, есть все основания подать жалобу на высокооплачиваемых управляющих, которые работали хуже, чем им позволяло простое везение.
Заблуждения «легкой руки» были проиллюстрированы выше примерами из мира спорта и финансов, однако серии побед и другие специфические модели успеха и поражения встречаются во всех сферах. Иногда преобладают удачи, иногда – провалы, но и то, и другое играет важную роль, так как дает нам понять: модели, в том числе и последовательности, которые выглядят закономерными, на самом деле не что иное, как следствие случайности. Поэтому, оценивая других, важно отдавать себе отчет, что, находясь среди большого числа людей, вы едва ли встретите того, кто никогда не переживал продолжительный период удач или поражений.
Никто не поверил в сомнительный успех Леонарда Коппетта, как никто бы не принял всерьез человека, играющего в орлянку, но многие доверились Биллу Миллеру. Хотя тип примененного мною анализа, по видимости, ускользнул от многих экономических обозревателей, для тех, кто изучает Уолл-стрит с научных позиций, он не стал новостью. Например, лауреат Нобелевской премии экономист Мертон Миллер (не родственник Билла) писал: «Если 10 тыс. человек взглянут на акции и попытаются выбрать самые доходные, один из 10 тыс. попадет в цель по чистой случайности, что и происходит в реальности. Это игра наудачу – люди думают, будто они делают нечто целенаправленно, а на самом деле это не так[228]228
Merton Miller on “Trillion Dollar Bet”, NOVA, PBS broadcast, February 8, 2000.
[Закрыть]». Все мы должны делать выводы сообразно обстоятельствам, и представление о том, что такое случайность и как она действует, уберегает от наивных выводов.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.