Автор книги: Леонард Млодинов
Жанр: Зарубежная образовательная литература, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 13 (всего у книги 18 страниц)
Кетле признавал, что l’homme moyen был бы разным для разных культур и что он менялся бы с изменением социальных условий. Именно эти изменения, а также их причины и стремился изучить Кетле. «Человек рождается, растет и умирает в соответствии с определенными законами, – писал он, – и законы эти до сих пор еще не изучены»[186]186
Quételet, quoted in Menand, The Metaphysical Club, p. 187.
[Закрыть]. Ньютон стал отцом современной физики, сформулировав ряд законов, управляющих вселенной. Видя перед собой пример Ньютона, Кетле жаждал создать новую «социальную физику», которая описывала бы законы поведения человека. По аналогии Кетле выходило: как объект, не будучи потревожен, продолжает двигаться, так и общество при неизменных социальных условиях не меняется. Ньютон описывал, как в результате воздействия физических сил объект отклоняется от движения по прямолинейной траектории; Кетле тоже искал законы поведения человека, описывающие, как социальные силы влияют на общество. Например, Кетле считал, что существенная разница в доходах и большие колебания цен ответственны за преступность и социальные волнения, а вот устойчивый уровень преступности говорит о состоянии равновесия, которое изменяется с изменением основополагающих причин. Недавним примером изменений в социальном равновесии, случившихся после террористического акта 11 сентября 2001 г., может служить следующее: люди стали бояться самолетов, предпочтя передвигаться на машинах. Их страх привел к тому, что смертность на дорогах увеличилась по сравнению с результатами прошлого года на 1 тыс. случаев – что называется, неявные потери теракта[187]187
Jeffrey Kluger, “Why We Worry about the Things We Shouldn’t. and Ignore the Things We Should”, Time, December 4, 2006, pp. 65–71.
[Закрыть].
Однако одно дело верить в существование социальной физики, и совсем другое – описать ее. Кетле понял: в случае с истинной наукой теории можно исследовать экспериментальным путем – помещая людей в различные ситуации и оценивая их поведение. Поскольку это невозможно, Кетле сделал вывод, что социология более походит на астрономию, нежели на физику: социологические исследования строятся на основе пассивных наблюдений. Таким образом, пытаясь раскрыть законы социальной физики, Кетле изучал временные и культурные изменения, происходящие с l’homme moyen.
Идеи Кетле были восприняты другими учеными, особенно во Франции и Великобритании. Один физиолог даже зашел так далеко, что собрал из писсуара в мужском туалете при железнодорожной станции образцы мочи людей разных национальностей с тем, чтобы выделить свойства «среднеевропейской мочи»[188]188
Gerd Gigerenzer, Empire of Chance: How Probability Changed Science and Everyday Life (Cambridge: Cambridge University Press, 1989), p. 129.
[Закрыть]. В Британии у Кетле был ученик, уверовавший в его идеи с особенным энтузиазмом – Генри Томас Бокль, состоятельный человек, шахматист и историк, более известный своим многотомным трудом «История цивилизации в Англии», отличавшимся смелостью замысла. К несчастью, в 1861 г., остановившись во время путешествия в Дамаске, сорокалетний Бокль заболел тифом. Ему советовали местного врача, однако он, узнав, что врач – француз, отказался, в результате чего умер. Бокль не закончил свой труд. Однако успел написать два тома; в первом история представлялась с точки зрения статистики и была основана на работе Кетле. Труд Бокля тут же получил признание. Он распространился по всей Европе, вышли переводы на французский, немецкий, русский. Дарвин читал труд Бокля, и Альфред Рассел Уоллес читал, а Достоевский – даже дважды[189]189
Menand, The Metaphysical Club, p. 193.
[Закрыть].
Несмотря на популярность произведения Бокля, вердикт истории был таков: в математических изысканиях Кетле оказалось больше смысла, нежели в изысканиях социальной физики. Во-первых, не все то, что происходит в обществе, особенно в мире финансов, соответствует нормальному распределению. Например, если бы доходы от показа фильма распределялись нормально, большинство фильмов приносили бы некий средний доход, а две трети доходов от всех фильмов оставались бы в пределах среднего отклонения. Однако в кинематографическом бизнесе 20 % фильмов приносят 80 % доходов. Такие сферы деятельности, которые развиваются за счет хитов, хотя и совершенно непредсказуемы, повинуются совсем иному распределению, такому, для которого понятия «среднее» и «среднее отклонение» ничего не значат ввиду отсутствия «типичного» производства, а мега-хитовые выбросы, которые в обычной сфере деятельности бывают раз в несколько сот лет, тут происходят неизмеримо чаще[190]190
De Vany, Hollywood Economics; see part IV, “A Business of Extremes.”
[Закрыть].
Да, Кетле обошел своим вниманием распределения другой вероятности, однако обиднее то, что ему не удалось осуществить свое намерение – значительно продвинуться в попытках раскрыть законы и силы, которым он отдал столько сил и времени. Поэтому в конце концов непосредственное влияние Кетле на социальные науки оказалось весьма скромным, однако его наследие невозможно переоценить, оно имело далеко идущие последствия. И не для социальных наук, а для наук естественных, где его подход к толкованию порядка в большом количестве случайных событий вдохновил многих ученых и послужил толчком к созданию революционного труда, трансформировавшего способ мышления и в биологии, и в физике.
Именно двоюродный брат Чарльза Дарвина применил статистический анализ в биологии. В 1840 г. Фрэнсис Гальтон, человек, располагавший временем, поступил в кембриджский Тринити-Колледж[191]191
See Derek William Forrest, Francis Galton: The Life and Work of a Victorian Genius (New York: Taplinger, 1974); Jeffrey M. Stanton, “Galton, Pearson, and the Peas: A Brief History of Linear Regression for Statistics Instructors”, Journal of Statistics Education 9, no. 3 (2001); and Theodore Porter, The Rise of Statistical Thinking, pp. 129–46.
[Закрыть]. Поначалу он изучал медицину, но затем по совету Дарвина занялся математикой. Ему было двадцать два, когда отец умер, в результате чего Фрэнсис унаследовал немалое состояние. Гальтону никогда не приходилось зарабатывать себе на жизнь, и он, оставаясь любителем, занялся наукой. Особенно его интересовали измерения. Он измерял человеческие головы, носы, руки и ноги, количество суетливых движений, которые слушатели совершали во время лекций, степень привлекательности девушек на улице (лондонские девушки получили самые высокие баллы, самые низкие оказались у девушек из шотландского Абердина). Он измерял характерные особенности отпечатков пальцев – потом, в 1901 г., эту практику распознавания по отпечаткам пальцев взяли на вооружение в Скотленд-Ярде. Он даже высчитал продолжительность жизни правителей и священников, которая оказалась такой же, как и у людей другого положения и рода деятельности, из чего Гальтон заключил: молитва в этом отношении не дает никаких преимуществ.
В своей книге 1869 г. под названием «Наследственность таланта. Законы и последствия» Гальтон написал: часть людей, выстроенных по росту, должна со временем сохранить практически то же соотношение, а принципу нормального распределения подчиняется не только рост, но и прочие физические признаки: окружность головы, размер мозга, вес серого вещества, количество мозговых нитей и так далее. Однако на этом Гальтон не остановился. Он верил, что и характер человека также задается наследственностью и, как и физические черты, подчиняется принципу нормального распределения. Согласно Гальтону, мужчины не «равны как ячейки общества, [не] каждый из них имеет право голоса и прочее»[192]192
Francis Galton, quoted in Theodore Porter, The Rise of Statistical Thinking, p. 130.
[Закрыть]. Гальтон утверждал: около 250 мужчин из каждого миллиона наследуют исключительные способности к тому или иному занятию и в результате добиваются в своей области значительных успехов. (Поскольку во времена Гальтона женщины не работали, для них он такой анализ не проводил.) Основываясь на этих идеях, Гальтон основал новую науку и назвал ее евгеникой: от греческих eu (хороший) и genos (рождение). Спустя годы принципами евгеники воспользовались совершенно разные люди в совершенно разных целях. Термин и некоторые концепции Гальтона переняли нацисты, однако нет никаких свидетельств тому, что сам Гальтон одобрил бы их кровавые замыслы. Он стремился найти способ, с помощью которого можно было бы улучшить человеческую породу посредством селекционного отбора.
Большая часть главы 9 посвящена выяснению причин, по которым простое причинно-следственное толкование Гальтоном успеха казалось таким привлекательным. Однако в главе 10 мы увидим, что из-за великого множества предсказуемых и случайных препятствий, которые нужно преодолеть, чтобы справиться с задачей любой сложности, связь между способностями и исполнением вовсе не такая прямая, чтобы идеи Гальтона ее объясняли. В последние годы психологи обнаружили: в плане достижения успеха способность преодолеть трудности не менее важна, чем наличие таланта[193]193
Peter Doskoch, “The Winning Edge”, Psychology Today, November/ December 2005, pp. 44–52.
[Закрыть]. Вот почему эксперты часто говорят о «правиле десяти лет», подразумевая, что для большинства занятий требуется как минимум десять лет напряженного труда, чтобы добиться значительных результатов. При мысли о том, что огромное значение имеет не только наличие врожденных способностей, но и прилагаемые усилия, в конце концов, удача, кто-то может и приуныть. Однако я смотрю на это совсем иначе: пусть наше генетическое «лицо» и не поддается контролю, мы можем прилагать усилия ровно в той степени, в какой считаем нужным. Да и с удачей все не так безнадежно: путем большого числа повторений мы можем повысить свои шансы на успех.
Какими бы ни были плюсы и минусы евгеники, исследования Гальтона в области наследственности привели к открытию двух математических понятий, которые являются центральными в современной статистике. Первое открытие Гальтон совершил в 1875 г., после того, как раздал семи друзьям пакетики со стручками душистого горошка. Каждый друг получил семена одинакового размера и веса, а вернул Гальтону семена уже следующих урожаев. Гальтон измерил семена: в среднем диаметр семян, уродившихся от мелких горошин, был больше, чем диаметр родителей. Позднее, подключив данные из лаборатории, основанной им в Лондоне, Гальтон заметил то же самое и в отношении роста уже людей: родителей и детей. Этот феномен – когда группа крайних результатов сопровождается результатами, которые в среднем менее экстремальны, – Гальтон назвал регрессией к среднему.
Вскоре Гальтону стало ясно: процессы, не подпадающие под определение регрессии к среднему, в конце концов выходят из-под контроля. Например, предположим, что сыновья высоких отцов в среднем будут такими же высокими, как и их отцы. Поскольку рост каждого разнится, некоторые сыновья окажутся выше. А теперь представим следующее поколение, и предположим, что сыновья более высоких сыновей, внуки, тоже в среднем такие же высокие, как и их отцы. Некоторые из них также будут выделяться ростом по сравнению с отцами. Таким образом, из поколения в поколение самые высокие будут становиться все выше и выше. Однако благодаря регрессии к среднему этого не происходит. То же самое можно сказать и о врожденных умственных способностях, художественном таланте или способности ловко бить по мячу в гольфе. Очень высоким родителям не следует ожидать таких же высоких детей, очень умным родителям не стоит ожидать, что их отпрыски будут семи пядей во лбу, а многочисленные Пикассо и Тайгеры Вудсы[194]194
Тайгер Вудс – известный игрок в гольф.
[Закрыть] зря понадеются на то, что их прямые потомки сравняются с ними своим гением. С одной стороны, у очень приземистых родителей могут родиться высокие дети, так что те из нас, кто не может похвастать блестящим умом или не умеет рисовать, вполне могут надеяться на исправление этих недостатков в следующих поколениях.
Через объявления Гальтон привлекал испытуемых в свою лабораторию, где проводил измерения: роста, веса, даже некоторых костей. Его целью было найти определенный метод, позволявший вычислять данные детей, основываясь на данных их родителей. На одном из графиков Гальтона были показаны данные по росту родителей и детей. Если, скажем, рост всегда был одним и тем же, получалась аккуратная прямая, поднимавшаяся под углом в 45 градусов. Если же это соотношение в целом сохранялось, однако индивидуальные данные отличались, возникал пунктир выше и ниже прямой. Таким образом, график Гальтона демонстрировал наглядно не только общее отношение между ростом родителей и детей, но и то, до какой степени это отношение сохранялось. Что является вторым важным открытием и вкладом в статистику: определение математического показателя, описывающего это отношение. Гальтон назвал этот показатель коэффициентом корреляции.
Коэффициент корреляции – это число между –1 и 1; если оно приближается к ± 1, две переменные связаны между собой линейно; 0 же означает отсутствие связи. Например, данные показывают: наедаясь в «Макдоналдсе» на 1 тыс. калорий раз в неделю, человек поправляется на 4,5 кг в год, а съедая 1 тыс. калорий дважды в неделю, на 9 кг. И так далее. Коэффициент корреляции в таком случае равен 1. Если по какой-то причине каждый, наоборот, терял бы этот вес, коэффициент корреляции был бы равен – 1. А если бы данные о прибавке в весе и его потере были бы разбросаны по всему графику и не зависели от потребления еды, коэффициент равнялся бы 0. В наше время понятие «коэффициент корреляции» – одно из самых широко употребимых в статистике. К примеру, оно используется для того, чтобы проследить связь между количеством выкуренных сигарет и раковых заболеваний, расстоянием звезд от Земли и скоростью, с которой они удаляются от нашей планеты, баллами, получаемыми студентами по унифицированным тестам, и доходом в семьях этих студентов.
Труд Гальтона имел значение не только благодаря своей непосредственной важности, но еще и потому, что подвиг на дальнейшие исследования в области статистики, в результате чего наука быстро развивалась и крепла. Важную роль тут сыграл Карл Пирсон, ученик Гальтона. Ранее в этой главе я упоминал множество различных типов данных, которые распределяются в соответствии с принципом нормального распределения. Однако когда мы имеем дело с ограниченным количеством данных, кривая нормального распределения совершенной формы никогда не получится. В период становления статистики ученые, чтобы определить, действительно ли данные распределяются в соответствии с принципом нормального распределения, поступали очень просто: строили график и смотрели, какой получается кривая. Однако каким образом можно выразить количественно точность соответствия? Пирсон изобрел метод, называемый проверкой по критерию хи-квадрат, с помощью которого можно определить верность своего предположения относительно действительного соответствия набора данных распределению. В июле 1892 г. Пирсон провел в Монте-Карло эксперименты, заключавшиеся в точном повторении действий Джаггера[195]195
Deborah J. Bennett, Randomness (Cambridge, Mass.: Harvard University Press, 1998), p. 123.
[Закрыть]. В одном эксперименте у Пирсона, как и у Джаггера, выпадавшие числа не соответствовали распределению, какому должны были соответствовать, выдавай рулеточное колесо действительно случайные результаты. В другом эксперименте Пирсон выяснял, сколько пятерок и шестерок выпадает за 26 306 подбрасываний двенадцати костей. И обнаружил, что распределение не такое, какое было бы в вероятностном эксперименте с идеальной костью – то есть в таком эксперименте, в котором вероятность пятерки или шестерки при одном броске была бы равна 1 из 3, или 0,3333. Однако соответствие наблюдалось, если вероятность пятерки или шестерки была 0,3377 – то есть, если кость не была идеальной. В случае с рулеткой игра могла быть сфальсифицированной, однако у костей отклонения могли быть обусловлены неточностями при изготовлении, каковые, как настаивал мой друг Моше, всегда присутствуют.
В наше время проверка по критерию хи-квадрат применяется во многих случаях. Предположим, что вместо испытаний с привлечением костей вы решите провести испытания с тремя пачками из-под хлопьев на предмет их привлекательности для потребителя. Если у потребителей нет предпочтений, можно ожидать, что около 1 из 3 выскажутся за каждую из пачек. Как мы убедились, на практике результаты редко когда распределяются с такой равномерностью. Проведя проверку по критерию хи-квадрат, вы определите, насколько вероятно, что пачка-победитель получит больше голосов в результате потребительских предпочтений, нежели простой случайности. Так же предположим, что исследователи одной фармацевтической компании проводят эксперимент: испытывают два способа лечения, используемые для предупреждения резкого отторжения трансплантанта. Они могут прибегнуть к проверке по критерию хи-квадрат, чтобы определить, существует ли статистически значимая разница между результатами. Или же предположим, что перед открытием нового автосалона руководитель финансовой службы компании по прокату автомобилей ожидает, что 25 % клиентов потребуются автомобили среднего класса, 50 % – малолитражки и 12,5 % – автомобили средней категории и «других». Когда начинают поступать данные о продажах, проверка по критерию хи-квадрат может помочь руководителю быстро проверить: правильны ли его предположения или же новый салон нетипичен и стоит переориентироваться в соответствии со спросом.
Через Гальтона работа Кетле проникла в биологию. Однако внесла она оживление и в физику: Джеймс Максвелл и Людвиг Больцман, двое из основателей статистической физики, черпали свое вдохновение из теорий Кетле. (Как и Дарвин с Достоевским, о теориях они прочитали в книге Бокля.) В конце концов, если грудные клетки 5 738 шотландских солдат идеально распределяются в виде кривой нормального распределения, а среднегодовой пробег 200 млн водителей из года в год варьирует в пределах каких-то 160 км, не нужно быть Эйнштейном, чтобы догадаться: 10 септиллионов или около того молекул в литре газа могут продемонстрировать некоторые любопытные закономерности. Хотя, по правде говоря, все-таки нужно быть Эйнштейном, чтобы наконец убедить научное сообщество в необходимости нового подхода к физике. Альберт Эйнштейн сделал это в 1905 г., том самом, когда опубликовал свою первую работу по относительности. И хотя этот труд Эйнштейна мало известен массам, в статистической физике он произвел революцию. И в научной литературе на эту работу Эйнштейна потом ссылались чаще, чем на любую другую его работу[196]196
Abraham Pais, The Science and Life of Albert Einstein (London: Oxford University Press, 1982), p. 17; see also the discussion on p. 89.
[Закрыть].
Работа Эйнштейна 1905 г. по статистической физике имела своей целью объяснение феномена, называемого броуновским движением. Феномен получил свое название по имени Роберта Броуна, ботаника, специалиста мирового класса по микроскопии и человека, который, как считается, первым внятно описал клеточное ядро. Броун неуклонно преследовал цель: с помощью наблюдений открыть источник жизненной силы, этот загадочный фактор, благодаря которому, как считалось в то время, объект наделялся свойствами живого существа. Искания Броуна были обречены на неудачу, но однажды, в июне 1827 г., ему показалось, что он достиг цели.
Наблюдая в лупу за цветочной пыльцой, Браун обратил внимание: гранулы пыльцы как будто двигаются[197]197
On Brown and the history of Brownian motion, see D. J. Mabberley, Jupiter Botanicus: Robert Brown of the British Museum (Braunschweig, Germany, and London: Verlag von J. Cramer / Natural History Museum, 1985); Brian J. Ford, “Brownian Movement in Clarkia Pollen: A Reprise of the First Observations”, Microscope 40, no. 4 (1992): 235–41; and Stephen Brush, “A History of Random Processes. I. Brownian Movement from Brown to Perrin”, Archive for History of Exact Sciences 5, no. 34 (1968).
[Закрыть]. Хотя пыльца и является источником жизни, сама по себе она не живой организм. Однако сколько Броун ни смотрел, движение не прекращалось – гранулами как будто двигала некая таинственная энергия. Это движение не было намеренным, наоборот, оно походило на случайное. Взволнованный Броун поначалу решил было, что он наконец-то у цели – чем еще могла быть эта энергия как не энергией, порождающей саму жизнь?
В процессе экспериментов, которые Броун со всем тщанием ставил последующие несколько месяцев, он заметил: тот же самый тип движения наблюдается и среди самых разных частичек органической природы, помещенных в виде взвеси в воде и иногда в джине: разлагающихся волокон телятины, паутины, «черной от лондонской пыли», даже собственной мокроты. А затем последовал смертельный удар, сведший на нет столь желанную интерпретацию открытия, – Броун распознал движение, в котором участвовали и неорганические частички: асбест, медь, висмут, сурьма, марганец. Ему стало ясно, что наблюдаемое им движение не связано с понятием об источнике жизни. Истинная причина броуновского движения, как выяснится, – та же сила, которой подчиняются закономерности человеческого поведения, подмеченные Кетле, – сила не физическая, а очевидно, обусловленная принципом случайности. К сожалению, Броун не дожил до тех времен, когда феномену дали объяснение.
Основа для понимания броуновского движения была заложена в последующие десятилетия после работы Броуна – Больцманом, Максвеллом и другими. Вооруженные теориями Кетле, они создали новую область – статистическую физику, прибегнув к математически подкрепленной вероятности и статистике, – чтобы объяснить, каким образом свойства жидкостей происходят из движения (тогда гипотетического) атомов, их составляющих. Еще несколько десятилетий идеи ученых не находили отклика. У некоторых коллег были возражения по части математических выкладок. Другие возражали, поскольку в то время никому еще не удавалось увидеть атом, и ни у кого не было уверенности, что это когда-либо произойдет. Однако физики в большинстве своем практики, поэтому самым большим препятствием на пути к приятию объяснения было следующее: хотя теория и воспроизводила некоторые уже известные законы, ничего нового она не давала. Так продолжалось до 1905 г. – уже и Максвелла давно не было в живых, и Больцман, находясь в состоянии уныния, вскоре покончил самоубийством, – когда Эйнштейн воспользовался новорожденной теорией, чтобы с невероятной подробностью объяснить точный механизм броуновского движения[198]198
Pais, Albert Einstein, pp. 88–100.
[Закрыть]. Необходимость статистического подхода к физике никогда больше не подвергнется сомнению, а идея о том, что вещество состоит из атомов и молекул, окажется той самой базой, на которой возникнут современнейшие технологии, а также одной из важнейших во всей истории физики.
Как мы узнаем из главы 10, случайное блуждание молекул в жидкости можно рассматривать в качестве своеобразной метафоры наших жизненных путей, поэтому стоит уделить работе Эйнштейна еще немного времени. На атомарном уровне движение молекул воды выглядит хаотичным. Молекулы перемещаются то туда, то сюда, движутся по прямой лишь до столкновения с другой молекулой. Как я уже писал в прологе, такой тип движения, при котором в различных точках направление произвольно меняется, часто называют «походкой пьяного» – вполне очевидное название для каждого, кому случалось перебрать мартини (математики и вообще ученые из числа трезвенников называют это движение «случайным блужданием»). Согласно атомарной теории, частички, плавающие в жидкости, постоянно бомбардируются молекулами жидкости; если это так, то можно ожидать, что они будут смещаться в разных направлениях. Однако в связи с картиной броуновского движения возникают два затруднения. Первое: молекулы слишком легки, чтобы сдвинуть с места видимые плавающие частички. Второе: молекулярные столкновения случаются гораздо чаще, нежели наблюдаемые смещения от якобы столкновений. Гениальность Эйнштейна объясняется уже тем, что он догадался: эти два вопроса взаимоисключающи; хотя столкновения происходят очень часто, из-за того, что молекулы очень легкие, отдельные столкновения невидны. Лишь по чистой случайности – тут приходит на ум сравнение с рекордным годом бейсболиста Роджера Мариса – наблюдаются видимые смещения. Когда Эйнштейн произвел математические подсчеты, он обнаружил: несмотря на хаотичность на уровне наблюдений в микроскоп, существует предсказуемая связь между такими факторами, как размер, число, скорость молекул, и наблюдаемой частотой и амплитудой смещений. Поначалу Эйнштейн связал новые, измеримые результаты со статистической физикой. Возможно, это покажется исключительно техническим достижением, но на самом деле это огромная победа: большая часть того упорядоченного, что мы наблюдаем в природе, скрывает под собой невидимую беспорядочность и, следовательно, может быть понята лишь с помощью правил случайности. Как написал Эйнштейн: «Возникает невероятное ощущение, когда осознаешь единство совокупности феноменов, которые кажутся совершенно далекими от истинности при прямом на них взгляде»[199]199
Albert Einstein, quoted in Ronald William Clark, Einstein: The Life and Times (New York: HarperCollins, 1984), p. 77.
[Закрыть].
В математическом анализе Эйнштейна нормальное распределение опять же играет ключевую роль, восходя еще на одну ступеньку славы в истории развития науки. Случайное блуждание тоже стало одним из основополагающих, а вскоре и одним из самых изучаемых процессов в природе. По мере того, как ученые разных областей знаний начали признавать статистический подход к изучению совершенно оправданным, они увидели следы случайного блуждания практически везде: в полетах москитов, рыскающих в поисках пищи на просторах вырубленных африканских джунглей, в химических реакциях при производстве нейлона, в образовании пластмасс, в движении свободных квантовых частиц, а также цен на акции, даже в эволюции разума на протяжении миллиардов лет. В главе 10 мы рассмотрим влияние случайности на наш собственный жизненный путь. Однако, как мы вскоре убедимся, хотя в случайных изменениях и присутствуют упорядоченные структуры, они не всегда наполнены смыслом. Важно разглядеть смысл там, где он есть, но и не менее важно не пытаться выудить его оттуда, где его нет. Непросто избавиться от иллюзии наличия смысла в случайных структурах. Об этом речь в следующей главе.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.