Автор книги: Леонард Млодинов
Жанр: Зарубежная образовательная литература, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 12 (всего у книги 18 страниц)
Чтобы пояснить, каким образом центральная предельная теорема доказывает, что нормальное распределение адекватно отражает закон случайного распределения ошибки, вернемся к примеру Даниила Бернулли с лучником. Мне однажды довелось выступить в роли лучника во время вечера в приятном обществе с крепкими напитками и беседами не для детского уха: ко мне прибежал мой младший сын Николай, протянул мне лук и стрелу и начал упрашивать, чтобы я метким выстрелом сбил у него с головы яблоко. И хотя стрела была с мягким наконечником из губки, мне показалось разумным проанализировать свои возможные ошибки и оценить их вероятность. Естественно, больше всего меня беспокоили смещения по вертикали. Простая модель таких ошибок выглядит следующим образом: каждый случайный фактор (скажем, ошибка прицеливания, влияние воздушных потоков и т. п.) может с равной вероятностью сместить мой выстрел по вертикали либо вверх, либо вниз относительно мишени. Итоговая ошибка будет равна сумме всех этих ошибок. Если мне повезет, примерно половина из них сместит выстрел вверх, другая половина – вниз, и тогда я попаду точно в цель. А если мне (точнее, моему сыну) не повезет, то все ошибки подействуют в одном направлении, и в цель я не попаду, а попаду либо существенно ниже, либо существенно выше. Соответственно, мне хотелось знать, какова вероятность того, что ошибки нивелируют друг друга, или, напротив, их сумма достигнет максимального значения, или примет одно из промежуточных значений. Но это был в точности процесс Бернулли, как если бы я подбрасывал монеты и задавался при этом вопросом, с какой вероятностью у меня выпадет определенное число орлов. Ответ на этот вопрос дает треугольник Паскаля или, если попыток много, нормальное распределение. И ровно этому же посвящена центральная предельная теорема. (Кстати сказать, в итоге я не попал ни в яблоко, ни в сына, но зато сбил бокал превосходного каберне.)
К 1830-м гг. большинство ученых обрели уверенность в том, что любое измерение многосоставно, подвержено огромному числу источников отклонения, а следовательно, и закону распределения ошибок. Этот закон, наряду с центральной предельной теоремой, привел, таким образом, к новому, более глубокому пониманию получаемых данных и их отношения к физической реальности. В следующем веке эти за идеи ухватились ученые, занимающиеся исследованием человеческого общества. К своему удивлению, они обнаружили, что человеческое поведение и индивидуальные особенности нередко подчиняются тем же закономерностям, что и ошибка измерения. В связи с этим было решено расширить круг приложений закона распределения ошибок за пределы естествознания и применять его в новой науке о человеческих отношениях.
Глава 8. Упорядоченный хаос
В середине 1960-х гг. во Франции некая девяностолетняя старушка, Жанна Кальмен, сильно нуждаясь в деньгах, заключила договор с сорокасемилетним адвокатом: завещала ему свою квартиру с условием пожизненной выплаты небольших ежемесячных пособий; когда же она освободит помещение, адвокат его займет[162]162
Holland, What Are the Chances? p. 51.
[Закрыть]. Адвокат наверняка знал, что эта Жанна Кальмен уже прожила на десять лет больше среднего срока продолжительности жизни, высчитанного для Франции. Однако он мог не слышать о теории Байеса: важно не то, умрет ли старушка через десять лет или нет, а то, что ее средняя продолжительность жизни, исходя из уже прожитых девяноста лет, увеличивается на шесть лет[163]163
Это лишь приблизительные расчеты, в основе которых лежат последние данные по американской статистике. Смотрите: U.S. Social Security Administration, “Actuarial Publications: Period Life Table.” Наиболее свежие данные находятся по адресу: http://www.ssagov/OACT /STATS/table4c6.html.
[Закрыть]. Но вряд ли он думал о чем-то подобном, скорее верил: любая женщина, юной девушкой видевшая в отцовской лавке Винсента ван Гога, вскоре последует за этим самым ван Гогом на тот свет. (Любопытно, что художник показался ей человеком «неряшливым, плохо одетым и в целом неприятным».)
Прошло десять лет, и адвокат наверняка подыскал себе другое жилье, потому как старушка отпраздновала столетие в добром здравии. И хотя до собственной средней продолжительности жизни ей к тому моменту оставалось еще два года, она преспокойно дожила на денежки адвоката до ста десяти лет. К тому времени адвокату исполнилось шестьдесят семь. Однако прошло еще десять лет, прежде чем ожиданиям адвоката пришел конец, причем для него довольно неожиданный. В 1995 г. адвокат умер, а Жанна Кальмен продолжала здравствовать. И скончалась лишь 4 августа 1997 г. в возрасте ста двадцати двух лет. Разница между ее возрастом на момент смерти и возрастом адвоката на момент смерти составила сорок пять лет.
У каждого конкретного человека продолжительность жизни, да и сама жизнь, непредсказуемы, однако на основе исследовательских данных можно вывести некие закономерности. Предположим, вы двадцать лет за рулем без единой аварии. И вот одним прекрасным днем вы проводите свой отпуск в Квебеке, рядом с вами жена и ее родители, и вдруг теща кричит вам: «Осторожно, лось!». Вы бешено крутите баранку, врезаясь в придорожный знак, на котором написано ровным счетом то же самое. Вам это происшествие покажется чем-то необычным, прямо из ряда вон выходящим. Но недаром был установлен знак: из всей совокупности тех, кто за рулем, определенный процент водителей наверняка встретится с лосем. В действительности, составляющие статистическую совокупность люди, действующие при этом наугад, часто создают впечатление людей последовательных, с предсказуемым поведением, якобы осознанно преследующих определенные цели. Или же, как в 1784 г. писал Иммануил Кант, «каждый, сообразно своим личным наклонностям, преследует свою цель, зачастую в противовес другим; однако каждый человек и все люди вместе как будто придерживаются некой направляющей линии – идут к естественной, но неведомой каждому в отдельности цели; все приближаются к ней, хотя знай они об этой цели, все равно не придали бы ей большого значения»[164]164
Immanuel Kant, quoted in Theodore Porter, The Rise of Statistical Thinking: 1820–1900 (Princeton, N.J.: Princeton University Press, 1988), p. 51.
[Закрыть].
К примеру, по данным Федеральной дорожной администрации США, в стране насчитывается около 200 млн. водителей[165]165
U.S. Department of Transportation, Federal Highway Administration, “Licensed Drivers, Vehicle Registrations and Resident Population”, http://wwwfhwa.dot.gov/policy/ohim/hs03/htm/dlchrt.htm.
[Закрыть]. А по последним данным Национального управления по безопасности дорожного движения, за год эти водители наездили в общей сложности около 2.86 трлн миль[166]166
U.S. Department of Transportation, Research and Innovative Technology Administration, Bureau of Transportation Statistics, “Motor Vehicle Safety Data”, http://www.bts.gov/publications/national_transportation_statistics/2002/html/table_02_17.html.
[Закрыть]. Это около 23 тыс. км на водителя. А теперь представьте, будто каждый водитель решит: неплохо бы повторить результат в следующем году. Сравним два метода, которыми может быть достигнута эта цель. Метод 1: правительство вводит карточную систему, используя один из сверхмощных компьютерных центров Национального научного фонда для определения дистанции пробега каждому из 200 млн водителей в соответствии с их потребностями, чтобы в итоге получилось в среднем 23 тыс. км. Метод 2: водителям рекомендуют особо не озадачиваться, ездить столько, сколько нужно – больше или меньше, – даже не задумываясь над тем, сколько они наездили в прошлом году. Если дядюшка Билли Боб, который раньше ходил на работу в винный магазинчик пешком, теперь накрутит около 160 тыс. км, продавая дробовики оптом в Западном Техасе – пожалуйста! И если тетушка Джейн из Манхэттена, чей пробег складывался в основном из кругов, которые она описывала в поисках парковочного места в те дни, когда убирались на улицах, вдруг выйдет замуж и переедет в Нью-Джерси, нас это ничуть не обеспокоит. Какой из методов окажется ближе к цели: 23 тыс. км на водителя? Метод 1 невозможно проверить, хотя наш небольшой опыт с карточками на бензин свидетельствует: скорее всего он окажется не особенно удачным. Метод 2 вообще-то и был применен: на следующий год водители ездили столько, сколько хотели, даже не пытаясь ограничивать себя какими-то рамками. И каков результат? Согласно данным Национального управления по безопасности дорожного движения, в тот год водители наездили в общей сложности 2.88 трлн миль, то есть 23 тыс. км на водителя – всего на 160 км больше запланированного. Более того, среди этих самых 200 млн водителей насчитали почти то же (с разницей в 200) число жертв аварий, что и за предыдущий год (42 815 против 42 643).
Мы связываем случайность с отсутствием упорядоченности. И все же, хотя и невозможно спрогнозировать, как повернутся жизни 200 млн водителей, в совокупности их поведение едва ли могло быть более упорядоченным. Те же закономерности можно обнаружить, если исследовать то, каким образом люди голосуют, покупают ценные бумаги, женятся или выходят замуж, пропадают, отправляют письма по не тому адресу или сидят в пробке по пути на встречу, на которую они с самого начала не хотели ехать. Или же если измерять длину ног, размер ступней, ширину ягодиц или пивных животиков. Когда в XIX в. ученые начали разбираться в ставшей доступной социологической информации, куда бы они ни посмотрели, всюду им виделась одна и та же картина: хаос жизни превращался в измеримые и предсказуемые структуры. Но поразили ученых вовсе не одни лишь закономерности. Их поразила природа варьирования. Они обнаружили, что очень часто социологические данные подчиняются принципу нормального распределения.
Тот факт, что вариации черт характера и поведения человека распределяются по типу распределения ошибок лучника, побудило некоторых ученых изучить цели, на которые направлены стрелы человеческого существования. И, что важнее всего, они попытались понять социальные и физические причины, которые иногда смещают цель. Таким образом, математическая статистика, с помощью которой ученые анализировали данные, очень пригодилась в совсем другой области: области изучения природы общества.
История статистического анализа информации, связанной с жизнью человека, началась еще в XI в., когда Вильгельм I Завоеватель учредил то, что по сути явилось первым бюро переписи населения. Править он начал в 1035 г., в возрасте семи лет, унаследовав отцу норманнскому герцогу Вильгельму. Судя по прозвищу, Вильгельм предпочитал завоевывать; в 1066 г. он вторгся в Англию. К Рождеству Вильгельм сам себе преподнес подарок, провозгласив себя английским королем. Его скорая победа привела к небольшому затруднению: кого же именно он завоевал и, главное, какие налоги собирать с новых вассалов? Чтобы ответить на эти вопросы, Вильгельм отправил в разные части Англии посланцев: те должны были описать размеры каждого клочка земли, учесть все, что на нем производится, а также самого владельца[167]167
“The Domesday Book”, History Magazine, October/November 2001.
[Закрыть]. Чтобы удостовериться в правильности записей, Вильгельм отправил вторую группу посланцев, которым предстояло проделать ту же самую работу. Поскольку при расчете налогов исходили не из численности населения, а из размеров земельных наделов и их использования, посланцы проделали воистину титанический труд, попытавшись сосчитать каждого быка, корову, свинью, однако не слишком старались, когда собирали сведения о тех, кто убирал за всеми этими животными. Даже если население сосчитали бы точно, особой пользы это не принесло бы. В средние века статистические данные о людях – продолжительность их жизни, болезни – считали недостойными внимания в свете традиционных христианских представлений о смерти. Согласно этим представлениям, не годилось делать смерть предметом размышлений, а в попытках исследовать законы, управляющие ею, усматривали кощунство. Неважно, от чего умер человек: от легочной инфекции, желудочного заболевания или камня, чья сила воздействия превысила прочность черепной коробки – жизнь и смерть подчинялись воле божьей. Спустя столетия подобный фатализм постепенно уступил место противоположному взгляду: изучая закономерности природы и общества, мы не бросаем вызов авторитету Бога, а скорее проникаемся методами его воздействия.
Взгляды сильно поменялись в XVI в., когда мэр Лондона распорядился еженедельно составлять бюллетени смертности с целью учета крещеных и погребенных по приходам. Десятилетиями эти бюллетени составлялись нерегулярно, но в 1603 г., когда чума особенно свирепствовала, городское управление распорядилось вести учет еженедельно. Теоретики на материке отнеслись к практике учета смертности презрительно, усмотрев в ней не имеющую никакой пользы причуду англичан. Но одному из этих чудаковатых англичан, лавочнику по имени Джон Граунт, учетные данные рассказали о многом[168]168
For Graunt’s story, see Hacking, The Emergence of Probability, pp. 103–9; David, Gods, Games and Gambling, pp. 98–109; and Newman, The World of Mathematics, 3:1416–18.
[Закрыть].
Граунта и его друга Уильяма Петти называют основателями статистики, которую те, кто занимается чистой математикой, иногда считают наукой примитивной. А все из-за того, что статистика интересуется вопросами бытовыми, практическими, и в этом смысле Граунт особенно подходит на роль отца-основателя. Потому как в противоположность некоторым любителям от науки, которые способствовали развитию теории вероятностей – врачу Кардано, юристу Ферма, священнику Байесу – Граунт был всего-навсего торговцем, продавал всякую мелочь вроде пуговиц, ниток, иголок, пригодную в домашнем хозяйстве. Однако Граунт не был заурядным торговцем пуговицами, он преуспевал, благодаря чему располагал свободным временем, которое тратил на занятия, не имевшие ничего общего с приспособлениями для скрепления лоскутов ткани. Также у него нашлось время и для того, чтобы свести знакомство с величайшими интеллектуалами того времени, в число которых входил и Петти.
Вывод, к которому Граунт пришел, изучив бюллетени смертности, связан с числом умерших от голода. В 1665 г. их оказалось 45 человек – примерно в два раза больше, чем тех, кого лишили жизни посредством казни. Для сравнения: 4 808 человек умерли от чахотки, 1 929 – от сыпного тифа и дифтерии, 2 614 – от зубных болезней и глистов и 68 596 – от чумы. Почему же, в то время как Лондон был буквально наводнен попрошайками, так мало людей умирало от недоедания? Граунт решил, что наверняка голодных подкармливают. И предложил, чтобы пищу голодающим давало государство, освобождая тем самым общество от затрат, а Лондон тем временем освободился бы от тех, кто попрошайничал или приставал к прохожим на улице, за плату навязывая свои услуги. Кроме того, Граунт размышлял над двумя основными теориями распространения чумы. Согласно одной теории, болезнь распространялась посредством зараженного воздуха; согласно другой, передавалась от человека к человеку. Граунт наблюдал за еженедельными сводками смертей и сделал вывод: изменения данных слишком существенны, чтобы считать их случайными, как он думал поначалу, считая правильной вторую теорию. С другой стороны, погода от недели к неделе неустойчива, и Граунт предположил, что изменения данных связаны с первой теорией. Впрочем, оказалось, что Лондон еще не был готов к бесплатным столовым для бедных, а лондонцы предпочитали избавляться от крыс, а не дурного воздуха. Однако великие открытия Граунта заключались в ином: статистика может способствовать постижению области знаний посредством изучения ее статистических данных.
Работу Петти иногда рассматривают в качестве предвестника классической экономики[169]169
Hacking, The Emergence of Probability, p. 102.
[Закрыть]. Петти считал, что мощь государства зависит от числа и характера его субъектов, ее и отражающих, поэтому в своем анализе вопросов государственного значения он прибегнул к статистике. К анализу Петти подошел с типичных для тех времен позиций – с точки зрения правящего класса, для которого остальные члены общества представляли собой лишь объекты воздействия. Рассуждая о распространении чумы, Петти указал на следующее: деньги следует выделять на профилактику заболевания. Сохранение людских жизней означает сохранение важного фонда, накопленного обществом: мужчины и женщины, достигшие зрелого возраста, способны дать больше, нежели любой другой самый прибыльный капитал. А вот к ирландцам Петти не был так уж милосерден. Например, он пришел к такому выводу: жизнь англичанина с экономической точки зрения представляет собой большую ценность, чем жизнь ирландца, поэтому принудительное переселение всех ирландцев (за исключением немногочисленных пастухов) будет только способствовать процветанию Британии. Однако оказалось, что своим собственным богатством Петти был обязан все тем же ирландцам: в 1650-х гг. ему, в качестве врача сопровождавшему войска вторгшихся в Ирландию англичан, было поручено описать военные трофеи. Он же, описав добычу, прихватил себе немалую ее долю, что сошло ему с рук[170]170
Theodore Porter, The Rise of Statistical Thinking, p. 19.
[Закрыть].
Если согласиться с Петти, который считал, что численность и рост населения отражают качество управления в стране, то выходит, что отсутствие приемлемого метода оценки численности населения затрудняет и оценку методов управления. Самые известные подсчеты Граунта касались как раз этой области – в частности, населения Лондона. Из бюллетеней смертности Граунт знал и о числе новорожденных. Поскольку он в общих чертах представлял себе коэффициент рождаемости, то смог высчитать число женщин репродуктивного возраста. А исходя из этого, вывел общее число семей и, уже из своих наблюдений за лондонскими семьями, отличавшимися средними размерами, вычислял население города. У него получилось 384.000 человек, хотя до него считалось, что население Лондона равно 2 млн. Удивил Граунт и следующим выводом: рост населения происходит в основном за счет переселения из соседних областей, а вовсе не благодаря естественному воспроизводству, способу более медленному, и что, несмотря на все ужасы чумы, численность населения, снижавшаяся во времена самых страшных эпидемий, потом в течение двух лет неизменно восстанавливалась. Кроме того, Граунту обычно приписывают публикацию первого бюллетеня продолжительности жизни, содержавшего систематически распределенные данные, который в наше время широко используется различными организациями – от страховых компаний до Всемирной организации здравоохранения, – заинтересованными в сведениях о продолжительности жизни населения. Из бюллетеня продолжительности жизни можно узнать о том, сколько человек из ста предположительно доживут до того или иного возраста. К данным Граунта (колонка под названием «Лондон, 1662») я добавил колонки, показывающие те же данные для некоторых стран уже в наши дни[171]171
For Graunt’s original table, see Hacking, The Emergence of Probability, p. 108. For the current data, see World Health Organization, “Life Tables for WHO Member States”, http://www.who.int/whosis/database/life_tables/life_tables.cfm. The figures quoted were taken from abridged tables and rounded.
[Закрыть].
В 1662 г. Граунт опубликовал результаты своей аналитической работы, издав книгу «Наблюдения естественного и политического характера, основанные на бюллетенях смертности». Год спустя он был избран членом Королевского общества. Затем, в 1666 г., когда случился Великий лондонский пожар, во время которого выгорела бо́льшая часть города, Граунт лишился своей лавки. Вдобавок ко всему его обвинили в том, что он якобы способствовал ее разрушению, – распорядился, чтобы остановили подачу воды как раз перед тем, как пламя разгорелось. На самом же деле Граунт обратился к людям, тушившим огонь, уже после пожара. Однако после этого обвинения имя Граунта исчезло из списков членов Королевского общества. Через несколько лет Граунт умер от гепатита.
В 1667 г. французы, беря пример с англичан, пересмотрели свое законодательство, введя обязательное составление бюллетеней смертности; пошли они на это по большей части после изучения работы Граунта. За французами последовали и другие европейские страны. К XIX в. статистики по всей Европе только тем и занимались, что собирали для органов управления данные, к примеру, переписи населения, представлявшие собой «лавину цифр»[172]172
Ian Hacking, The Taming of Chance (Cambridge: Cambridge University Press, 1990), p. vii.
[Закрыть]. Граунт имел целью показать: выводы о населении как едином целом можно сделать, основываясь на небольшой выборке данных по этому населению. Однако хотя Граунт и другие предпринимали героические усилия, пытаясь рассматривать информацию с позиций применения простой логики, большая часть тайн была раскрыта только с появлением изобретений Гаусса, Лапласа и других, живших уже в XIX – начале XX вв.
Термин statistics[173]173
Статистика (англ.)
[Закрыть] пришел в английский язык из немецкого – слово Statistik[174]174
Статистика (нем.)
[Закрыть] было упомянуто в переводе книги 1770 г. «Всеобщее начальное образование по Билфилду»: «наука под названием статистика изучает политическое устройство всех современных государств в известном нам мире»[175]175
H. A. David, “First (?) Occurrence of Common Terms in Statistics and Probability”, in Annotated Readings in the History of Statistics, ed. H. A. David and A.W.F. Edwards (New York: Springer, 2001), appendix B and pp. 219–28.
[Закрыть]. К 1828 г. понятие это развилось, и в «Американском словаре английского языка» Уэбстера статистика получила следующее определение: «собрание фактов, имеющих отношение к состоянию общества, людям в пределах нации или страны, их здоровью, продолжительности жизни, внутренней экономике, искусству, собственности и политике, состоянию страны и т. д»[176]176
Noah Webster, American Dictionary of the English Language (1828; facsimile of the 1st ed., Chesapeake, Va.: Foundation for American Christian Education, 1967).
[Закрыть]. Эта область вобрала в себя и методы Лапласа, пытавшегося расширить сферу применения математического анализа, не ограничиваясь звездами и планетами, а включив еще и вопросы повседневной жизни.
Нормальное распределение описывает то, каким образом многие явления варьируют вокруг центрального значения, которое представляет собой их наиболее вероятный исход; в своем труде «Опыт философии теории вероятностей» Лаплас заявлял: эта новая математическая дисциплина может быть применена при оценке свидетельских показаний, расчете процента браков, начислении страховых взносов. Однако к моменту выхода последнего издания «Опыта» Лапласу было уже больше шестидесяти, поэтому развивал его идеи ученый помоложе. Им был Адольф Кетле, родившийся в Генте, Фландрия, 22 февраля 1796 г[177]177
The material on Quételet is drawn mainly from Stigler, The History of Statistics, pp. 161–220; Stephen Stigler, Statistics on the Table: The History of Statistical Concepts and Methods (Cambridge, Mass.: Harvard University Press, 1999), pp. 51–66; and Theodore Porter, The Rise of Statistical Thinking, pp. 100–9.
[Закрыть].
Кетле занялся исследованиями вовсе не потому, что его живо интересовали законы, по которым существует общество. Диссертация Кетле, за которую он в 1819 г. получил в Гентском университете первую степень доктора, касалась теории конических сечений – темы из геометрии. Далее Кетле заинтересовался астрономией и около 1820 г. активно поддержал движение за основание новой обсерватории в Брюсселе, где и преподавал. Кетле был человеком амбициозным и наверняка рассматривал обсерваторию как ступеньку на пути к основанию научной империи. Шаг был дерзкий, не в последнюю очередь потому, что Кетле плохо знал астрономию и совсем не умел обращаться с обсерваторией. Но, видимо, он сумел настоять на своем, потому что средства выделили не только на обсерваторию, но и на поездку Кетле в Париж, где он в течение нескольких месяцев ликвидировал пробелы в знаниях. Оказалось, что деньги были потрачены не зря: Королевская обсерватория Бельгии существует до сих пор.
В Париже Кетле увлекся темой хаотичности в жизни и резко сменил направление своих интересов. Его роман со статистикой начался с того, что он познакомился с выдающимися французскими математиками, среди которых оказались Лаплас и Фурье, и под руководством последнего начал изучать статистику и вероятность. Под конец у Кетле, хотя он и узнал все тонкости обращения с обсерваторией, появилась другая цель – использование математических методов астрономии применительно к социологическим данным.
Вернувшись в Брюссель, Кетле принялся собирать и анализировать демографические данные и вскоре остановился на отчетности по преступности, которую французское правительство начало публиковать в 1827 г. В двухтомном труде «О человеке и развитии его способностей, или Опыт социальной физики», вышедшем в 1835 г., Кетле напечатал погодовую сводку убийств, совершенных во Франции в период с 1826 по 1831 гг. Он заметил: число убийств из года в год почти не менялось, как и соотношение убийств, совершаемых разными способами: с помощью пистолетов, мечей, ножей, тростей, камней, режущих и колющих инструментов, пинков и ударов, удушения, утопления и поджога[178]178
Louis Menand, The Metaphysical Club (New York: Farrar, Straus & Giroux, 2001), p. 187.
[Закрыть]. Кроме того, Кетле проанализировал смертность с точки зрения возраста, географического местоположения, времени года, рода деятельности, а также изучил случаи смертей в госпиталях и тюрьмах. Он просмотрел статистические данные по утонувшим, сошедшим с ума и умершим насильственной смертью. И обнаружил статистические закономерности, просматривая случаи самоубийств путем повешения в Париже и количество браков в Бельгии между женщинами за шестьдесят и мужчинами за двадцать.
Подобные исследования проводились и до Кетле, однако Кетле сделал с цифрами нечто большее, чем просто изучил средние значения, – он внимательно присмотрелся к тому, каким образом данные отклоняются от среднего значения. И всюду находил нормальное распределение: в предрасположенности к преступлению, браку и самоубийству, в высоте роста американских индейцев, в размерах грудной клетки шотландских солдат (на данные обмеров 5 738 солдат он наткнулся в старом номере «Эдинбургского журнала по медицине и хирургии»). Что касалось данных по росту 100 тыс. молодых французов призывного возраста, то в отклонениях от нормального распределения он также обнаружил определенные закономерности. Если изобразить данные по числу призывников и данные по их росту в виде графика, то колоколообразная кривая получится искаженной: слишком мало новобранцев, чей рост превышал 158 см, зато тех, чей рост оказался чуть меньше, в качестве компенсации наблюдалось в избытке. Кетле счел, что разница – около 2 200 лишних «коротышек» – получилась в результате мошенничества или, мягко говоря, те, чей рост оказался ниже 158 см, были освобождены от службы.
Десятилетия спустя великий французский математик Пуанкаре воспользовался методом Кетле, чтобы поймать нечистого на руку булочника, который обвешивал покупателей. Пуанкаре, каждый день покупавший буханку свежего хлеба, решил взвесить буханки и заметил: в среднем они весят 950 г, а не обозначенный в прейскуранте 1 кг. Стоило Пуанкаре пожаловаться властям, как ему стали продавать буханки большего веса. Но Пуанкаре все равно не отпускало ощущение, будто хлеб его «не кошерный». И вот он с терпением, какое присуще только ученым великим или же с приличным стажем, принялся взвешивать буханки: каждый день в течение года. Да, теперь по весу буханки в среднем приблизились к 1 кг; однако если булочник в самом деле давал Пуанкаре первую попавшуюся буханку, число буханок большего веса и меньшего веса, которые должны быть у булочника – об этом я говорил в главе 7 – должно сократиться в соответствии с колоколообразной кривой закона ошибок. Вместо этого Пуанкаре обнаружил слишком мало буханок меньшего веса и избыток буханок большего веса. Из чего сделал вывод: булочник продолжал свое дело, просто теперь, стремясь усыпить бдительность Пуанкаре, продавал ему буханки побольше. Полиция вновь навестила булочника-мошенника, который, судя по словам свидетелей, оказался совершенно не готов к такому визиту и, по-видимому, дал слово исправиться[179]179
Holland, What Are the Chances? pp. 41–42.
[Закрыть].
Кетле наткнулся на полезное открытие: характер распределения случайностей настолько надежен, что в определенных социологических данных его искажение может быть воспринято как свидетельство правонарушения. В наше время подобным образом анализируют данные, слишком обширные для анализа времен Кетле. В последние годы такое «статистическое выслеживание» распространилось, возникло даже новое направление – судебная экономика, – самым известным примером которой является изучение статистической информации с целью выявления компаний, проводящих свои опционные гранты задним числом. Идея проста: компании предоставляют опционные гранты – право покупки акций – позже по цене этих акций на дату предоставления права – в качестве поощрения менеджеров. Если гранты проводятся задним числом, на дату особенно низкой стоимости акций, менеджеры соответственно получают максимальные доходы. Ловко придумано, однако тайное исполнение этой придумки выливается в нарушение законодательства по ценным бумагам. Кроме того, остаются статистические «отпечатки пальчиков», которые уже привели к раскрытию подобной практики в десятке крупных компаний[180]180
David Yermack, “Good Timing: CEO Stock Option Awards and Company News Announcements”, Journal of Finance 52, no. 2 (June 1997): 449–76; and Erik Lie, “On the Timing of CEO Stock Option Awards”, Management Science 51, no. 5 (May 2005): 802–12. See also Charles Forelle and James Bandler, “The Perfect Payday – Some CEOs Reap Millions by Landing Stock Options When They Are Most Valuable: Luck – or Something Else?” Wall Street Journal, March 18, 2006.
[Закрыть]. В менее известном случае Джастин Вулферс, экономист из бизнес-школы Уортона, обнаружил свидетельства мошенничества в результатах более 70 тыс. баскетбольных игр, сыгранных между колледжами[181]181
Justin Wolfers, “Point Shaving: Corruption in NCAA Basketball”, American Economic Review 96, no. 2 (May 2006): 279–83.
[Закрыть].
Вулферс обнаружил аномальность, сравнивая форы лас-вегасских букмекеров с истинными исходами игр. Когда одна команда является фаворитом, букмекеры предлагают форы, чтобы привлечь примерно одинаковое число ставок на обе команды. Предположим, что баскетбольную команду Калифорнийского технологического посчитали лучше команды Калифорнийского университета в Лос-Анджелесе (что до спортивных фанатов колледжа, то да, так оно и было в 1950-х гг.). Чем заключать пари с неравномерным распределением, букмекеры могли предложить ставки с равными шансами на победу, однако выплачивать только в том случае, если, к примеру, Калифорнийский технологический выигрывал у Калифорнийского университета с перевесом в 13 и более очков.
Хотя форы устанавливаются букмекерами, на самом деле они зависят от тех, кто делает ставки, поскольку букмекеры выстраивают свою «линию» так, чтобы уравновесить спрос. (Букмекеры зарабатывают на марже, которую закладывают в свои прогнозы, поэтому им выгодно, чтобы по каждому участнику соревнования получалась равная сумма ставок – таким образом, они не остаются в накладе при любом исходе игры.) Чтобы определить, насколько умело оценивают обе команды те, кто делает ставки, экономисты используют число, называемое ошибкой прогнозирования – оно представляет собой разницу между преимуществом команды-фаворита и форой букмекера. Может показаться неудивительным, что ошибка прогнозирования, будучи ошибкой определенного типа, распределяется в соответствии с принципом нормального распределения. Вулферс обнаружил, что ее среднее – 0, то есть форы не стремятся ни переоценить, ни недооценить команды, и их среднее отклонение равно 10,9 очкам маржи победы. (При изучении футбольных игр профессиональных команд получился сходный результат: среднее – 0 и среднее отклонение – 13,9 очков.)[182]182
Stern, “On the Probability of Winning a Football Game.”
[Закрыть]
Когда Вулферс изучил подмножество игр, которые включали явных фаворитов, он обнаружил нечто поразительное: слишком мало игр, в которых явные фавориты выигрывали со счетом чуть большим, чем фора, и неожиданно много игр, в которых фаворит выигрывал со счетом чуть меньшим. Что снова возвращает к аномальности Кетле. И, как и Кетле с Пуанкаре, Вулферс сделал вывод о мошенничестве. Свой анализ он строил следующим образом: даже сильнейшему игроку трудно преодолеть фору, однако если команда является явным фаворитом, игрок, не ставя под угрозу шансы команды на победу, может снизить темп в достаточной мере, чтобы команда не преодолела фору. Таким образом, если нечистоплотные игроки на тотализаторе задумают жульничество, результатом окажутся те самые искажения, обнаруженные Вулферсом. Доказывает ли работа, проделанная Вулферсом, что в случае определенного процента баскетбольных игр между колледжами игроки брали взятки? Нет, но, как говорит Вулферс, «не должно быть такого, чтобы ситуация на игровом поле отражала ситуацию в игровых заведениях Лас-Вегаса». И вот что еще любопытно: в недавних опросах Национальной студенческой спортивной ассоциации 1,5 % игроков признались: они знают товарищей по команде, кто «соглашается брать деньги за плохую игру»[183]183
David Leonhardt, “Sad Suspicions about Scores in Basketball”, New York Times, March 8, 2006.
[Закрыть].
Кетле не ставил перед собой цели найти применение своим идеям в судебных расследованиях. Он метил выше: разобраться с помощью принципа нормального распределения в природе людей и общества. Кетле писал: если сделать 1 тыс. копий статуи, копии окажутся разными из-за ошибок в измерениях и самой работе резчика, и эти отклонения будут подчиняться закону ошибок. Он утверждал: если разнообразие физических признаков у людей подчиняется все тому же закону, напрашивается вывод: мы представляем собой несовершенные копии прообраза. Кетле назвал этот прообраз l’homme moyen, то есть «средний человек». Он подозревал, что и для человеческого поведения существует шаблон. Может, менеджер большого универмага и не определит с уверенностью, прикарманит ли недавно взятая на работу чудаковатая кассирша приглянувшийся ей флакончик элитных духов «Chanel Allure», однако он знает: в розничной торговле потери товаров год от года держатся примерно на уровне 1,6 %, причем раз за разом от 45 % до 48 % от этих потерь приходятся на долю краж со стороны персонала[184]184
Richard C. Hollinger et al., National Retail Security Survey: Final Report (Gainesville: Security Research Project, Department of Sociology and Center for Studies in Criminal Law, University of Florida, 2002–2006).
[Закрыть]. Кетле писал, что преступления «сродни отчислениям по финансовой смете, которые совершаются с ужасающей регулярностью»[185]185
Adolphe Quételet, quoted in Theodore Porter, The Rise of Statistical Thinking, p. 54.
[Закрыть].
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.