Текст книги "Су́чки. Секс, эволюция и феминизм в жизни самок животных"
Автор книги: Люси Кук
Жанр: Классическая проза, Классика
Возрастные ограничения: +18
сообщить о неприемлемом содержимом
Текущая страница: 3 (всего у книги 25 страниц) [доступный отрывок для чтения: 8 страниц]
Хаос хромосом
Можно подумать, что ответ на вопрос, как получается самка, – это пара XX хромосом. В конце концов, всех нас учат в школе, что эта аномальная пара половых хромосом определяет пол: самцы – XY, а самки – ХХ. Но дела с полом обстоят гораздо сложнее.
Система определения пола XY наиболее известна, потому что она встречается у млекопитающих наряду с некоторыми другими позвоночными и насекомыми. В этой системе у самок есть две копии одной и той же половой хромосомы (XX), в то время как у самцов – два вида половых хромосом (XY). Первое заблуждение заключается в том, что буквы X и Y обозначают форму хромосом: все хромосомы имеют форму сосисок, и их сходство с этими буквами, когда они спарены, совершенно случайно.
Самая первая Х-хромосома была обнаружена в 1891 году Германом Хенкингом, молодым немецким зоологом, который заметил нечто любопытное, осматривая семенники огненной осы (которая запутала всех еще сильнее, оказавшись пламенно-красной блестянкой, а не осой). Хромосомы находятся в клетках в виде совпадающих пар, но Хенкинг заметил, что во всех изученных им образцах была одна хромосома, у которой, по-видимому, не было подходящего партнера, из-за чего она оставалась в стороне. Он назвал ее X – математический символ, обозначающий неизвестное, – в честь ее таинственной природы. Хенкинг не связывал эту ставшую культовой, но в то же время загадочную нить ДНК с определением пола, а жаль, поскольку это могло бы сделать ученого довольно знаменитым. Вместо этого год спустя он бросил свои исследования в области цитологии и перешел к карьере в рыболовстве, которая была более прибыльной, но предлагала значительно меньше возможностей для научной славы.
Хромосома Y была обнаружена в репродуктивных органах мучного червя примерно четырнадцать лет спустя, в 1905 году, американкой Нетти Стивенс – женщиной-генетиком. Стивенс признала ключевую роль этой хромосомы в определении пола и даже немного прославилась за свой огромный прорыв. Та же самая хромосома была открыта более или менее одновременно мужчиной-ученым по имени Эдмунд Уилсон, которому досталась бóльшая часть славы. В конце концов эта хромосома была названа Y в подражение алфавитной системе, начатой Хенкингом. Стоит отметить, что благодаря своему небольшому – относительно X-хромосомы – размеру Y-хромосома все-таки напоминает букву, которой ее обозначили.
По сравнению с X, Y – это, по сути, хромосомный карлик: маленький и со значительно меньшим количеством генетического материала. Однако, когда дело доходит до хромосом, важен не размер, а то, что в них зашифровывается. И Y является хранилищем для очень важного гена, определяющего пол и называемого SRY (Sex-determining Region of the Y, определяющий пол участок Y-хромосомы).
В 1980-х годах лаборатории Питера Гудфеллоу в Лондоне удалось определить этот скромный фрагмент генетического кода как неуловимый фактор, влияющий на появление у людей семенников. Команда Питера Гудфеллоу обнаружила, что наличие SRY оказалось решающим первым генетическим шагом в запуске нейтральных половых клеток гонад плода, которые развиваются в семенники и начинают вырабатывать тестостерон. Без него изначальные данные, присущие обоим полам, в более неторопливом темпе созревают в эмбриональные яичники.
Открытие наделало много шума. Наконец-то был обнаружен главный фактор, определяющий пол млекопитающих, а заодно и местонахождение «концентрата маскулинности». SRY оказался тем самым недостающим триггером для ряда генов, которые программируют развитие яичек – путь, определяющий становление самцов.
Я поговорила с Дженнифер Маршалл Грейвс, выдающимся австралийским профессором эволюционной генетики, которая входила в международную группу ученых, занимавшихся поиском этого важнейшего гена, определяющего самцов. Ее работа над хромосомами сумчатых животных направила поиски на новый участок Y, где в конечном итоге и был обнаружен ген SRY. Грейвс объяснила, почему триумф в решении загадки становления пола был таким недолгим.
«Мы думали, что отыскали чашу Святого Грааля, – призналась она, связавшись со мной по зуму из своего дома в Мельбурне. – Когда мой ученик нашел ген SRY, мы поначалу решили, что все очень просто, что это своего рода переключатель… Но определение пола оказалось гораздо сложнее, чем мы полагали».
Вас простят за предположение, что гены для создания семенников находятся в Y, а гены для яичников – в X, потому что нас так учат. Если бы все было так просто! Но эволюция не сделала ничего для облегчения работы генетиков.
За становление половых органов отвечает оркестр примерно из шестидесяти согласованных между собой генов. И не все гены, определяющие пол, находятся в половых хромосомах, не говоря уже о том, чтобы дисциплинированно и гендерно располагаться либо в X-, либо в Y-хромосоме. На деле они беспорядочно разбросаны по всему геному.
SRY выступает в роли их дирижера. Если этот важный триггер, определяющий семенники, присутствует, он отдает распоряжение генам, определяющим пол, начать играть в ключе С для семенников. Если же SRY отсутствует, гены будут играть в тональности Я для яичников. Долгое время генетики предполагали, что это должны быть два совершенно отдельных линейных пути: один для самцов (запускаемый SRY), а другой для самок (запускаемый отсутствием SRY), но мысль о том, что эволюция создаст такое аккуратное бинарное решение для определения пола, оказалась прискорбно наивной.
Именно здесь определение пола становится невероятно сложным. Помимо SRY, этот оркестр из шестидесяти генов, определяющих пол, у самок и самцов в основном одинаков. Эти гены обладают способностью создавать либо яичники, либо семенники, но то, какие именно гонады они будут создавать, зависит от сложных результатов межгеновых переговоров. Это просто взорвало мой мозг. Грейвс терпеливо объяснила все по порядку: «Многие из этих генов не являются генами “семенников” или “яичников”. Это своего рода “оба” гена, и это зависит от того, сколько их и каким образом они влияют на биохимическую реакцию. Постоянно выясняется, что некоторые из этих генов на разных стадиях выполняют более одной функции».
Мало того, эти два пути – к семенникам или яичникам – не являются ни линейными, ни отдельными. Они спутаны.
Например, некоторые гены по пути становления самца необходимы для стимулирования развития гонад в направлении семенников, в то время как другие необходимы для подавления гонад, ведущих к формированию в яичники.
«Было бы чрезмерным упрощением говорить, что существует единственный путь, который создает семенник, потому что существует путь, который создает семенник и в то же время подавляет развитие яичника. Это целая путаница противоречивых реакций, поскольку существует много генов, которые являются промежуточными: они подавляют один путь и усиливают другой. Таким образом, два половых “пути” тесно связаны», – объяснила Грейвс.
Для демонстрации сложности Грейвс прислала мне анимационный фильм, показывающий сложнейшую машину с десятками взаимосвязанных храповиков и винтиков, которые вращаются, а между ними болтаются маленькие синие шарики, которые иногда раздавливаются и воссоздаются заново. Прохождение синих шариков через этот хаос и отражает ее идею о том, как на самом деле работают якобы аккуратные бинарные пути определения пола.
Этот взаимосвязанный беспорядок андрогинных генов объясняет пластичность пола. Едва заметные изменения в работе любого из тесно связанных между собой винтиков приведут к новым вариациям – та самая песчинка, которая движет эволюцию вперед и позволяет животным адаптироваться к новым сложным условиям.
Самка крота, с которой мы познакомились в начале этой главы, служит этому хорошей иллюстрацией. Глобальный консорциум ученых недавно расшифровал весь геном иберийского крота Talpa occidentalis. Они сравнили его код с кодами других млекопитающих и не обнаружили различий в продуцируемых белках генов, участвующих в определении пола. Однако они обнаружили мутации, которые изменили работу двух генов, определяющих пол. Это позволило гену, жизненно важному для развития семенников, у самки оставаться включенным, а не подавляться. Вот чем объясняется опухший участок тестикулярной ткани в яичниках свиноматки. Кроме того, другой ген, который кодирует фермент, участвующий в производстве андрогенов, имел две дополнительные копии, увеличивая выработку тестостерона у самки крота и позволяя ей использовать преимущества «адаптивной интерсексуальности».
Существуют и другие вариации. SRY, генетический триггер для оркестра из шестидесяти генов, определяющих пол, не является универсальным главным переключателем для пола во всем животном мире или даже среди всех млекопитающих, если на то пошло.
Поприветствуйте утконоса! Это яйцекладущее млекопитающее из Австралии специализируется на том, чтобы опровергать все теории, и его половые хромосомы вовсю этому способствуют. Дженнифер Маршалл Грейвс была частью команды, которая обнаружила, что у утконоса пять пар половых хромосом. У самок XXXXXXXXXX, а у самцов XXXXXYYYYY. Несмотря на эту экстравагантность Y-хромосом, ни у одной из них нет признаков главного полового переключателя SRY. «Это было невероятно», – вспоминала Грейвс.
Утконос – древнее млекопитающее. Группа, к которой он принадлежит, однопроходные яйцекладущие, отделилась от человека около 166 миллионов лет назад. Его причудливые половые хромосомы дали Грейвс ценную информацию об эволюции половых хромосом в целом и шатком будущем Y.
Оказывается, набор генов, определяющих пол, у утконоса в основном такой же, как и у других млекопитающих. Грейвс обнаружила, что эти приблизительно шестьдесят генов на самом деле удивительно сохраняются у всех позвоночных. Птицы, рептилии, амфибии и рыбы имеют более или менее тот же набор генов, что и млекопитающие, для создания семенников или яичников. Отличие заключается в главном переключателе, который запускает половой путь. У утконоса это оказался один из генов, который в оркестре и вышел на передний план, чтобы запустить весь процесс определения пола.
«SRY – лишь один из способов начать половой путь; это можно сделать с помощью почти любого гена, определяющего пол, – пояснила Грейвс, еще больше поразив меня. – Это самая странная вещь в определении пола. Есть куча способов повлиять на него, и кажется, что они разные, но на самом деле нет. Все они имеют отношение к половому пути из шестидесяти генов. Получается, пути схожи. Но триггер, влияющий на них, различен».
Геном утконоса показал Грейвс еще кое-что: Y-хромосома теряет генетический материал. Эта и без того небольшая хромосома становится все меньше. Грейвс изучила, чем эта хромосома у утконоса отличается от человеческой, и подсчитала, сколько генетического материала было потеряно за время, прошедшее с тех пор, как наши виды разошлись. Это позволило ей оценить, сколько времени может пройти, прежде чем человеческая Y-хромосома полностью исчезнет.
«Оказалось, что человеческая хромосома Y теряет около десяти генов за миллион лет, и у нее осталось всего сорок пять генов. Не нужно быть Эйнштейном, чтобы понять, что с такой скоростью мы потеряем всю Y-хромосому за ближайшие четыре с половиной миллиона лет».
Некоторым видным генетикам, особенно мужского пола, было довольно трудно принять новость о том, что их «маскулинная» хромосома находится на пути к полному исчезновению.
«Мне показалось это уморительным. Но Дэвиду Пейджу [выдающийся профессор генетики Массачусетского технологического института, который отрицает предсказание Грейвс] было вовсе не до смеха. Конечно, на него сразу напали феминистки со словами: “Эй, вы скоро выйдете в тираж!” По сей день в этой идее чувствуется какая-то скрытая враждебность. Особенно в отчаянной попытке Дэвида Пейджа спасти Y-хромосому и показать, что она совершенно стабильна. В то же время я думаю – какое это вообще имеет значение?» Грейвс уверена, что ее мрачное пророчество не приведет к вымиранию человечества. Она считает, что человеческие самцы выработают новый генетический триггер для своих гонад. Другие млекопитающие так и поступили. Щетинистые крысы из Японии (Tokudaia osimensis) и закавказская слепушонка (Ellobius lutescens) – примеры тех видов млекопитающих, которые полностью потеряли свои Y-хромосомы, но сохранили семенники. У самцов и самок есть только Х-хромосома, и их половые пути обусловлены совершенно другим, пока не идентифицированным основным геном, определяющим пол.
Среди малоизвестных маленьких бурых грызунов постоянно обнаруживаются новые хромосомные странности. В Южной Америке существует девять видов полевок из рода Akodon, у которых четверть самок имеют хромосомы XY, а не XX. Их Y-хромосома полна SRY, но они по-прежнему развивают яичники и производят жизнеспособные яйцеклетки. Предполагается, что у них есть новый главный ген переключения, который может подавлять всемогущий SRY.
Эти своеобразные грызуны с их несговорчивыми половыми хромосомами, по-видимому, являются эволюционной ошибкой. Грейвс согласна с этим утверждением: в принципе, так оно и есть.
«Если бы вы или я придумывали существо, мы бы никогда не додумались до чего-то столь нелепого, – сказала она. – Но это то, к чему пришла эволюция. И единственный способ, которым подобное можно объяснить, – то, что оно развилось из другой системы, и в эволюционном плане на то были причины, но эти причины нам пока неизвестны».
Грейвс посвятила свою карьеру исследованию эволюционной генетики пола у множества удивительных животных и до сих, пор когда ей уже за восемьдесят, с энтузиазмом относится к этой теме. Сейчас она «сдвинулась по эволюционной шкале назад» и изучает древних существ вроде ланцетников, Amphioxus – примитивных рыб без позвоночника, и даже нематод, круглых червей. К своему изумлению, Грейвс продолжает обнаруживать одни и те же старые гены в сходных половых путях, хотя и запускаемые разными триггерами. «Эти гены существуют уже долгое время. Они каким-то образом влияли на пол, не обязательно одинаково, но влияли. Мне это кажется жутковатым», – призналась она, сверкнув глазами.
Пол мастерски изобретает себя заново. Так и должно быть. В конце концов, это необходимо для того, чтобы виды, размножающиеся половым путем, сохранялись. Анархия общих генов, возможно, сотни миллионов лет назад, в начале половой жизни, была более логичной и линейной. Но эоны эволюционного времени оставили свой след, создав необычайное множество кажущихся бессмысленными, но в то же время каким-то образом функционирующих, состряпанных систем в этом постоянно развивающемся хаосе, определяющем пол.
«Ничто в биологии не имеет смысла, кроме как в свете эволюции», – мудро сказала Грейвс, процитировав печально известные слова Феодосия Добжанского, отца физиологической экологии. «Нужно просто смириться с мыслью, что так и должно было быть. Все для чего-то нужно. Все мы постоянно сталкиваемся с силами эволюции».
* * *
Путаница половых хромосом, наблюдаемая у млекопитающих, – лишь верхушка айсберга, когда речь заходит о поразительном разнообразии систем, существующих в природе. Начнем с того, что не все определения пола следуют генетической системе XY. Птицы, ряд рептилий и бабочки имеют почти одни и те же гены, определяющие пол, но на других половых хромосомах – большой Z и небольшой W. В этой системе нормой является обратная картина: самки – носители хромосом ZW, а самцы – ZZ. В этой альтернативной системе ген – главный переключатель пола может быть очень консервативным, как SRY у большинства млекопитающих, или варьироваться между близкородственными группами.
У некоторых рептилий, рыб и амфибий половая дифференциация может быть вызвана вовсе не основным геном, определяющим пол, а стимулироваться внешним фактором. Например, черепахи выплывают из моря на тропические пляжи, чтобы закопать свои яйца в песок. Яйца, инкубируемые при температуре выше 87,8 градусов по Фаренгейту, активируют гены для создания яичников, в то время как те, что инкубируются при температуре ниже 81,86, будут производить семенники. Температуры между двумя крайними значениями приводят к появлению смеси детенышей черепах мужского и женского пола.
Тепло – один из нескольких известных внешних стимулов, определяющих пол.
Воздействие солнечного света, паразитарные инфекции, уровень рН, соленость, качество воды, питание, давление кислорода, плотность населения и социальные условия (сколько представителей противоположного пола находятся по соседству) – все это способно влиять на пол животного.
У некоторых видов животных определение пола контролируется одним или многими из вышеперечисленных факторов. Это означает, что с полом и правда может быть путаница, если вы, например, лягушка.
* * *
У Николаса Родригеса, возможно, лучшая работа в мире. Весну он проводит в Швейцарских Альпах, бродя вдоль высокогорных прудов, окруженных заснеженными вершинами и зелеными пастбищами, поросшими дикими цветами, иногда встречаясь со стадом коз, – идиллия, прямо как в фильме «Хайди». Работа этого эволюционного биолога состоит в том, чтобы отлавливать лягушек: крошечных детенышей обыкновенных лягушек, Rana temporaria, которые только что претерпели метаморфозу и переходят из своих водяных яслей во взрослую жизнь на суше. Иногда ему приходится ждать по несколько дней и просто наслаждаться видами, пока внезапно не появляется целая армия маленьких прыгунов и не настанет пора заняться ловлей.
Если ему когда-нибудь понадобится помощница, – я в его полном распоряжении. Я провела одни из самых счастливых дней своего детства, ловя обычных лягушек в полях неподалеку от дома моих родителей. Как и Родригес, я была очарована милыми маленькими метаморфами, выпрыгивающими из пруда. Они виделись мне первопроходцами – исследователями эволюции, которые совершили большой скачок из воды на сушу около 400 миллионов лет назад. Перестройка тканей и органов внутри тел этих лягушат означает, что они переключаются на получение кислорода через зарождающиеся легкие, вместо того, чтобы отфильтровывать его из воды при помощи жабр. Многие выныривали с сувениром своей водной юности в виде непоглощенного кончика хвоста, что наводило меня на мысль о том, что они могут выходить из пруда со своими жизненно важными икринками, в которых развиваются и которые способны пропускать кислород.
Оказывается, эти юные амфибии были подвержены еще бóльшим метаморфозам, чем я могла себе представить. Примерно половина пойманных мной лягушек были в периоде серьезных изменений – их яичники должны были в скором времени превратиться в семенники, поскольку они переходили от жизни водной самки головастика к жизни наземного самца лягушки.
Половая дифференциация – не самый надежный процесс, если вы обычная лягушка. На самом деле, по словам Родригеса, здесь много белых пятен. Родригес является частью команды, которая обнаружила, что главный переключатель для развития у лягушек семенников, а не яичников, иногда генетический, иногда экологический, а иногда и то и другое разом. Все зависит от того, откуда родом лягушки.
Обыкновенная лягушка широко распространена по всей Европе, от Испании до Норвегии. Все эти привычные маленькие коричневые амфибии принадлежат к одному и тому же виду, но, по словам Родригеса, делятся на три «половые расы» в зависимости от способа определения пола.
Обыкновенные лягушки из самых северных частей своего ареала имеют знакомое генетическое определение пола XY и развиваются предсказуемо – у особей XY появляются семенники, а у XX – яичники.
Лягушки, которых я ловила в детстве, обитали в южной части ареала, и их пол более подвижен. Все головастики рождаются и развиваются как самки. Но при выходе из пруда около половины этих генетических самок меняют свое половое развитие. Их яичники превращаются в семенники, и они становятся самцами с ХХ-хромосомами.
Смена пола может показаться сложным процессом, но лягушки проворачивают это, не моргнув глазом (интересно, что у них по три века на каждый глаз). Лежащий в основе механизм до конца не изучен, но считается, что он связан с температурой. В лаборатории лягушек заставили из самок стать самцами при помощи воздействия химических веществ, имитирующих эстроген. Они содержатся в гербицидах вроде атразина, широко применяющегося для дерновых покрытий в США; свободное использование этого гербицида заставляет самцов лягушек менять пол и становиться самками.
Лягушки в своем среднем диапазоне являются промежуточным видом во всех отношениях. У некоторых самцов пол определяется температурой и начинается с яичников, а у других запускается генами, определяющими пол. В результате некоторые лягушки являются обычными самцами XY и самками XX, но Родригес также задокументировал самок XY и самцов XX. Внешне эти лягушки могут выглядеть как самцы или самки, но их гонады говорят о другом. У некоторых лягушек есть смесь ткани яичников и семенников, что делает точное определение их пола невозможным.
«На уровне гонад и на генетическом уровне существует континуум между самцом и самкой, но, если вы полезете в любой пруд и поймаете лягушку, она все равно будет выглядеть как самец или самка», – пояснил мне Родригес.
Было бы легко отмахнуться от этой мешанины полов как от сбоев несовершенной, менее развитой системы определения пола. Многие ученые так и сделали. Но это примитивная, ориентированная на млекопитающих точка зрения. В настоящее время эта необычайная пластичность наблюдается у целого ряда рептилий, рыб и амфибий. Она сохраняется в течение сотен миллионов лет у различных видов, что говорит о какой-то эволюционной выгоде.
Недавнее исследование бородатой агамы (Pogona vitticeps), австралийской пустынной рептилии с впечатляющей остроконечной шеей, дало ключ к пониманию этой выгоды. Исследователи обнаружили, что сочетание вызванного окружающей средой изменения пола и генетического определения пола способно создать два различных типа самок.
У большинства бородатых агам есть генетическое определение пола – самки развиваются из половых хромосом ZW, а самцы – из ZZ. Но эта генетическая система определения пола может быть нарушена повышением температуры. Если во время развития кладка яиц, состоящая из самцов ZZ, нагревается под слишком сильным австралийским солнцем, высокая температура переопределяет их хромосомный пол и самцы с половыми хромосомами ZZ меняют пол на женский.
Эти самки ZZ с измененным полом обладают уникальным сочетанием физических и личностных черт как самцов, так и самок. Они откладывают в два раза больше яиц, однако их поведение больше соответствует поведению самцов бородатых агам – они смелее и активнее, а температура у них выше.
Эта новая вариация позволяет измененным самкам бородатых агам по-разному реагировать на более широкий спектр воздействий окружающей среды, что дает им эволюционное преимущество.
Исследователи отметили, что, хотя гонады бородатых агам могут быть как у самок, поведение и морфология этих самок более маскулинные. Это привело ученых к предположению, что подобных суперзаряженных бородатых агам с перевернутым полом следует рассматривать как отдельный третий пол – тот, который может предложить виду новые преимущества. Вместо того чтобы восприниматься как отклонение от нормы, эта смесь систем определения пола и, как следствие, появление самок с измененным полом на самом деле может стать мощным двигателем эволюционных изменений.
Бородатые агамы с противоположным полом, с их смесью половых желез от самок и поведения самцов, также бросают тень на «Организационную концепцию». Их «маскулинный» мозг, по-видимому, управляется присущей им генетической структурой, а не каскадом гормональных изменений, инициированных определением пола. И они в этом не одиноки. В последние несколько десятилетий исследования других животных с неоднозначным полом бросили вызов этой универсальной парадигме половой дифференциации и начали выявлять необычайную сложность полов и их проявлений в гонадах, организмах и мозге во всем животном мире.
* * *
В 2008 году Роберт Мотц, школьный учитель на пенсии, выглянул в окно, выходящее на задний двор, и заметил необычную птицу. Одна сторона ее тела была покрыта яркими алыми перьями и увенчана эффектным красным гребнем, в то время как другая сторона была безвкусно-коричневого цвета. Это выглядело так, будто кто-то склеил две половинки птицы, и отчасти так оно и было.
Птица оказалась гинандроморфом – интерсексуальное существо, разделенное прямо посередине. Эффектная красная сторона была от самца птицы кардинала с одним внутренним семенником, в то время как на коричневой стороне вместо второго был яичник. Это половинчатое деление встречается редко, но уже было задокументировано у ряда птиц, бабочек, насекомых и ракообразных – у видов животных с ZW-определением пола. Оно особенно эффектно у видов с половым диморфизмом, как у птицы кардинала, и возникает, когда оплодотворенные эмбрионы-близнецы сливаются очень рано во время развития – между 2-клеточной и 64-клеточной стадией, – образуя организм с половыми хромосомами ZW (от самки) с одной стороны и ZZ (от самца) с другой.
Эти «половинчатые» существа предоставляют уникальную возможность проверить влияние гонадных половых гормонов на формирование мозга и поведения. Гинандроморфы могут состоять из двух полов, но у них только один кровоток, что означает, что они живут в одной гормональной среде. Является ли одиночное яичко и его сильные андрогены главной движущей силой половой судьбы для всей системы организма, как предсказывает «Организационная концепция», или «пассивная» женская сторона все-таки может каким-то образом одержать верх?
Одно из первых «половинчатых» существ, попавших в руки ученых, было обнаружено в птичнике врача в Канаде в 1920-х годах. Доктор Шеф заметил, что одна из птиц с одной стороны выглядит как курица, а с другой – как петух. Поведение этой заметной птицы было столь же необычным: она пыталась спариваться с курицами, но при этом откладывала яйца.
К сожалению, прежде чем ее мозг и поведение были полностью изучены, добрый доктор опрометчиво убил эту ценную аномалию и съел ее на ужин. Шеф отдал кости и выпотрошенные гонады подруге-анатому, которая очень подробно описала, что скелет с одной стороны птицы был больше и походил на петушиный, а куриные яичники, хотя и функционировали, содержали тестикулярную ткань. Она предположила, что смесь возникла из-за конфликта мужских и женских гормонов, вырабатываемых двойными половыми органами. К сожалению, более подробное исследование провести не удалось, поскольку большая часть объекта была съедена доктором Шефом.
Почти столетие спустя Артур Арнольд, профессор-исследователь Калифорнийского университета в Лос-Анджелесе, получил в свои руки гинандроморфа зебрового амадина. Он решил не есть эту птицу, а вместо этого подробно изучил ее мозг. Зебровый амадин – певчая птица, но поют среди них только самцы, поэтому их нервная система более развита, чем у самок. Этот зебровый амадин тоже пел, поэтому Арнольд предположил, что его мозг должен быть как у самца. Однако во время препарирования ученый обнаружил, что женская сторона мозга немного более маскулинизирована, чем обычно, но, что особенно важно, система, позволяющая птице петь, развилась только на мужской стороне.
«Это поразительно», – сказал Арнольд в интервью Scientific American. Наполовину феминный мозг гинандроморфа ставит под сомнение всемогущество гонадных стероидов для дифференцировки полового диморфизма у птиц. Другими словами, эта двусторонняя интерсексуальная птица ударила Организационную концепцию под дых. Она является доказательством того, что андрогены – не единственный фактор, формирующей пол, мозг и поведение птицы. Вместо них играть решающую роль должны половые хромосомы, проявляющие свою идентичность внутри нервных клеток.
Гинандроморфы также могут развиваться как половые мозаики, с клетками ZZ и ZW по всему телу, а не четко с какой-то одной стороны, как аккуратный половинчатый гермафродит. Более позднее исследование трех цыплят-гинандроморфов показало, что клетки по всему телу птиц следовали своим собственным наборам генетических инструкций и не обязательно находились под влиянием половых гормонов, воздействию которых подвергались. Таким образом, по крайней мере у птиц генетическая половая принадлежность отдельных клеток играет значительную роль в возникновении полового диморфизма в организме и мозге.
* * *
«Пол не единообразный феномен», – объяснил мне Дэвид Круз по телефону. Недавно вышедший на пенсию профессор зоологии и психологии Техасского университета точно знает, о чем говорит. Круз потратил сорок лет на то, чтобы раскрыть механизмы, лежащие в основе половой детерминации и дифференциации в эклектичной выборке диких животных. Он расшифровал точные гены, участвующие в развитии гонад у черепах, вынуждал хлыстохвостых ящериц менять пол и отслеживал, как температура инкубации влияет не только на пол, но и на половое влечение пятнистых леопардовых эублефаров.
Согласно Крузу, у пола существует пять типов: хромосомный, гонадный, гормональный, морфологический и поведенческий. Они не обязательно согласуются друг с другом или остаются неизменными всю жизнь. Они являются кумулятивными и возникающими по своей природе. На них могут влиять гены или гормоны, а также окружающая среда или жизненный опыт животного. Эта пластичность допускает огромное разнообразие в полах и их выражении, которое мы наблюдаем как внутри видов, так и между ними.
«Вариативность – ткань эволюции. Без вариативности не может быть развивающейся системы. Поэтому важно, чтобы в половых характеристиках были различия».
Дэвид Круз – убежденный свободомыслящий человек, чьи непредвзятые взгляды основаны на изучении диких рептилий, птиц и рыб, а не лабораторных мышей – традиционного животного архетипа для изучения полового развития. «Это не стандартные модельные организмы: они скорее “настоящие”, чем просто “реалистичные”, поскольку их естественные инстинкты не были притуплены десятилетиями инбридинга», – пояснил Круз. Их половое развитие вызвано целым рядом факторов – генетикой, температурой или окружающей средой, что дало Крузу возможность выйти за рамки стандартной лабораторной мыши и отправиться в эволюционное прошлое, чтобы изучить организмы, которые существовали до полового развития млекопитающих и легли в его основу.
Круз обвиняет Организационную концепцию в жестком детерминированном взгляде на пол – она фокусируется на различиях между полами, поддерживает бинарную концепцию и игнорирует великолепное разнообразие половых характеристик, встречающихся в природе.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?