Электронная библиотека » Том Джексон » » онлайн чтение - страница 4

Текст книги "Взламывая биологию"


  • Текст добавлен: 18 декабря 2019, 12:20


Автор книги: Том Джексон


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 4 (всего у книги 13 страниц) [доступный отрывок для чтения: 4 страниц]

Шрифт:
- 100% +

Классификация

В биологии царил бы хаос, если бы ученые не были уверены, что говорят об одном и том же животном или растении. Шведский натуралист Карл Линней придумал метод распределения живых существ по категориям, который используется и сегодня.

Линней с детства интересовался ботаникой. В университете он изучал медицину, в основе которой лежало умение выращивать разные лечебные травы и применять их во врачебной практике. Для некоторых трав существовали «народные» названия – не всегда точные, – тогда как книги по ботанике содержали громоздкие описания на латыни. Линней понял, что нужна система коротких и точных названий. Он предложил давать родственным видам (или типам) одно общее латинское имя рода, а для каждого подвида добавлять прилагательное. Это называется биноминальной номенклатурой, или двусловным наименованием. Например, род больших кошек называется Panthera. Лев – это Panthera leo, а тигр – Panthera tigris. Для каждого вновь открытого вида и каждого нового наименования предполагалось давать полное описание и держать образец в доказательство подлинности.

БИНОМИНАЛЬНАЯ НОМЕНКЛАТУРА

Эффективную систему названий из двух слов для животных и растений первым представил Линней. Но известно, что рационализировать номенклатуру подобным образом пытались и раньше. Швейцарский ботаник Каспар Баугин (1560–1624) описал многие растения краткими латинскими фразами, иногда всего из двух слов, и Линней некоторыми из них воспользовался. Однако считатся, что Баугин все-таки давал описания, а не настоящие названия.


Хотя Линней начал работать над классификацией в 1730-х гг., ему потребовались годы, чтобы довести ее до совершенства, так как он был и учителем, и натуралистом, и автором книг. Он представил законченную систему именований для растений только в 1753 г. – в работе «Виды растений», и в 1758 г. для животных – в 10-м переиздании «Системы природы».


Иллюстрации разных отрядов птиц из «Системы природы».


Масштаб перемен

Биноминальная система Линнея оказалась столь эффективной, что быстро приобрела популярность. Ученый хотел классифицировать больше животных и растений, чтобы организовать их в каталоге и отразить их природное родство. Эти две цели не всегда совпадают. Растения Линней решил организовать искусственно, посчитав число половых органов (тычинок и пестиков) в цветках. В результате в некоторых случаях в одной группе оказались совсем не родственные растения. Ученый понимал, что однажды станет возможной более логичная систематизация, но он не пытался создать генетическое описание организмов. Серьезное преимущество системы Линнея в том, что она продолжает работать в контексте эволюции. Кроме того, ее можно бесконечно адаптировать по мере обнаружения новых видов, хотя зачастую приходится разбивать первоначальный род. В целом похоже, что биноминальная номенклатура выдержала проверку временем.


Общая классификация животных Линнея из первого издания его книги «Система природы» (лат. Systema Naturae).


Микология

Кроме совершенствования в отличении съедобных грибов от несъедобных и ядовитых, микология – наука о грибах – до недавнего времени развивалась мало.

Переломными для понимания этих загадочных форм жизни стали исследования итальянского ботаника Пьера Антонио Микели (1679–1737). Во времена Микели существовало много суеверий о грибах, в том числе то, что они появлялись самопроизвольно в гниющем мясе и растениях. Микели занялся этим вопросом и в книге «О новых видах растений» (Nova Plantarum Genera) описал не только сотни видов, но и свои опыты, доказывающие, что грибы размножаются крошечными спорами, из которых вырастает новое поколение. (Он вырастил споры на кусочках дыни!) Однако прошло еще много времени, прежде чем грибы начали изучать серьезно. Для удобства их первоначально отнесли к растениям, хотя они совсем не похожи. В грибах не происходит фотосинтез: они впитывают питательные вещества из среды, каковой может оказаться и разлагающееся растение, и организм животного. Плодовое тело гриба состоит из сети нитей, гиф, обычно скрытых от взгляда. Сегодня выделяют отдельное царство живой природы – царство грибов. В действительности они ближе к животным, чем к растениям!


Гриб – это плодовое тело, состоящее из плотно переплетенных гиф. Здесь изображен ядовитый мухомор. Он выпускает споры тысячами из пластинок под шляпкой.


Селекционное разведение

В XVIII в. делали серьезные попытки развивать сельское хозяйство. В числе достижений – создание новых улучшенных пород животных и растений.



Люди всегда оказывали влияние на качества животных, которых одомашнивали. Поначалу это происходило неосознанно, но даже в древности люди прилагали целенаправленные усилия для разведения и улучшения некоторых животных, таких как ослы и охотничьи собаки. В 1700-е гг. в Европе были веком рационализма, и вера в рациональность распространилась и на сельское хозяйство. Предпринимались скоординированные попытки улучшить сельскохозяйственных животных. Самым знаменитым «улучшателем» того времени был английский агроном Роберт Бакуэлль. Отобрав особей для разведения и скрестив их с другими породами, Бакуэлль создал новые породы рогатого скота, овец и лошадей. Он также очень выгодно сдавал внаем призовых быков и баранов другим фермерам. Свои методы он держал в секрете, но, вероятно, использовал сочетание близкородственного и неродственного скрещивания. Говоря современным языком, близкородственное скрещивание – это способ зафиксировать благоприятные гены в популяции, чтобы те достались всему потомству. С другой стороны, такой подход может привести к генетическому ослаблению. Бакуэлль и его современники в общих чертах это понимали, хотя подробно процесс был описан только в ХХ в. Селекционное разведение животных и растений чрезвычайно важно, поскольку мировая популяция растет: чтобы накормить мир, ученые стремятся получить новые виды с большей плодовитостью и лучшей сопротивляемостью заболеваниям.


Роберт Бакуэлль создал новые породы животных, в том числе овцу породы «лейстер» и корову породы «лонгхорн».


Ботанические сады

В Средневековье для выращивания лекарственных растений создавались «аптекарские сады». Они и стали прообразом ботанических садов, где выращивали и изучали растения всех возможных видов.

В XVIII в. ботаникой занялись значительно усерднее, отчасти из желания систематизировать множество экзотических видов, которые обнаруживались в разрастающихся за счет иноземных территорий империях, и найти им применение. Сады лекарственных растений, особенно Королевский сад в Париже и Королевский ботанический сад в Эдинбурге, взяли на себя дополнительные функции и стали проводить научные исследования.

Комлекс ботанических садов, который сегодня считается крупнейшим в мире, появился в результате слияния в 1772 г. двух прилегающих друг к другу королевских садов в Кью на окраинах Лондона. За их обустройством наблюдал ведущий ботаник сэр Джозеф Бэнкс, собиравший растения во время экспедиций капитана Кука в южных морях. Сады Кью официально стали доступными для широкой общественности в 1840 г. Там построили великолепные оранжереи и расширили площади для научных исследований, в том числе для коллекции высушенных растений – гербария, – которой предстояло стать крупнейшей в мире.

КОРОЛЕВСКИЙ САД

Французский натуралист XVIII в. Жорж-Луи Леклерк, граф де Бюффон, возглавлял Королевский сад в Париже с 1739 г. до своей смерти в 1788 г. Сам Бюффон был в большей степени зоологом, но привлекал талантливых ботаников и превратил бывшие аптекарские и декоративные огороды в настоящий ботанический сад, игравший ведущую роль в классификации растений. После Французской революции его переименовали в Сад растений.

ОРАНЖЕРЕЯ

Большие оранжереи проекта «Эдем» в Корнуоле, Англия, – это связанные друг с другом геодезические куполы, не имеющие внутренних опор. Они покрыты не стеклом, а специальными пластиковыми секциями, легкими и прочными, которые к тому же очищаются самостоятельно. Оранжереи защищают более нежные растения от ветра и непогоды, а также поддерживают внутри высокую температуру воздуха, так как прозрачные крыши пропускают энергию солнечного света, но сохраняют тепло.

Вид на огромный Темперейт-хаус в Королевских ботанических садах Кью, открывшийся в 1863 г. Это крупнейшая в мире оранжерея викторианской эпохи.


Зачем нужны ботанические сады?

Кроме того, что это приятное место для прогулок, у современных ботанических садов множество функций. Проще всего заметить, что все растения подписаны, и каждый посетитель может выяснить, чем именно любуется. Сады мирового класса, такие как в Кью и Нью-Йорке, проводят различные обучающие мепроприятия, участвуют в сохранении видов и занимаются исследованиями. В мире все еще открывают новые виды растений, особенно в тропиках, и их нужно классифицировать. Специалисты работают над составлением списков растений конкретного региона. Все большую важность приобретают банки семян, консервирующие семена растений в качестве природоохранной меры. Самый крупный из них расположен на арктическом острове Шпицберген: холодный климат облегчает сохранение биологического материала.

Респирация

Зачем нужно дыхание? Только в конце XVII в. ученые начали находить ответы на этот важный вопрос. Их работа в итоге помогла подробно описать функционирование живых существ.

Изначально «респирация» – еще одно слово, обозначающее дыхание. Очевидно, что мы умрем, если не сможем дышать. Но почему? О смысле и значении дыхания люди размышляли с древних времен, но нельзя сказать, что им удалось сделать важные выводы. Согласно распространенному предположению, дыхание охлаждает тело. Далее пришлось подождать ответа на другой важный вопрос: что такое воздух? К XVII в. ученые знали, что у воздуха есть вес, но полагали, что воздух – однородная субстанция, а не смесь химических элементов, как мы знаем сегодня. Его роль в химических реакциях не осознавали совсем.


Огромная двояковыпуклая линза Лавуазье, которую химик использовал в некоторых своих экспериментах. Лучи солнца проходят через линзу, фокусируются и дают большой жар, способный поджечь даже алмаз. Так Лавуазье показал, что при горении чистого уголя выделяется углекислый газ – то же вещество, которое синтезируется при дыхании.


«Отец» химии

Французский ученый Антуан Лавуазье интересовался химией с детства. У него рано проявился талант упорядочивать спутанные мысли, и в итоге он поменял мировой подход к химии, придумав более логичную номенклатуру для своих новых открытий. Например, то, что мы называем соединения с кислородом оксидами, – заслуга Лавуазье и его коллег. Его жена Мари-Анна работала вместе с ним, делая заметки о его экспериментах. Внушительное богатство Лавуазье, заработанное на должности сборщика налогов для французского короля, позволяло ему вкладывать средства в создание сложного оборудования. После Французской революции ученого казнили на гильотине как предателя.

Воздух, замечательно пригодный для дыхания

В конце концов ученые начали понимать, что существут разные виды «воздуха» с разными качествами. В начале 1770-х гг. газ, который мы сегодня называем кислородом, открыли независимо друг от друга англичанин Джозеф Пристли и швед Карл Вильгельм Шееле. Пристли обнаружил, что кислород поддерживает жизнь лучше обычного воздуха, но ни один из ученых не осознавал, что открыт новый химический элемент. Пристли называл его «бесфлогистонным», или «исключительно пригодным для дыхания», воздухом. Эксперименты показали, что кислород составляет около пятой части обычного воздуха. Однако раскрыть в полной мере его значение предстояло французу Антуану Лавуазье в 1770–1780-х гг.

ТЕОРИЯ ФЛОГИСТОНА

Когда что-то горит, совсем не очевидно, что пламя питается воздухом. Больше похоже, что в воздух что-то попадает. На этом строилась тщательно разработанная – но неверная – теория, доминировавшая в химии XVIII в. Согласно ей, при горении выделяется вещество под названием флогистон. Сложность заключалась в том, что если нагреть много металлов, они превратятся в то, что мы сегодня называем окисями металлов. А окиси будут весить больше, и следовательно, флогистон должен был бы весить меньше, чем ничего! Опыты Лавуазье с кислородом позволили отбросить эту теорию за ненадобностью.


Лавуазье назвал новый газ кислородом и показал, что горение – это главным образом реакция между кислородом и топливом. Он также стал первым, кто составил список химических элементов в современном смысле, туда он включил и недавно открытый кислород. В некоторых опытах ученый сопоставлял температуру реакции и объем кислорода, потребляемый горящими веществами и вдыхаемый животными. Он пришел к уверенному выводу, что «дыхание – это разновидность горения». Эксперименты и теории Лавуазье произвели революцию в химии. И в биологии тоже.

Более поздние достижения

Работа Лавуазье подняла больше вопросов, чем дала ответов. Где-то в теле происходит медленное «горение». Но где и почему? Лавуазье полагал, что в легких. Открытия XIX в. начали прояснять картину. Было доказано, что кислород поступает в легкие и затем по артериям распространяется по всему телу вместе с кровяным пигментом гемоглобином. Лишенная кислорода и насыщенная углекислым газом кровь возвращается в легкие, и этот газ выводится наружу. Гораздо позже удалось отследить, какие именно химические реакции, вплоть до уровня клеток, задействованы в этом процессе, и слово «дыхание» получило новое значение. Теперь оно относилось ко всем реакциям в клетке, в ходе которых расщепляются молекулы пищи и выделяется энергия. Обычно эти процессы текут с участием кислорода, но не всегда. Дрожжи, например, получают энергию благодаря анаэробному дыханию, то есть не нуждаются в воздухе.


Один из опытов Лавуазье, посвященный дыханию человека. Слева: Лавуазье разговаривает со своей женой Мари-Анной, которая делает записи. Рисунок сделан самой Мари-Анной. Подопытный выдыхает меньше кислорода, чем вдыхает; недостающий объем заменен углекислым газом. В этом эксперименте химик надеялся измерить количество жара, производимого подопытным в процессе дыхания.


Фотосинтез

Растения живут и цветут вокруг нас, но они не едят, не двигаются и вроде бы ничего особенного не делают. Как же они существуют? Голландский врач, живший в Англии, в 1779 г. приблизился к решению загадки.

В течение многих веков люди не знали, откуда растения берут материю для создания своих тканей, хотя самой популярной идеей было, что она берется из земли. Затем, в XVII в., Ян Баптист ван Гельмонт показал, что даже после того, как он пять лет выращивал дерево в горшке, вес почвы почти не изменился. Ван Гельмонт заключил, что растение создает все свои ткани из воды, – предположение отчасти верное. Только в конце XVIII в. пришло понимание, что растения в действительности получают большинство веществ из воздуха.

РЕАКЦИЯ ТЕМНОВОЙ ФАЗЫ

Реакция темновой фазы в фотосинтезе получила такое название, потому что для нее не нужен свет. Это серия химических преобразований, которые контролирует фермент РуБисКО (от рибулозо-1,5-бифосфаткарбоксилаза/оксигеназа). Во время этой фазы углекислый газ из воздуха соединяется с водородом и энергией, полученными от реакции светофой фазы, для производства сахаров и прочих углеводов.


Слуга-австриец Доминик помогает Яну Ингенхаузу (справа) собрать газ, который производят подопытные растения.


Свет, пролитый на проблему

Голландский врач Ян Ингенхауз (1730–1799) разбогател, делая прививки против оспы. Он путешествовал по всей Европе, побывал в разных странах и в поездках заинтересовался устойством растений. В 1779 г. Ингенхауз остановился в усадьбе Боувуд-хауз в Уилтшире, Англия, где работал его друг Джозеф Пристли. Тот пытался понять, что такое воздух, и уже показал в 1771 г., что – по его собственным словам – воздух, «испорченный» в сосуде горящей свечой, вновь становится чистым, если в этот же сосуд посадить растение. Говоря современным языком, Пристли обнаружил, что растения производят кислород, хотя франзцузский химик Антуан Лавуазье придумал название для этого газа лишь спустя несколько лет.

Ингенхауз исследовал феномен в ряде точных экспериментов, описания и результаты которых опубликовал в 1779 г. под заголовком «Опыты над растениями». Он показал, что растения производят кислород, когда находятся на солнечном свете, что это касается только их зеленой части растения и что в темноте дышат, как и животные, высвобождая углекислый газ. Позже ученый также сделал верное предположение о том, что растения забирают из воздуха углекислый газ для генерации тканей.

С4-РАСТЕНИЯ

Некоторые растения собирают углекислый газ для реакции темновой фазы особым образом. Они известны как C4-растения и встречаются в основном в сухом тропическом климате. Это, например, камфорное дерево. В отличие от большинства растений, они не собирают углекислый газ в течение дня. Чтобы забрать его из воздуха, пришлось бы открыть поры на листьях, но тогда через открытые поры испарилась бы вода. Поэтому такие растения пополняют запасы углекислого газа ночью. Это вполне подходящие условия для реакции темновой фазы.

Последующие достижения

Так началось изучение процесса, который теперь называют фотосинтезом. Однако само это слово, означающее «соединение светом», придумали в 1893 г. Но куда больше усилий потребовалось, чтобы разобраться, что же происходит в действительности. Было установлено, что растение при фотосинтезе производит сахара́ из воды и углекислого газа, и кислород выделяется как побочный продукт. Растения используют сахара́ в качестве источника энергии и для производства других веществ. Позже, в XIX в., опыты показали, что фотосинтез происходит внутри хлоропластов – крошечных образований в клетках растений, содержащих зеленый пигмент хлорофилл. Тип света тоже важен. Растение улавливает свет с помощью хлорофилла, но использует только красный и голубой спектры света и отражает зеленый. Поэтому растения имеют зеленый цвет. (Если бы растения могли использовать энергию солнечного света полностью, они были бы черными.)

Исследования XX в. дополнили картину. Происходит сложная цепь химических реакций, которые для наглядности можно разбить на две стадии – реакции световой фазы и реакции темновой фазы. В первом случае хлорофилл расщепляет молекулы воды, используя энергию солнца. Атомы водорода и энергия, полученные в ходе этой реакции, затем передаются дальше и используются в реакциях темновой фазы, в результате которых молекулы углекислого газа превращаются в сахара́.


Пузырьки на листьях подводных растений, таких как элодея канадская, – это кислород, произведенный в ходе фотосинтеза.


Натуралисты

Интерес к естественной истории расцвел в 1700-х гг., и зачастую лучшими натуралистами были увлеченные любители. Английский священник Гилберт Уайт – знаменитость среди них.

Почти всю жизнь Уайт прожил там, где и родился, – в деревне Селборн на юге Англии. Здесь он изучил все особенности местной фауны и флоры. Многие годы он вел переписку с такими же любителями о своих наблюдениях и выводах, а позже его письма были опубликованы в книге, ставшей классической, – «Естественная история и древности Селборна» (1789). Уайт верил, что необходимо проводить тщательные личные наблюдения, а не полагаться на память или на написанное другими. «Бич нашей науки – это сопоставление одного животного с другим на память», – написал он однажды. Он первым описал несколько видов млекопитающих и птиц и исследовал миграции последних. Работа Гилберта Уайта и его коллег-натуралистов помогла лучше понять живую природу, и таким образом они внесли свой вклад в развитие таких дисциплин, как этология, физиология животных и экология.


Вид на Селборн, где жил Гилберт Уайт. Ученый в полной мере использовал богатство природы в окрестностях деревни.


Гилберт Уайт увидел змею. Иллюстрация из ранних изданий его работ.


Животное электричество

Важным в науке XVIII в. стало открытие тесной связи электричества и тела.

Ранние эксперименты в этой области захватили воображение публики и в итоге привели к пониманию механизма работы нервов и мышц.

Роль нервной системы в контролировании организма заметили еще в древности при вскрытиях и опытах с живыми животными. Но связь между нервами и электричеством установили только в 1700-х гг. Проводить первые опыты было непросто, поскольку стабильного напряжения добиться не удавалось, пока в 1800 г. итальянец Алессандро Вольта не изобрел электрическую батарею. Посему в распоряжении имелись только короткие разряды статического электричества – например, от молниеотвода в грозу. Из нескольких ученых-первопроходцев, занимавшихся «животным электричеством», самым успешным считают Луиджи Гальвани (1737–1798). Публику поразили его детально описанные эксперименты, в том числе заставлявшие шевелиться мертвых лягушек. Некоторые опыты, на первый взгляд, доказывали, что электричество производят сами животные. Гальвани, сам того не понимая, превращал лягушек в электрический накопитель, прилаживая к ним проволоку из разных металлов.

ЭЛЕКТРИЧЕСКИЙ СКАТ

Один из видов животного электричества был хорошо известен с древности – разряды электрических рыб, в том числе скатов. При помощи видоизмененных мышечных клеток эти родственники акулы вырабатывают электрический ток. Научное название отряда Torpediniformes восходит к латинскому глаголу torpēre – «быть в оцепенении». Именно это произойдет с вашей рукой, если потрогать ската. Рыбу когда-то назначали в качестве лекарства от головной боли. Некоторые тропические пресноводные рыбы, в том числе электрические угорь и сом, также производят высоковольтные разряды.

ФРАНКЕНШТЕЙН

Мэри Шелли, автор знаменитого романа «Франкенштейн, или Современный Прометей», опубликованного в 1818 г., описывая, как доктор Франкенштейн оживил свое чудовище, электричество не упоминала, хотя в некоторых экранизациях показывают именно такой способ. Тем не менее позже писательница признала, что ее вдохновили опыты Луиджи Гальвани и Джованни Альдини – особенно эксперименты последнего с казненными преступниками.

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2 3 4
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации