Электронная библиотека » Владимир Карцев » » онлайн чтение - страница 11

Текст книги "Максвелл"


  • Текст добавлен: 10 ноября 2013, 00:56


Автор книги: Владимир Карцев


Жанр: Биографии и Мемуары, Публицистика


сообщить о неприемлемом содержимом

Текущая страница: 11 (всего у книги 25 страниц)

Шрифт:
- 100% +
МЕТОД МАКСВЕЛЛА И «АНАЛОГИИ» ТОМСОНА

Максвеллу было ясно, что Фарадей прав и его силовые линии были поистине великим открытием. Но фарадеевские силовые линии не годились для расчетов. Нельзя было, например, наперед сказать, каковы будут силовые линии двух совокупностей зарядов, если были бы известны силовые линии каждой совокупности в отдельности. А новая нарождающаяся уже электротехника, получавшая в те годы вдохновляющий и романтический образ трансатлантического телеграфа, требовала решения куда более сложных задач.

Нужно было идти дальше.

И разрабатывать теорию.

Не такую, как у Ампера – основанную на дальнодействии и ошибочную в основе, какие бы правильные результаты она пока ни давала. Но какую?

На что она будет похожа, эта теория? Какие связи можно усмотреть между ней и уже имеющимися в физике теориями, за что можно было бы «уцепиться», с чего начать? Какой применить метод исследования?

«Следуя (только) математическому методу, – пишет Максвелл, – мы совершенно теряем из виду объясняемые явления и потому не можем прийти к более широкому представлению об их внутренней связи, хотя и можем предвычислять следствия из данных законов. С другой стороны, останавливаясь на физической гипотезе, мы уже смотрим на явления как бы через цветные очки и становимся склонными к той слепоте по отношению к фактам и поспешности в допущениях, которые способствуют односторонним объяснениям».

Каков же выход?

«Мы должны найти такой прием исследования, при котором мы могли бы сопровождать каждый свой шаг ясным физическим изображением явления, не связывая себя в то же время какой-нибудь определенной теорией, из которой заимствован этот образ».

«Для составления физических представлений, – заканчивает свою мысль Максвелл, – следует освоиться с существованием физических аналогий (сравнений). Под физической аналогией я разумею то частное сходство между законами в двух каких-нибудь областях явлений, благодаря которому одна область является иллюстрацией для другой».

Максвелл решил использовать для исследования метод физических аналогий.

Метод аналогий во времена Томсона и Максвелла был общеизвестен и широко использовался. Максвелл позже любил по этому поводу шутить:

«...Когда Моссоти заметил, что Фарадей доказал аналогичность некоторых величин, относящихся к электростатической индукции в диэлектриках, и некоторых величин, относящихся к магнитной индукции в железе и других телах, он смог воспользоваться математическими исследованиями Пуассона, относящимися к магнитной индукции, переведя лишь их с магнитного языка на язык электричества и с французского на итальянский...»

Максвеллу прежде всего нужно было найти правильную аналогию.

Таким образом, в методе исследования у Максвелла колебаний не было: нужно было искать аналогию, причем скорее всего механическую, или, как он выражался, «динамическую». Ведь до сих пор не было еще в физике явлений, которые нельзя было бы объяснить механически, которые не удавалось бы свести к простейшим механическим действиям.

Механика в век пара царила над всем, механика была всесильна – и в этом убеждала промышленность. Механика была и универсальна – даже молекулы сталкивались в физике того времени как упругие бильярдные шарики. Но для электричества и магнетизма такие простые модели не годились.

Как представить себе электричество и магнетизм?

На что они похожи?

...Может быть, похожи они на потоки тепла? Может быть, электричество и магнетизм точно так же «перетекают» от одного тела к другому, как перетекает тепло от горячего тела к холодному в тепловой теории Фурье?

Вильям Томсон первым подметил электротепловую аналогию и применил к электрической теории не принципы ньютоновских законов, трактуемых сторонниками дальнодействия, а вполне близкодейственные принципы. Таким образом, Вильям Томсон, старший друг и советчик, тоже стоял, хотя и не подчеркивал этого, на фарадеевских позициях близкодействия и первым доказал, что концепция силовых линий может приводить к правильным результатам.

В том, что Максвелл ценил аналогии, – прямая заслуга Томсона. Максвелл всегда восхищался подмеченной Томсоном аналогией, существующей между вопросами притяжения электрически заряженных тел и вопросами установившейся теплопередачи. Это остроумное наблюдение обогатило обе отрасли физики; с одной стороны, оказалось возможным использовать при разъяснении распределения электричества многие результаты, полученные Фурье для теплоты. С другой стороны, оказалось возможным распространить результаты, полученные Пуассоном для электричества, на область тепловых явлений.

Будущему лорду Кельвину, а тогда еще кембриджскому «фрешмену» – первокурснику, было всего семнадцать лет, когда он подметил эту далеко идущую аналогию; все видели, что в стержне, имеющем два конца – теплый и холодный, тепло от точки к точке распространяется с одного конца к другому. Но никто до Томсона не усмотрел сходства этого процесса с электрическими явлениями.

Распределение электрических сил в области пространства, содержащей наэлектризованные проводники, напоминало юному Томсону найденное Фурье распределение потоков тепла в твердом теле бесконечных размеров. Поверхности равного потенциала в первом случае соответствовали поверхностям, имеющим равную температуру, во втором – электрический заряд уподоблялся источнику тепла.

Увидеть за сходством формул и внутреннюю аналогию явлений – это было уже следующей задачей, нашедшей отражение в статье первокурсника Томсона.

«Эта статья, – говорил Максвелл впоследствии, – впервые ввела в математику мысль о том, что электрические действия происходят при участии непрерывной среды, которая, хотя ее и объяснил некогда Фарадей и использовал ее как ведущую идею своих исследований, никогда еще не принималась ни одним ученым, а математиками считалась несовместимой с законами электрического действия, установленными Кулоном и разработанными Пуассоном».

А в статье 1846 года, написанной уже не Томсоном-»фрешменом», а Томсоном, год назад ставшим «вторым спорщиком» своего года, исследуется уже новая аналогия – аналогия электрических явлений с явлениями упругости (не помогла ли эта аналогия Максвеллу в наведении моста между его поляризационными картинами и силовыми линиями Фарадея, между светом и электричеством?).

Но Томсон не пошел дальше, не задумался над естественным вопросом: не передается ли электрическая или магнитная сила тем же способом, как распространяется упругое смещение вдоль твердого упругого тела? Он не пошел дальше и доказал тем самым свое неполное исследование им же введенного метода. А этот путь мог бы в конце концов привести к теории электромагнитного поля...

ЗАНЯТИЯ ЭЛЕКТРИЧЕСТВОМ

Более года прошло со времени первого письма Томсону с просьбой порекомендовать книги по электричеству. Уже в прошлом ноябре пришел Максвелл к мысли о правоте Фарадея, наполнившего пространство реальными силовыми магнитными линиями. Но не опубликовано ничего Максвеллом по электричеству, да, по-видимому, не считал он еще тогда электричество лейтмотивом своих грядущих исследований, а может быть, природная деликатность мешала ему вторгаться в томсоновские «электрические заповедники», и ждал он от своего друга четкого и недвусмысленного разрешения вступить в эту область исследований и опубликовать полученные результаты. Он с нетерпением ожидал встречи с Томсоном в Глазго – туда его пригласил в сентябре сам Томсон. В сентябре 1855 года в Глазго должен был состояться ежегодный конгресс Британской ассоциации. И именно здесь должно было, по мнению Максвелла, состояться решающее объяснение между ним и Томсоном по поводу возможности его, Клерка Максвелла, вторжения в вожделенные чужие владения. Однако встреча та, казалось, сорвется – отцу становилось хуже, и в сентябре 1855 года Джеймс возвращается в Гленлейр. Оттуда к Томсону спешит письмо молодого Максвелла:

«Гленлейр, 13 сентября 1855

Дорогой Томсон!

...Если бы я увидел Вас в Глазго, то задал бы Вам ряд вопросов, которые некоторое время хранил про себя...

Я многое почерпнул из Ваших работ по электричеству, как непосредственно от Вас, так через Типографа и Издателя. Я использовал также другие виды помощи... Среди этого – фарадеевская теория полярности... а также его общие идеи относительно силовых линий с «проводящей способностью» различных сред относительно их.

Затем идет Ваше аллегорическое представление наэлектризованных тел как проводников тепла и Ваша теорема относительно ур-ния... (следуют математические выкладки).

Затем – амперовская теория замкнутых гальванических цепей, затем часть Вашей аллегории о несжимаемых упругих твердых телах и, наконец, метод... содержащийся в Вашей статье по магнетизму для К.О.[31]31
  Королевского общества.


[Закрыть]
. Я изучаю также веберовскую теорию электромагнетизма и воспринял ее как математическую спекуляцию, в которую я не верю, но которая должна быть сопоставлена с другими и, несомненно, дает много правильных результатов, правда, ценой некоторых просто шокирующих допущений.

Сейчас я планирую и частично разрабатываю систему предложений относительно силовых линий, которые потом могут быть применены к электричеству, теплу, магнетизму или гальванизму, но которые сами по себе есть собрание чисто геометрических истин, облеченных в форму геометрических концепций линий, поверхностей и т.п.

...Поскольку не может быть сомнений в том, что в Вашем столе имеется математическая часть теории, все, что Вы должны сейчас сделать, это обнародовать Ваши результаты и разъяснить, что означают они по отношению к электричеству. Я думаю, что, если Вы сделаете это публично, это может ввести в обращение новый комплекс электрических идей и спасти нас от необходимости ненужного выдумывания.

Я не знаю Правил Игры и Патентных Законов науки. Возможно, ассоциация сможет сделать что-нибудь, чтобы зафиксировать их, но я, несомненно, намереваюсь сейчас браконьерствовать среди Ваших электрических символов...»

Максвелл деликатен, но он не в состоянии ждать еще годы, чтобы его идеям позволили вылиться наружу Правила Игры и Патентные Законы науки. «Электрические» мысли теснятся в его голове, ему уже видится стройная теория, в которую входят фарадеевские идеи близкодействия, их своеобразное воплощение Томсоном, амперовское магнитное действие замкнутых проводников с током. Он видит путь выхода из, казалось бы, безнадежного конгломерата идей и сведений, он находит путь, совершенно неожиданный и смелый. Геометр по характеру мышления, глубоко понимавший пространство, линии, кривые, точки, Максвелл решил описать форму фарадеевских силовых трубок посредством математических формул, сочетая такое описание пространства с основными электромагнитными идеями.

Трудно теперь, через столетие, утверждать, что так это было и на самом деле. Но верится именно в такой путь. У гениев нет напрасно засеянных делянок – однажды засеянное на них взрастает когда-нибудь необычным и диковатым цветком и оказывается незаменимой приправой к казавшейся прежде столь обычной и пресной идее. Многогранники школьника Клерка Максвелла, его глубокое увлечение формой некоторых сложных кривых, занятия поляризацией света и упругими свойствами тел буквально накануне занятий электрическими теориями не могли не быть рядом и в его мыслях, не могли не сплетаться в причудливых сочетаниях.

Ничто из занятий Максвелла не прошло всуе – «дьявол на двух палочках», волчки, цветовой ящик, картонные многогранники, цилиндры из желатина. Развитая в детстве, промелькнувшая в каскаде шаловливых детских писем способность сочетать, казалось, несочетаемое, искать неожиданные повороты, мыслить нестандартно, видеть глубокие аналогии вылилась рождением новой теории, мощной и жизненной.

Конечно, невозможно обойтись здесь без признания во всем этом, безусловно, важнейшей роли крестного отца – Вильяма Томсона, друга и умного соперника, роли, зачастую недооценивавшейся. Ранние статьи Томсона действительно содержат плодотворные идеи, воспламенившие мозг Максвелла, но их роль – роль вызова, роль встревоженного гонца, роль утренней песни военного трубача, призывающего к сражению...

Самая, пожалуй, большая заслуга Томсона – это то, что ему первому удалось показать: используя «непонятные» силовые линии, можно прийти к тем же правильным результатам, к которым приводила теория дальнодействия.

БРИТАНСКАЯ АССОЦИАЦИЯ, ГЛАЗГО, 1855

Максвелл надеялся прибыть в Глазго к 24 сентября; успеть на ежегодную встречу Британской ассоциации и убить тем по меньшей мере двух зайцев – выяснить «электрические» отношения с Томсоном, а заодно послушать, что скажет знаменитый Брюстер об оптических теориях мастера Тринити – Уильяма Вевелла, на счет которых Джеймс имел свое собственное мнение. Начиная с первого же трактата Вевелла, относящегося к поискам бога во вселенной, полной реальных астрономических тел, Брюстер стал его личным критиком. Нужно сказать, что в тот раз убийственную критику Брюстера в «Эдинбургском ревью» приходилось признать правильной.

Но столь же сурово отнесся Брюстер и к основному труду Вевелла – «Истории индуктивных наук», в которой тот попытался проследить историю всего естествознания. Любая задача такого масштаба, конечно, заранее обречена на критику – всегда найдутся люди, знающие ту или иную частность лучше.

Брюстер безжалостно раскритиковал «Историю», как и ожидалось, в том же «Эдинбургском ревью» в 1837 году. Точно так же он поступил и с «Философией индуктивных наук» Вевелла, разгромив ее в том же журнале в январе 1842 года. Новая книга Вевелла – «О множественности миров», в которой он отрицал возможность существования других обитаемых миров, была издана уже анонимно, без указания автора, но проницательный Брюстер разглядел знакомый почерк своего старого научного противника и тут же разнес ее, впрочем, вполне справедливо.

(Странная вещь эта научная «вражда»! После смерти Вевелла в 1866 году о нем появилось три статьи с воспоминаниями – причем, по единодушному мнению, воспоминания Брюстера, опубликованные в «Трудах Эдинбургского королевского общества», там, где Джеймс опубликовал свою первую статью, были наиболее теплыми и искренними.)


Когда Максвелл прибыл в Глазго, выяснилось, что Томсон совершенно неуловим, что ни Джемимы, ни ее мужа, профессора Блекбурна, в Глазго нет, и Джеймса стали опекать профессор Рамзай и его жена. Рамзай был дружен с Брюстером и ожидал его в гости после заседания 18 сентября. И именно это случайное обстоятельство, как оказалось, помешало Джеймсу выступить на заседании со своей теорией трех цветов, которая в качественном отношении была близка теории Гельмгольца (все цвета суть порождение трех основных), но была единственной, с помощью которой можно было количественно определить точные численные законы сложения цветов, на которых впоследствии будут основаны все другие теории цвета.

На заседании сэр Давид Брюстер говорил о тройном спектре. Он был убежден в том, что спектр составлен из трех цветов – красного, синего и желтого, а все промежуточные цвета суть порождение их сочетаний, например, зеленый есть смесь синего и желтого.

Джеймс сидел как на иголках. Его так и подмывало встать и показать всем свой цветовой волчок, с помощью которого можно было легко опровергнуть тезисы Брюстера. Однако вечером того же дня Брюстер ожидался у Рамзая, и Максвелл мог продемонстрировать цветовой волчок и там, чтобы не выглядеть слишком развязным на заседании.

Дальше Брюстер перешел к критике других теорий цветов и наиболее подробно остановился на взглядах Вевелла. Он выразил Вевеллу свое глубокое сочувствие по поводу его болезни и прямо на заседании порекомендовал обратиться к профессору Вертману в Женеве, крупнейшему в мире специалисту, который один только может помочь бедному мистеру Вевеллу, страдающему, очевидно, цветовой слепотой.

Грохоча пюпитрами, багровый Вевелл вылетел из зала, чтобы избежать публичной ссоры, и Джеймсу после этого осталось только ждать конца заседания и вечера, чтобы в спокойной обстановке изложить свои взгляды по теории цветов и доказать их с помощью цветового волчка.

После Брюстера дерзнул выступить лишь осторожнейший и дипломатичнейший Стокс, который сделал несколько вежливых замечаний по теории Брюстера, довольно безобидных; но распалившийся Брюстер решил, что Стокс подвергает сомнению точность его экспериментов. Он так и заявил репортерам газет.

Вечером Джеймс с цветовым волчком был у Рамзаев, однако Брюстер не явился, неизвестно по каким причинам. С Томсоном также встретиться не удалось, и только буквально накануне отъезда Джеймс получил от него приятное письмо.

По пути из Глазго в Кембридж, на станции в Холбруке, возле Дерби, Джеймс пишет отцу письмо, где после описания заседания делает приписку:

«Я привожу в порядок свою электрическую математику, и мне уже ясны некоторые вещи, которые прежде были довольно туманными; но мне не хватает времени на это, поскольку сейчас я много читаю по теплу и жидкостям, чтобы не наврать в моих лекциях... Получил длинное письмо от Томсона о цветах и электричестве. Он начинает верить в мою теорию относительно того, что все цвета можно свести к трем стандартным, и он очень рад, что я буду браконьерствовать в его электрических заповедниках...»

Великая вещь – дружба, особенно научная дружба!

Вильям Томсон, будущий лорд Кельвин, разрешает своему молодому собрату по науке и другу Джеймсу Клерку Максвеллу поохотиться в его заповедных угодьях и благородно сообщает ему не известные еще никому места, где водится наиболее крупная дичь. Более того, в некоторых случаях дичь уже взята на мушку...


«Электрический браконьер» возвращается в Кембридж, чтобы сдать экзамены на право стать досточтимым «феллоу» колледжа – членом совета колледжа. Экзамены сур вы, но Максвелл легко выдерживает их и становится одним из трех математиков-бакалавров, которые стали членами колледжа, будучи бакалаврами всего лишь второго года.

С сентября 1855 года Максвелл – член совета колледжа, «феллоу». Это большая честь – теперь он обедает за высоким столом в Тринити-холле, переместившись с более низкого стипендиатского стола. Но и новые обязанности: он берет на себя обет безбрачия! Монастырские законы Кембриджа суровы, хотя в двадцать четыре года обет безбрачия не кажется чем-то сильно обременяющим.

Новый «феллоу» сразу назначен читать труднейшие главы курсов гидростатики и оптики наиболее способным студентам третьего года – отнюдь не легкое занятие. Приходится отказаться, «чтобы не наврать в лекциях», от частных учеников. А нужно еще готовить к экзаменам по арифметике, алгебре и т.п. «пассменов», готовить им вопросники и просматривать их сочинения.

И еще одно занятие, отвлекающее от электрических теорий, но отнюдь не бесполезное, – работа над предложенной Макмилланом книгой по оптике. Он составил несколько планов и написал часть рукописи этой книги.

Большие потери времени на «Оптику» и лекции, подготовку к ним отвлекали его от главного сейчас – от электромагнитных теорий. Отцовское «Не позволяй ручью бить в берега» стояло перед ним, и, однажды заявив: «Я не намерен иметь ничего общего с оптикой!», он забрасывает начатую рукопись и снова принимается за Пуассона и систематизирование своих собственных идей относительно фарадеевских силовых линий.

После столь счастливого оборота дела с Томсоном Джеймс получил возможность обнародовать свои мысли по электродинамике.

Первый «электрический» год Джеймса заканчивался его докладом в Философском обществе Кембриджа. Он пишет отцу:

«Трин. Колл. 11 декабря 1855

Вчера вечером прочел лекцию о силовых линиях в Философском. Отложил вторую часть на следующий семестр. Я нарисовал целую кучу линий с помощью простой уловки, сделав это довольно точно без всяких вычислений...»

Он чувствует себя внутренне обязанным Томсону, первому математику, признавшему силовые линии Фарадея, показавшему, что с помощью этой «дикой» концепции могут быть получены правильные результаты, не противоречащие проверенным на опытах результатам сторонников «дальнодействия».

Однако не все нравится Джеймсу в теории Томсона – в ней силовые линии исходили из полюсов магнитов и заряженных тел, как от нагретого тела исходит тепло: Томсон построил свою электрическую модель на основе тепловых аналогий. Джеймсу электрические явления тепловых не напоминали; движение электричества напоминало ему быстрый бег ручьев, спокойное течение Кема, загадочные воронки и водовороты.

Джеймс принял другую модель – силовые линии уподоблялись течению некой несжимаемой жидкости, и эта жидкость, казалось, кровью наполняла абстрактные силовые линии и трубки, давала им реальную силу, делала их упругими, похожими на мышцы...

...Да, Максвеллу «ток» электричества и магнетизма напоминал течение реки, несущей свои воды спокойно и степенно, когда далеки берега, ревущей в стремительном потоке, когда она стеснена скалами, вихрящейся в водоворотах, втягивающих в себя желто-зеленые листья, сметенные осенним ветром с каменных мостовых Кембриджа...

Несжимаемая жидкость, и похожая и непохожая на воду, – таков в первой статье Максвелла образ электричества.

Электрогидравлическая аналогия увлекла Максвелла, быть может, и потому, что на ее непротоптанной тропе он все-таки не чувствовал себя совсем одиноким. Где-то впереди почти физически ощущал Максвелл плотную спину своего предшественника Ома.

Георг Симон Ом, видимо, первым воспользовался представлениями гидродинамики для объяснения законов электрического тока. И как в гидродинамике количество жидкости, проходящей в единицу времени через трубку, пропорционально гидравлическому напору и обратно пропорционально гидравлическому сопротивлению, так и у Ома сила тока была пропорциональна напряжению между концами проводника и обратно пропорциональна его сопротивлению.

Такая аналогия была очень кстати Максвеллу. Там, в гидродинамике, была уже разработана теория трубок, в которых течет жидкость. При сужении сечения трубки скорость течения жидкости в ней увеличивалась.

Подставив вместо скорости величину электрической или магнитной силы, Максвелл пришел к своей электрогидравлической аналогии. Различие в давлениях жидкости представляло различие в электрическом давлении, или «разность потенциалов». Через эластичные стенки передавалось от трубки к трубке давление. Так моделировалась электростатическая индукция. Теперь пространство между зарядами или магнитными полюсами Максвелл заполнял гипотетической жидкостью, текущей по силовым трубкам. Некоторые трубки замкнуты сами на себя, и в них свершается постоянная циркуляция жидкости. А некоторые трубки не замкнуты, и в них «жидкость на одной стороне постоянно восполняется из неизвестного источника, а на другом – втекает в неизвестный резервуар».

Оказалось, что струи несжимаемой жидкости, текущей вдоль силовых линий, жидкости несжимаемой и невесомой, приводили через формулы гидродинамики, по сути дела, к тем же результатам, что и электротепловые аналогии Томсона и теории великих французов и немцев.

Воззрения Фарадея о силовых линиях оказывались вполне жизнеспособными, и в доказательстве этого Максвелл видел основную ценность своей статьи. Ибо жизненной оказывалась сама глубоко материалистическая идея силовых линий, идея близкодействия, в котором передача воздействия требовала времени.

Силовые трубки, заполненные движущейся несжимаемой жидкостью, легко объясняли опыт Фарадея, обнаружившего влияние диэлектрика, промежуточной непроводящей среды, на процесс зарядки конденсатора. В рамки теории Максвелла легко и просто укладывались понятия о сопротивлении, испытываемом струями жидкости. Сопротивление, по Максвеллу, естественным образом зависело от свойств материала, через который проходила неизвестная жидкость.

...Но закрадывается в душу червь сомнения. Не было ли обращение Максвелла к несжимаемой невесомой жидкости возвратом назад – к «тепловой жидкости», теплороду, «флогистону», к старым, недоброй славы жидкостям, которыми некогда заполняли все тела?

Конечно, нет! Максвелл не считал свою модель гипотезой. Он искал аналогию, образ. Он не искал гипотезы. Пока. Считал, что автор гипотезы смотрит на все с предубеждением, стремится во что бы то ни стало подогнать к ней факты. Что автор ее зачастую слеп по отношению к фактам.

Но нельзя отказываться от моделей, аналогий. Максвелл горячо оправдывает эту точку зрения. Хотя она в оправдании не нуждается.

Зная законы одной отрасли знания, одной науки, и усмотрев формальную аналогию ее законов с законами иной науки, можно было бы ожидать наличия и во второй науке закономерностей, присущих науке первой.

Электрогидравлическая аналогия позволила Максвеллу в осязаемых механических образах силовых трубок и линии представить явления электростатики, магнитостатики и электрического тока. Но в эту теорию пока никак не укладывалось открытое Фарадеем явление электромагнитной индукции.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | Следующая
  • 0 Оценок: 0

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации