Текст книги "Диалоги (декабрь 2003 г.)"
Автор книги: Александр Гордон
Жанр: Прочая образовательная литература, Наука и Образование
сообщить о неприемлемом содержимом
Текущая страница: 15 (всего у книги 16 страниц)
Так что это очень важная компонента, без которой наука в культуру не включается. Можно в общем виде выразить, почему это так. Дело в том, что наука открывает человечеству предметные миры, еще не освоенные в практике, она всегда опережает массовую практику производства своего века и обыденный опыт. Открываемые ею предметные миры для здравого смысла непривычны и непонятны. А здравый смысл – это во многом основа культуры своей эпохи. И нужно состыковать новые научные идеи с привычными представлениями. Отсюда споры о теории относительности: как же так? вроде длина стола в одной системе отсчета – метр, в другой – меньше метра, а в третьей – больше? Все зависит от его относительных скоростей. А какова же его настоящая длина? Здравый смысл подсовывает эти вопросы. Состыковка новых идей со здравым смыслом и основаниями культуры происходит через философские обоснования. Философия, как раз, – это мостик, через который это и происходит.
Вот, собственно, структура парадигмы. А дальше – когда она ломается, тогда и происходит научная революция. И можно выделить два типа таких революций. Первый тип как раз Кун описал. Это то, что он называет «аномалия и кризис». Что это такое? Открывают новый тип объекта, но еще не знают, что это новый объект. Поэтому описывают его в старом языке, видят его сквозь призму старых представлений, сквозь призму старой картины мира, старых философских оснований. Так было с теорией относительности. Картина мира была еще электродинамической, а практика в нее уже не укладывалась – возникают разрывы, парадоксы, то, что Кун называл кризисами.
Простой пример. Обнаруживается, что если уравнения Максвелла записывать в разных системах отсчета, пользуясь преобразованиями Галилея, то они не ковариантны. Нековариантность – это очень плохо, потому что уравнения должны выражать законы природы. А законы природы не зависят от моего способа описания, ибо в противном случае физика была бы невозможна. А на систему отсчета можно смотреть как на идеализированную физическую лабораторию с часами и линейками. Согласование результатов, полученных в разных лабораториях, дается через преобразования Галилея. В данном случае уравнения получаются нековариантными, нарушаются, следовательно, основания физики, значит, нужно сделать уравнения Максвелла ковариантными, то есть сохраняющими свою форму в разных системах отсчета. Тогда придумываются новые преобразования и вводятся. Казалось бы, задачка решена – надо отказаться от преобразований Галилея, пользоваться новыми преобразованиями, а те рассматривать как предельный случай описания, когда можно пренебречь конечной скоростью распространения взаимодействий – скоростью света.
Но тут возникает еще более сложный парадокс. Из преобразований Галилея автоматически вытекает то, что зафиксировано в картине мира, что пространственно-временные интервалы абсолютны, они не меняются. Это соответствует картине мира абсолютного пространства-времени. Это Лоренц исповедовал всю жизнь и от этого не хотел отказываться. А из преобразований, которые предложил Лоренц, следует совсем иное – пространственно-временные интервалы становятся относительными, они меняются при переходе от одной системы отсчета к другой. Что делать? Лоренц говорит так: мои преобразования – дело временное, местное время и пространство – это не настоящие физические время и пространство. А это просто прием, который позволяет описывать определенные процессы. Это называется «гипотеза ad hoc». Это вроде того, как разрушающийся дом можно подпереть балками, но рано или поздно его все равно придется демонтировать.
Так что парадокс остается, его надо решать – надо было ломать картину мира. Но Лоренц с нею сросся, он не хотел ничего ломать – так часто бывает. Так было и с Планком: он открыл квант действия, но вовсе не хотел вводить фотоны в картину мира, это после сделал Эйнштейн.
Итак, накопление аномалий и кризисов – это предпосылка научной революции. Это своеобразный тревожный звонок: наука столкнулась с таким типом процессов, который в картине мира не отражен, картина мира уже неадекватна этому типу процессов, значит, нужно ее ломать. Ломать фундамент парадигмы, то есть основную из ее частей. А вместе с нею идеалы и нормы будут меняться и философские основания, в общем, это целая проблема.
Собственно, теория относительности Эйнштейна и была решением этой задачи. Причем, интересно то, что после решения этой задачи Эйнштейн был вынужден отказаться от классических идеалов и норм объяснения и описания и начать их первую ломку, совершить переход от классики к не-классике. Что говорит классика? Все твои объяснения должны касаться только объекта, ничего субъективного, ничего связанного с деятельностью быть не должно, субъект должен быть вынесен за скобки описания и объяснения. А не-классика говорит: нет, условием получения объективного знания является четкая фиксация типа деятельности – операций, процедур, средств – с помощью которых я изучаю этот объект.
Есть такой красивый образ (данный Эддингтоном, а после его любил повторять философ Поппер): теория – это сеть, которую мы забрасываем в мир; все, что мы этой сетью выловим – это наш объект. Если вы сплетете сеть с большими ячейками и забросите в озеро с рыбой, то выловите только крупную рыбу, а вся мелочь уйдет. И вы будете утверждать, что в озере водятся только такие рыбы. И пока у вас будет такая сеть, вы ничего нового не поймаете. Сплетете же сеть с более мелкими ячейками и увидите – как природа на выдумки торовата, найдете множества созданий, которых прежде никто не вылавливал. Все зависит от типа сети. Так вот, идеалы и нормы науки – это то, что задает макет плетения сети, это схема метода. Если вы задаете неклассический подход, то должны четко эксплицировать, что у вас за сеть и каков способ работы с нею, то есть выявить операции, процедуры и средства деятельности, с помощью которых вы зондируете этот объект. Ибо он проявляет себя через них. Собственно, это и было зафиксировано в квантовой физике.
Интересно, как Эйнштейн начал эту работу. Я специально занимался реконструкцией этих событий. В автобиографии он пишет, что после долгих мучений пришел к выводу, что надо найти нечто сходное со средствами термодинамики, где есть закон сохранения энергии и закон возрастания энтропии. И одновременно запреты на вечный двигатель первого и второго рода. То есть там есть операциональная схема и онтология – видение объекта. Эйнштейн полагал, что онтология должна быть коррелятивна схеме метода.
И тогда он спрашивает себя: я ввел абсолютное пространство-время как представление об объекте. В отношении какого метода, какой схемы деятельности, какой схемы измерительных операций физики я эти знания получил? Идея связать видение объекта с операциональными основаниями, со схемой деятельности была очень интересной идеей, которая, собственно, Эйнштейна и подвигла к данному анализу и к теории относительности. Это то, что называется неклассической рациональностью.
Юрген Хабермас, известный немецкий философ, хорошо ее охарактеризовал. Он говорил: классика полагала, что есть разум и есть мир, и посредника между ними нет, мир прозрачен разуму. Дальше я просто продолжу идею Хабермаса. Значит, если я скажу: первичен разум, вторичен мир и все, что в разуме, то и в мире, то я идеалист. Могу сказать наоборот – первичен мир, вторичен разум. Тогда я – материалист. Но сама идея, что есть параллелизм между мышлением и бытием, что есть адекватное соответствие одно другому, эта идея и у того, и у другого сохраняется.
А неклассическая рациональность делает новый ход. Она обнаруживает, что между разумом и бытием есть посредник. Этот посредник – моя деятельность и язык. Язык, понятый в широком смысле, как языки культуры. То, как они устроены, через это и открывается объект. Изменю я деятельность и язык и смогу осваивать новые объекты. Это очень важная вещь, вся квантово-релятивистская физика основана на этом типе рациональности, на анализе этих процедур и средств деятельности.
Кстати, решающим шагом Эйнштейна по обоснованию того, что выводами преобразований Лоренца был именно физический мир, явился анализ того, в каких операциях измерения синхронизированными часами вы можете получить преобразования Лоренца. Мало кто обращал внимание, что в ключевой статье Эйнштейна преобразования Лоренца выводятся из процедуры синхронизации часов. Они получаются не как следствие попыток найти ковариантность уравнений, а как результат схемы экспериментальной деятельности, в которой вы измеряете пространство и время. Получилось так, что то, что получено из принципа ковариантности, и то, что получено из схемы экспериментально-измерительной, совпадает. Когда это сходится, это и есть физический мир.
Тем же самым способом и Гейзенберг пользовался, когда выводил соотношение определенности. В принципе, его можно было получить из перестановочных соотношений. Просто как следствие перестановочных соотношений – из математического аппарата. А вторичное его доказательство – это мысленный эксперимент с идеальным микроскопом, которым рассматривается электрон. Это типичный эксперимент атомной физики. Фотон рассеивается на электроне, частица на частице. И он показывает, что и тут и там – соотношения неопределенности. Эти две вещи совпадают, а это типовой эксперимент по рассеянию, по зондажу атомного мира, значит, это и есть физический мир. Значит, так устроена частица, что она обладает соотношением неопределенности, это не ошибки в измерении, это ее природа, ее свойства. Итак, это один тип революции.
А есть еще один тип революции. Я их называю революция, как парадигмальная прививка. Это происходит тогда, когда начинается ускоренное междисциплинарное взаимодействие и когда парадигмы из одной науки переносятся в другую. Так, например, теория систем возникает в кибернетике и переносится в биологию. Шмальгаузен, например, используя эту схему, объясняет очень многое: и стабилизирующий отбор, и дубликаты генетического кода (которые нужны для того, чтобы не было ошибок, которые накапливаться в геноме). В общем, очень многое объясняет, исходя из этих отношений. Это и известная революция в химии, когда квантовая физика туда пришла. То есть, это еще один тип научных революций.
И, кстати, все дисциплинарное естествознание так возникало. Это тоже ведь исторический феномен – было время, когда не было дисциплинарно организованной науки.
А.Г. Ну да, тот же «Трактат о змеях».
В.С. Еще и позже – в ньютоновскую эпоху ее не было. Ведь все науки тогда причесывались под механическую картину мира. С чего начал, допустим, Конт строить свою социологию? Он начинал с механических образов. Это потом выяснилось, что нужно ввести эволюцию и идею сознания. А поначалу он шел от своего учителя Сен-Симона, который писал, что нужно создать социологию, как социальную физику. И Конт говорил, что он создает социальную физику.
По образу и подобию механики нужно строить социологию, говорил Сен-Симон. И у него была даже такая идея: есть закон всемирного тяготения, который объясняет все на свете как взаимодействия тела. И надо такой же закон открыть в социальной жизни. Он называл это «закон тяготения по страстям». Один человек симпатичен, другой отталкивает. И нужно найти формулу и описать все с помощью этой формулы. И тогда все будет понятно в этом мире.
Вот такая была программа, она шла от механической картины мира. Такова была исследовательская программа, с которой начинал Конт, и только потом у него появляются совершенно новые идеи, почерпнутые уже из биологии. Он говорит, что социальная жизнь – это целостный организм. Это не просто набор каких-то механически действующих субъектов, которых нужно описывать по закону всемирного тяготения, тяготениям по страстям. Дальше у него возникает идея, что это историческая изменчивость. Потом Спенсер сказал: «эволюция». А дальше пошло-поехало. Дальше Дельтей говорит, что вообще науки о духе и науки о природе – это разные вещи, у них разные методы и так далее. То есть, нащупывается специфика объекта.
То же самое и в биологии, кстати, происходило. Это только кажется, что биология не так как физика развивалась. Ничего подобного. Вначале она причесывалась под механику. Посмотрим как, допустим, Ламарк формулирует первый, эскизный вариант теории эволюции. Мы все знаем, что идея эволюции Ламарка – это медленное изменение органа путем упражнения. Упражнения создают органы, появляются эволюционные ряды, возникает эволюция. Тут, правда, возникает проблема наследования этих изменений. В общем, это выход дальше к Дарвину. И у Дарвина возникают парадоксы, поэтому потом происходит выход к генетике.
Но мало кто знает о том, что начинал-то Ламарк с чисто механической парадигмы. У него была следующая идея. В это время механическая картина мира была дополнена идеей «типа сил». И каждому типу сил соответствовал свой флюид, носитель силы. Ламарк считал, что в жизни большую роль играет нервный флюид, и эти флюиды накапливаются благодаря упражнению органов – они чисто механически его меняют, и отсюда возникают эволюционные ряды. Потом, правда, от этой концепции отказались, но идею эволюции оставили. Но поначалу все шло отсюда.
Так что в те времена дисциплинарной науки еще не было. Доминировала механика, остальные науки были еще в зародышевом, пеленочном состоянии. Хотя жизнь изучали с древности, у Аристотеля есть интереснейший трактат «О живом». Но, тем не менее, науки биологии в подлинном понимании, когда у нее есть свой предмет, свои методы, еще не было. А потом происходит механическая прививка и перенос парадигмы, потом обнаруживается несоответствие материала этой парадигме, и она начинает модифицироваться, трансформироваться. Возникает идея эволюции, потом концепция Дарвина. Потом, кстати, и у Дарвина возникают парадоксы – знаменитый кошмар Дженкинса. Если весь организм – носитель наследственности, единицей отбора является организм, тогда возникает парадоксальный вывод, что при первом скрещивании видов наследственный признак делится пополам, при втором – еще раз пополам. И дальше он просто исчезает, признаки становятся неустойчивыми. Дарвин не знал, как решить этот вопрос. И решился он благодаря эволюции науки, благодаря открытию генетики, открытию генов, созданию синтетической теории эволюции, где единицей естественного отбора является не организм, а популяции.
А.Г. Используя эту схему и сканируя состояние современного научного знания, можно ожидать революции? Предреволюционная ситуация ведь уже есть.
В.С. Я думаю, она уже началась. И началась по второму типу революции, типу парадигмального переноса. Есть несколько типов революций в науке. Есть глобальные революции, когда меняется все – картина мира, идеалы и нормы, философские и мировоззренческие основания. Так вот, я бы выделил такие революции.
Это возникновение самой науки, здесь тоже нужно выделять несколько исторических стадий. Первая математика – это первая революция, еще в древности: открытие эвклидовой геометрии, создание теоретической математики. Это особая, очень интересная стадия, связанная с культурой своей эпохи. Надо понять, как это связано с греческим полисом, с принятыми там нормативами обоснования и демонстрации, доказательности знания.
У историка математики Якова Выгодского есть такая мысль: уже в египетской математике был рецепт вычисления объема усеченной пирамиды. И он говорит, что методом проб и ошибок эмпирическое обоснование этого рецепта не получишь. Значит, у жрецов было доказательство. Но вся соль в том, что жрецы, получившие это доказательство, никогда его не демонстрировали. Это была их тайна. В египетской культуре не было образца, задававшего необходимость обосновать знания, доказывать их. Этот образец возникает в античной культуре, где требуют отличать знания от мнения, где доказательства становятся решающим фактором обоснования знаний. Это определенные предпосылки становления математики. Вернее, одна из предпосылок становления математики как науки, которая от эмпирических рецептов решения задач, а такой была вавилонская, египетская, китайская математика, переходит к теоретическому видению. Первый пример – это эвклидова геометрия, где образцы решения задач являются доказательством теорем.
Вторая революция – это возникновение естествознания с методом эксперимента. Здесь тоже страшно интересный вопрос. Почему, например, греки не открыли эксперимент? Как культура табулировала это открытие? На эту тему есть очень интересные исследования Гайденко, Косаревой, Ахутина, много есть на эту тему материала. На мой взгляд, самое интересное здесь то, что греки видели природу совсем не так, как видели ее в Новое время, это у Ахутина хорошо показано. Для них природа – это «фюзис», а там – «natura». Natura – это природа, отделенная от человека, когда я со стороны наблюдаю и изучаю ее, когда она является полем для переделки и моего действия. А у греков природа – это «космос» и «фюзис». Каждая вещь качественна, неповторима, я включен в космос, космос – это гармония. Вмешиваться в гармонию – это значит ее нарушить. Поэтому никакое активное экспериментальное действие не даст вам знания о том, как устроена природа. Греки различали искусственное и естественное. «Технэ» – это искусственное, а знания научные относятся к естественному. И только умозрение может дать знание о естественном.
А вот в Новое время эта грань стирается. Там можно проследить, как менялось отношение между искусственным и естественным, какие религиозные были предпосылки, крайне интересные, были у этих процессов – это идея о том, что человек продолжает творение Бога, что он по образу и подобию Бога творит мир. На эту тему есть много исследований.
Следующим этапом было возникновение технических и, позднее, в 19-м веке, гуманитарно-социальных наук. Это основные крупные научные революции. А когда сложилась современная, дисциплинарно организованная наука, можно обозначить, как становятся три типа научной рациональности. Первая – это классическая рациональность: механика и ее парадигмы. Вторая – не-классическая рациональность – о ней мы говорили.
И третий тип рождается сейчас. Я его назвал постнеклассическим. Что это такое? Схематично его можно изобразить так. Итак, деятельность и объект. Объект всегда рассматривается через деятельность. А деятельность предполагает субъекта с его внутринаучными ценностями и целями. Эти ценности и цели говорят: ищи истину, наращивай истинное знание. Отсюда два этических запрета: запрет на искажение истины и запрет на плагиат. Это первое – субъект с его ценностями и целями.
Затем – средства деятельности и операции. Это то, с помощью чего осваивается объект. И, наконец, сам объект. Складывается ряд – субъект, средства/операции и объект, как то, что преобразуется в некий продукт, из одного состояния с помощью операций и деятельности переводится в другое. Так вот классика брала только объект, а все остальное выносила за скобки. Неклассика взяла средства и объект, отношение объекта к средствам, и сказала, что условием получения истины является четко осознание, рефлексия над средствами и операциями деятельности. А сейчас постнеклассика делает еще один ход, очень интересный ход. Она говорит, что этого мало, что еще нужно ценности науки связать с социальными ценностями и целями, с гуманистическими идеалами, что не всякая установка на поиск истины проходит.
Почему это так? А потому что есть три типа системных объектов, которые можно осваивать в этих трех типах рациональности. Первый тип – это малые системы, простые, это механические системы, прежде всего. Второй тип объекта – это сложные системы с саморегуляцией, это большие целостные системы. А третий тип – это особый тип систем, он называется саморазвивающиеся системы. Это система, которая может наращивать уровень своей организации. И каждый новый уровень воздействует на нижний и меняет композицию элементов. Поэтому система все время работает, как целое.
Переход от одного гомеостатического состояния к другому осуществляется как переход через стадию динамического хаоса. Тут появляются синергетические эффекты, рождаются странные аттракторы и вообще аттракторы, возникает сценарий развития. Человек и его деятельность при работе с таким объектом становится частью этой системы, система становится человекоразмерной. А если человек в нее входит, то там оказывается запрещенным целый ряд экспериментов. Возникает необходимость дополнительной этической регуляции. Возникают этические комитеты. Возникает этическая экспертиза научных программ. Предметное исследование дисциплинарной науки дополняется программно ориентированными междисциплинарными исследованиями. Это и есть современная наука.
Поскольку времени осталось мало, я просто приведу пример таких человекоразмерных систем. Это все объекты современных биотехнологий, генетической инженерии, прежде всего. Это биоценозы и биосфера, как целое. (Такие объекты часто уникальны, даны в одном экземпляре – пример тому как раз биосфера, это развивающийся объект в одном экземпляре.) Это современные системы технического проектирования, где проектируется не только машина и даже не система человек – машина, а еще более сложный объект. Человек – машина – плюс экосреда и плюс культурная среда, которые эту технологию должны принять. Тогда возникает такая рамка: машина – человек, работающий с машиной – экосреда – культурная среда. И все это проектируется в развитии. Такое проектирование сейчас происходит, с такими объектами столкнулись современные технологии проектирования.
Сюда относятся все сложные компьютерные сети – Интернет. Ну, и, конечно же, все социальные объекты. На этой базе сейчас происходит сращивание и переброски методов и из естествознания в общественные науки, и наоборот: из социальных наук в естествознание. Это начало очень интересного взаимодействия, это сейчас передний край науки, сейчас это начинается. В таких исследованиях часто фундаментальные и прикладные вещи неотделимы друг от друга. Все находится на столе у теоретика – тут эксперимент, тут же и технология. Пример – генная инженерия. Расшифровка генома…
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.