Электронная библиотека » Александр Гордон » » онлайн чтение - страница 7


  • Текст добавлен: 4 октября 2013, 01:17


Автор книги: Александр Гордон


Жанр: Прочая образовательная литература, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 7 (всего у книги 13 страниц)

Шрифт:
- 100% +

А.Г. Я ничего не понял, но привыкать уже начал.

В.Б. Я хочу откомментировать эту реплику – «ничего не понимаю, но начал привыкать».

В.А. В физике то же самое…

В.Б. Физический факультет МГУ, третий курс. Очень сильные ребята, одни из лучших, уходят с факультета. Почему? Начинается изучение теоретической физики, раздела «Квантовая механика». До этого у них была сложившаяся и стройная картина мира. Они видят в цветных разводах бензина в луже и переливах крыльев стрекоз интерференцию, а в завывании пролетающей мимо электрички эффект Доплера; у них уже есть второй язык, ты все переводишь на этот язык…

В.А. Ты уже физик.

В.Б. Есть ощущение, что все понимаешь. И вдруг понимаешь, что ты полный идиот. И тебе говорят, что это безнадежно, ты никогда не поймешь. Был у нас замечательный профессор Григорьев, он говорил: «Ребята, потерпите семестр, просто потерпите, потом привыкните».

В.А. Ричард Фейнман нас утешал, говоря, что квантовую механику никто не понимает. Когда появилась теория относительности, ее, кроме Эйнштейна, еще человек пять понимали. А квантовая механика, хотя и создана людьми, но ее никто не понимает.

В.Б. И это правильно. Именно поэтому Эйнштейн и не смог примириться с Бором. Он проделал анализ основных понятий – длина, время. Заново разобрал по косточкам и отшлифовал процедуры измерения…

В.А. Наблюдателя сконструировал.

В.Б. Потом заново собрал картинку, получил новые инварианты, старые инварианты разрушились, длина стала относительной, промежутки времени тоже. Зато появились инварианты четырехмерных пространственно-временных интервалов …

В.А. Недаром говорят, что теория относительности – это теория абсолютности.

В.Б. Да, можно было бы ее и так называть. Кстати, идею инвариантов Эйнштейн взял из лингвистических практик, тогда он посещал кружок лингвистов в Цюрихе. Фактически Эйнштейн десакрализовал, вернул исходную свежесть свернутым смыслам. «А равно Б» – это свернутое тождество. В это тождество еще надо вдохнуть некую жизнь, заставить его действовать. Что такое «А равно Б»? Мы берем эти А и Б, предлагаем способ их сравнить и после этого заключаем, каковы они. И всякий раз надо напоминать смысл, проводить некую развернутую деятельность, процедуру. Так вот, в квантовой механике эти шаги деятельности лежат вне нашей реальности, они лежат в абстрактных, бесконечномерных пространствах, они совершаются с какими-то комплексными волновыми функциями. И там это все очень напоминает того самого сказочного Хоттабыча, который трох-тибидох, волосочек разорвал, и у тебя всё получилось.

В.А. Но все-таки, Володя, вспомним, что познание – это игра на разгадывание имени предмета, иногда заранее кем-то загаданным, а иногда (как в случае квантовой механики) нет…

В.Б. И вот это то, что Эйнштейн не смог пережить на самом деле. Хотя рецепт есть, есть реальность одна, после эксперимента получается реальность другая, всё объясняется, но объясняется за кадром. Объясняется на языке совершенно не чувственных образов. С этим Эйнштейн уже не смог примириться. Поэтому онтология квантовой механики не достроена, в классическом смысле.

А.Г. И не может быть достроена, пока не будет достроена теория наблюдателя.

В.А. Тема наблюдателя – это тема психической реальности по существу… Это теория реальности не вашей и не моей, а той виртуальной, что между нами. Какая может быть теория по этому поводу. Я думаю, здесь уместно было вспомнить пример Уилера, который наглядно иллюстрирует специфику процесса измерения в квантовой механике на примере игры в 20 вопросов. Есть такая игра на угадывание-отгадывание слова. Люди загадывают слово в ваше отсутствие, потом вы заходите и пытаетесь с помощью вопросов, разгадать загаданное…

А.Г. Существительное или не существительное – редукция такая.

В.А. Да, естественно, процесс этот сходится, в конце концов, вы угадываете этот предмет. Парадоксально, но за 20 вопросов вы вполне можете уложиться, и грамотно их задавая, угадать. Принцип один, игра, как говорил Эйнштейн, честна, то есть вы не можете перезадумывать и так далее. И правила игры заданы именно этим.

В.Б. Это область классической физики.

В.А. Но Уиллер приводит и другой пример. Он рассказывает: «Я очередной раз вышел из комнаты, захожу, и чувствую подвох. Но не могу понять в чем». Это и есть квантовый подвох. Я сразу, забегая вперед, об этом скажу. Люди улыбаются. Он начинает угадывать и видит, что каждый ответ на его вопрос требует больше и больше времени. Человек, отвечая, все больше задумывается. Но отвечает он честно. То есть каждый его последующий ответ согласован с предшествующими. Принадлежит этот предмет к миру живой или неживой природы, и так далее, и так далее. И вдруг в конце концов он спрашивает: ну, что, это облако, или что? И раздается смех: оппонирующая сторона или пропонент, вынужден ответить, у него нет выбора. Он отвечает – «да, это облако», хотя никакого облака вначале не задумывалось. Но, сообразуясь с логикой вопросов этот процесс сходится. Это и есть квантовое измерение, которое создало (сконструировало) реальность облака …

А.Г. Возникло облако, которого не было.

В.А. Но откуда оно возникло? Оно возникло из нашей психической реальности…

В.Б. Из культурного тезауруса.

В.А. Из нашей культуры, из нашей ответственности перед логикой в конце концов, из нашей честности, нравственности, ценностей наших, если угодно.

А.Г. То есть квантовая механика – это нравственная категория.

В.А. Если угодно, да.

В.Б. Она нравственна в том смысле, что мы связаны с ней.

В.А. Эйнштейн же правильно говорил, что господь Бог изощрен, но не злонамерен. Он же верил в это. Это бог Спинозы, именно здесь он. И поэтому не надо с природой бороться, надо относиться к природе по природному. То есть в этом отношении квантовая механика – это большая ценность…

В.Б. Не по-человечески, а по природе…

А.Г. Так все-таки, я хочу, чтоб мы, если не ответили на вопрос, то задали его заново. Физика будущего, без чего она невозможна?

В.Б. Без человека невозможна. У Фон Неймана и Вигнера есть такая интерпретация: где же происходит редукция волновой функции.

А.Г. Здесь или там?

В.Б. Да, так вот, их интерпретация – все-таки здесь. И в каком-то смысле идея Пригожина, идея самонаблюдающей вселенной, в каком-то смысле приводит к этому разуму…

В.А. Приводит к космическому сознанию, мы должны это признать, нам некуда деться.

А.Г. Уж больно крамольно звучат эти слова сегодня.

В.А. Это с точки зрения ортодоксального материализма. В конце концов, речь не идет о том, чтобы сказать, что теперь физика будет заниматься только сознанием. Нет вовсе. Просто мы должны признать тот факт, что мир, который нас окружает и частью которого мы являемся, который развивается, изменяется, является сложной комбинацией возможности нашей свободы и нашей же ответственности за ее сохранение как залог нашего будущего развития. Это мир сложной комбинации психического и того, что мы раньше называли материальным. Ведь мы до сих пор не знаем, электроны имеют свободу воли, или нет. Мы сейчас ответственны за то, что бы научиться по-новому ставить наши вопросы себе и природе, отказаться от навязчивой привычки мыслить реальность – внешнюю и внутреннюю – с помощью линейно выстроенной цепочки вопросов типа, что первично, а что вторично. Первична материя или первична идея, или первична мысль или ее предмет. Мы должны научиться по-новому мыслить в том новом нелинейном мире, в котором мы живем, который мы творим вместе с другими людьми… А научиться по-новому это значит по-новому ставить вопросы и уметь слушать ответы на них, что очень важно. Вот эта физика будущего.

В.Б. Потом, не забывайте, что физика до сих пор еще до конца не освоила холистический взгляд биологии, эволюционного подхода. Если же мы говорим о макроскопических квантовых эффектах, когда есть единый… Мы же на самом деле все соединены едиными волновыми функциями, которые когда-то в далеком прошлом были объединены. Вы захотели как-то повлиять, как мы в опытах… «Влиять» здесь в кавычки надо поставить.

В.А. Это очень важно вспомнить в заключении.

В.Б. Хотите подействовать на какой-то объект на колоссальном расстоянии. Вы должны совершить редукцию части волновой функции этого объекта, который тоже является компонентой этой волновой функции здесь…

В.А. С помощью деятельности «здесь и теперь».

А.Г. Являясь макрообъектом. Используя для этого макроприборы ….

В.Б. Ваши действия тоже являются продуктом некоей волновой функции, которая также вписана в контекст всей Вселенной, тем самым наше сознание самосогласованно совершает все это. Именно холистическое, организмическое начало должно быть добавлено – принципы кольцевой причинности, самоописание и так далее. Это процедура сборки, это процедура синхронистичности, которые сегодня просто еще не ассоциированы.

А.Г. Тут возникает другая печаль, у меня например. Потому что здесь опять возникает детерменизм, только уже на другом, более высоком уровне…

В.Б. Возможно, вы правы, но это видите как? Сверхдетерминизм, это вопрос открытости, закрытости вселенной. Когда мы говорим о метасистемах, здесь такие вопросы становятся не всегда корректными даже. Потом детерминизм – не детерминизм, теория динамического хаоса, она эти проблемы в большой степени смягчает именно через категорию открытости. Потому что любая неустойчивая система, как бы вы ее не пытались сделать маленькой вселенной, разглядывая на ладошке, ничего не получится. Она всегда открыта.

В.А. Знаете, это конструктивный детерминизм будущим. Ведь будущее – это то, что мы создаем сами. Так что это самодетерминизм в том смысле, что мы личностно ответственны перед будущим и за будущее, создаваемое нами. Поэтому это не фатализм, это не сверхдетерминизм. Мы находимся «внутри» создаваемого нами цикла кольцевой причинности, охватывающего прошлое, настоящее и будущее. Этот цикл определяется нашим языком, нашим сознанием, внешними и внутренними параметрами порядка мироздания как открытой, незавершенной системы циклов самоорганизующихся процессов, частью которых мы сами являемся. Мы создаем будущее, но мы ответственны за то, что создаем, и тем самым мы ответственны за те причины, которые нас ведут к этому будущему. Это и есть кольцевая причинность. Да, мы живем в гораздо более сложном мире….

В.Б. Мы возвращаемся в телеологии…

В.А. Но на совершенно новом уровне.

А.Г. Напоследок, на закуску, хочу задать вопрос, который я уже, наверное, раз 10 задавал в этой студии, когда в кадре, когда за кадром. Хочу, чтобы вы на него ответили. Рассуждая здесь о происхождении вселенной по одной из космологических схем, я понял, что есть представление о том, что вселенная, собственно, появилась как результат флуктуации первичного вакуума. Это более-менее общепринятая теория на сегодняшний день. И что имел место барьерный переход, явление это квантовое и как квантовое явление нуждается в наблюдателе. Вот тут и возникает вопрос: кто был тем наблюдателем? Потому что если это некий Господь Бог или Вселенский Разум той вселенной, которой еще не существовало, то этот наблюдатель не в системе, а находится вне ее и не может являться наблюдателем.

В.А. Почему? Нет. Дело в том, что понятие наблюдателя связано с позиционированием. У Уиллера есть очень хорошая картинка внешнего и внутреннего наблюдателей. Один создает реальность, а другой ее наблюдает. Но оба они должны находиться в кольцевой коммуникации между собой.

А.Г. Верно. Говоря о такой коммуникации и о кольцевой причинности, здесь была выдвинута такая гипотеза. Гипотеза о том, что, обладая определенным инструментом, который стал возможным благодаря тому, что физика развивалась именно в этой парадигме, а не в другой, мы со дня на день или с года на год, сможем зарегистрировать, скажем, гравитационные волны. И получим новый инструмент, который позволит нам заглянуть за реликтовое излучение, увидеть тот самый момент возникновения вселенной. Тогда мы, то есть сегодняшнее разумное человечество, и станем тем самым наблюдателем, который был необходим для того, чтобы эта система запустилась. Как вам кажется?

В.Б. У Азимова это прописано в книге «Конец вечности».

В.А. Вы знаете, я бы не стал на гравитационные волны уповать таким образом. Вопрос о том, насколько все человечество в целом станет своим собственным наблюдателем – это как раз вопрос кроскультурного диалога, это не только науки вопрос и не только в науке. Наука – это часть человеческого предприятия, только часть человеческой эволюции, часть того, что Тейяр де Шарден назвал «феноменом человека» . Печально, если бы вся человеческая эволюция свелась к развитию науки и последующему развитию человека на только научной основе. Но я все же уверен, хотя я и физик по образованию, но как профессиональный философ в последующем, а потому в некотором смысле и физик, и метафизик, что, к счастью, мир гораздо более интересен даже в этом качестве. Есть ли гравитационные волны или нет… Есть еще нейтрино, есть еще не открытые хиггсовские базоны, ради открытия (конструирования) которых строится новый суперколлайдер в ЦЕРНе, около Женевы……………. Допустим, найдут хиггсовские бозоны и гравитационные волны. И с их помощью как инструментов познания можно будет увидеть новые реальности, изменить старые. Но так или иначе, это будут человекомерные реальности, в которых человек должен сохранить свое человеческое качество, даже если наше будущее будет называться «постчеловеческим», как называет его Фрэнсис Фукуяма в своей последней книжке «Our post-humane future»…

Биотический круговорот

18.11.03
(хр.00:47:33)

Участник:

Владимир Васильевич Малахов – член-корреспондент РАН


Александр Гордон: Сегодня нам предстоит услышать несколько необычное утверждение о том, что человек как биологический вид сыграл свою роль в эволюции биосферы и вот-вот должен уступить место другим видам, которые будут продолжать эстафету жизни на земле. Так вот, у вас есть почти 40 минут для того, чтобы объяснить, почему вы так думаете.

Владимир Малахов: Вообще-то, я бы не сказал, что Гомо сапиенс уже сейчас сыграл свою роль, выполнил ее полностью. Но я действительно хочу в этом рассказе как-то подвести слушателя к тому, что человеческую цивилизацию обязательно ожидает естественная гибель, естественное исчезновение. И что этот процесс – умирание цивилизации, однако, не означает, что жизнь на Земле закончится. Жизнь на земле не закончится, она будет продолжаться и достигнет новых высот, но уже без человека. Человеческая цивилизация появилась на земле в связи с тем, что в этом была определенная необходимость с точки зрения развития биосферы. И выполнив свою функцию, она естественным образом исчезнет.

Правда, для того чтобы подвести к этой мысли, я все-таки вернусь далеко назад – к периоду появления жизни, к периоду появления биосферы. Все методы, которыми располагает наука, показывают, что Земля, как и все остальные небесные тела Солнечной системы, сформировалась около четырех с половиной миллиардов лет назад. Первичная Земля сильно отличалась от современной, в частности, тем, что в течение первых 500 миллионов лет она была практически сухая, то есть на ней не было ни океанов, ни морей. Вода, более или менее обширные водоемы появились примерно четыре миллиарда лет назад, за счет постепенной дегазации недр планеты. Водяной пар, выходивший из недр планеты вместе с другими газами, конденсировался, и в результате этого на Земле появились водоемы. На картинке вы видите художественное изображение Земли до появления на ней водоемов.

Как только появились более или менее обширные водоемы, так появились и первые осадочные породы, возраст которых датируются примерно 4 млрд. лет. И уже в этих первых осадочных породах мы находим несомненные признаки живых организмов. Самые древние осадочные породы – это формации Исуа, и в этой формации уже обнаружены такие следы существования примитивных бактериальных организмов, близких к современным сине-зеленым водорослям, к цианобактериям. Бактерии и сине-зеленые водоросли – это так называемые прокариотные организмы – организмы без клеточного ядра.

На картинке вы видите шлифы архейских пород возраста более 3 млрд. лет, на которых видны древние прокариотные клетки, очень похожие на современные цианобактерии. Рядом с ними – фотография строматолитов – это породы, которые образовывались в результате деятельности древних цианобактерий. Интересно, что не так давно – всего несколько десятилетий назад – похожие породы, точнее постройки, похожие на древние строматолиты, были обнаружены и в современной биосфере. На следующем слайде – современные строматолиты и рядышком – строящие их современные цианобактерии. В современной биосфере это – довольно редкие образования в очень специфических условиях. Эти строматолиты – из австралийского залива Шарк бей. Там, в условиях высоких температур, относительно низкого содержания кислорода и большой солености образуются современные строматолиты.

Вот, начиная с периода, отдаленного от нас на 4 млрд. лет (это время появления жизни и биосферы), в течение последующих 2-х млрд. лет биосфера была прокариотной. А на протяжении двух миллиардов лет бактерии, то есть прокариотные организмы, осуществляли весь существовавший тогда биотический круговорот. Так называемые автотрофные бактерии создавали органическое вещество из воды и углекислого газа, используя энергию солнечного света (то есть, за счет процесса фотосинтеза) или энергию химических реакций (этот процесс называется хемосинтезом). Но ведь понятие круговорота подразумевает, что созданное органическое вещество затем разлагается снова до углекислого газа и воды, и организмы могут снова использовать их для нового цикла круговорота. В древней биосфере этот круговорот функционировал очень неэффективно. Органическое вещество разлагалось под действием физических и химических факторов, то есть очень медленно. Отчасти органическое вещество разлагалось и под действием тех ферментов, которые выделяли наружу гетеротрофные бактерии – то есть бактерии, которые используют готовое органическое вещество. Это тоже медленный процесс. Поэтому огромные массы созданного автотрофными бактериями органического вещества просто захоранивались, становились недоступными для других организмов, выходили из круговорота. Вот что означает, что биотический круговорот в биосфере, состоящей из одних бактерий, был несовершенным.

Дело в том, что прокориотные организмы – бактерии, не умеют никого заглатывать. У бактерий ведь практически не бывает хищничества. Даже если (очень редко) у бактерий есть какие-то формы, которые называют хищниками, то приходится признать, что хищничество это – очень своеобразно. Хищник оказывается значительно меньшим по размерам, чем жертва, и разрушает жертву изнутри.

Вот тут изображен такой маленький вибрион, бделловибрио, который проникает в крупную бактерию и разрушает ее изнутри.

Совсем иначе поступают так называемые эукариотные организмы – организмы с клеточным ядром. Они могут заглатывать свою добычу, а затем переваривать ее либо в пищеварительных вакуолях внутри клетки, либо в кишечнике. Дело в том, что они обладают двумя клеточными белками – актином и миозином. Они есть у всех эукариотных организмов, то есть у всех организмов с клеточным ядром – у животных, у растений, у грибов. Это те белки, которые обеспечивают всякую подвижность – амебоидное движение, формирование пищеварительных вакуолей, сокращения клеток, в том числе и мышечные сокращения. Это – универсальные белки клеточной подвижности. И когда они появились, организмы научились друг друга заглатывать.

До появления актина и миозина, до появления эукариотных организмов органическое вещество, которое создавалось бактериями, некому было съедать. Это вещество очень медленно разлагалось под действием физических и химических факторов и захоранивалось. В первые два миллиарда лет существования биосферы накопились громадные запасы сланцев, нефти, газа, а ведь это все – углерод. Когда-то он был в телах живых организмов, а потом из-за несовершенства биотического круговорота этот углерод не смог вернуться снова в этот круговорот.

Здесь нужно еще раз подчеркнуть, что в этот ранний период существования биосферы много бактерий занималось не только фотосинтезом, а хемосинтезом. То есть они занимались окислением разных субстратов, осуществляли другие химические реакции, в результате которых осаждались окислы и другие соединения металлов, то есть формировались руды. Таким образом, многие руды металлов, которыми мы до сих пор пользуемся (железа, марганца, урана, по некоторым представлениям, даже золота), – это тоже результат несовершенства биологического круговорота – их создали древние бактерии. Иногда это громадные залежи, которыми человечество пользуется до сих пор. Иногда, это громадные залежи, такие как, скажем, Курская магнитная аномалия.

А.Г. А она органического происхождения?

В.М. Да, она органического происхождения. Это громадные залежи, ведь это месторождение потому и называются аномалией, что даже стрелка компаса там неправильно показывает. И это громадное количество железа отложено в результате деятельности железобактерий около двух миллиардов лет назад – это время образования многих руд, которыми человечество пользуется в наше время.

Появление актиново-миозинового комплекса позволило организмам осуществлять разные формы клеточной подвижности, например, образовывать псевдоподию. А с помощью этих псевдоподий можно двигаться, а можно еще и заглатывать другие клетки. Первые эукариотные формы – это как раз и были существа, которые приобрели актин и миозин и смогли заглатывать других организмы.

Появление клеточного ядра было связано с появлением актина и миозина и переходом к хищному способу питания. Способ питания эукариот путем захвата пищевых частиц означал, что хищник был крупнее жертвы. Действительно, линейные размеры мелких почвенных амеб или жгутиконосцов, питающихся бактериями, приблизительно в 10 раз больше размеров бактерий. Таким образом, объем цитоплазмы эукариот приблизительно в 1000 раз больше, чем у прокариот. Такой большой объем цитоплазмы требовал и большого числа копий генов, чтобы снабжать увеличенную цитоплазму продуктами транскрипции. Один из способов решения этой задачи – умножение числа генофоров. То, что биологи называют полиплоидией. Действительно, есть крупные бактерии, и это – так называемые «полиплоидные бактерии» с большим числом кольцевых молекул ДНК. Вероятно, и предки эукариот с большим объемом цитоплазмы пошли по пути мультипликации генофора. Множественные генофоры и стали зачатками хромосом.

Сильная подвижность цитоплазмы, которая возникает при амебоидном движении и формировании пищеварительных вакуолей, требовала некоторой сегрегации компонентов внутри клетки. Иначе наследственные молекулы – генофоры, то есть кольцевые молекулы ДНК, на которых записана генетическая информация, оказывались бы поврежденными и разбросанными по всей клетке. Можно предполагать, что для защиты наследственных молекул – молекул ДНК – возникла некоторая центральная защищенная область цитоплазмы, произошел процесс компартментализации цитоплазмы. Вот эта центральная защищенная область цитоплазмы – и есть клеточное ядро. На рисунке показано, как формируется эта центральная область – за счет глубоких впячиваний поверхностной цитоплазматической мембраны. При этом ядерная оболочка оказывается двойной – что и наблюдается на самом деле.

Эта схема выглядит умозрительной, но, как это не удивительно, в современной биосфере есть организмы с таким строением ядра – с двойной ядерной оболочкой, но с хромосомами в виде кольцевых молекул ДНК (как у бактерий) и без типичных ядерных белков – гистонов. Я имею в виду динофлагеллят, одноклеточных жгутиконосцев, которых ботаники обычно называют перидиниевыми водорослями.

И это важнейшее событие – появление эукариотных организмов, которые могли, используя актиново-миозиновую систему, заглатывать бактерии – необычайно ускорило биотический круговорот. Эукариотные хищники заглатывали и переваривали бактерий, возвращали в биотический круговорот углерод и другие биогенные элементы. Биотический круговорот стал работать с несравненно большим КПД, выход вещества из круговорота резко уменьшился. Правда, то, что было захоронено в предыдущие два миллиарда лет, живые организмы достать уже не могли. Это так и лежало в этих захороненных пластах.

И вторая важнейшая вещь, связанная с деятельностью первичных организмов – прокариот – это появление в атмосфере кислорода. По современным представлениям первичные организмы, населявшие землю, были в основном автотрофными организмами. В частности, это были фотосинтезирующие бактерии (более или менее похожие на современные цианобактерии). А ведь в результате фотосинтеза выделяется кислород. Первичная атмосфера была бескислородная, мы хорошо это знаем, потому что в это время образовывались неокисленные руды, например, пириты, которые в кислородных условиях не образуются. Первые два – два с половиной миллиарда существования биосферы – это был бескислородный мир. На самом деле, в этом бескислородном мире были «кислородные карманы» (по выражению академика Г.А. Заварзина), например, в толще строматолитов. Но вся остальная биосфера была бескислородная. Тот кислород, который выделялся в процессе фотосинтеза, тут же связывался химическими веществами, и прежде всего – железом. В первые два – два с половиной миллиарда лет железа было относительно много в поверхностных слоях Земли. Но железо, как тяжелый элемент, постепенно уходило в глубь планеты в результате гравитационной дифференцировки. Это тот процесс, благодаря которому постепенно появилось тяжелое железное ядро и относительно легкая силикатная мантия.

А до этого все это железо в поверхностных слоях поглощало выделяемый в процессе фотосинтеза кислород. И как раз приблизительно два – два с половиной миллиарда лет назад произошло очень важное событие – атмосфера стала кислородной. Концентрация кислорода стала приближаться примерно к одному проценту. И это была настоящая катастрофа, глобальный биосферный кризис. Дело в том, что кислород – очень активный элемент. Он окисляет и тем самым разрушает очень многие органические соединения. На самом деле, это остается проблемой для живых организмов до сих пор. Вы ведь знаете, что очень многие лекарства называются антиоксиданты. Это вещества, препятствующие окисляющей деятельности кислорода. Благодаря деятельности кислорода в клетках образуется недоокисленные соединения, радикалы, которые разрушают клеточные мембраны, повреждают генетический материал и т.п. Кислород очень активный элемент, и справляться с ним нелегко.

Сейчас эукариотные организмы с кислородом справляются, потому что у них есть особые органеллы в клетках – митохондрии. Митохондрии окружены двумя цитоплазматическими мембранами. Одна из них внутренняя – это мембрана самой митохондрии, а наружная – это мембрана той вакуоли, в которой митохондрия находится. Митохондрии осуществляют процесс окислительного фосфорилирования. Они не только поглощают и использует тот кислород, который находится вокруг нас, но за счет окисления ненужных клетке продуктов обмена производят огромное количество энергоемкого соединения – АТФ, которое используется на все метаболические нужды клетки: на движение, на сокращение и на различные биосинтетические процессы (включая синтез белка).

Важно подчеркнуть, что митохондрии – автономны. Что значит автономны? На самом деле, у них есть собственный наследственный материал. У них есть собственная ДНК, и эта ДНК хоть и небольшая, но устроена так же, как ДНК бактерии. Это – кольцевая ДНК, такая же, как у бактерий, и в ней записаны собственные митохондриальные гены. У митохондрий есть и автономный аппарат для биосинтеза белка – собственные рибосомы, причем, это рибосомы бактериального типа. И размножаются митохондрии путем деления, они не возникают в клетке заново. Митохондрии – это как бы оксифильные (то есть любящие кислород) бактерии, поселившиеся внутри клетки, вся остальная цитоплазма которой боится и не любит кислорода.

Вот почему и возникла идея о том, что митохондрии – это симбионты. Когда-то давно древний эукариот питался какими-то оксифильными бактериями, а потом вступил с ними в симбиоз. Он стал их не переваривать, а наоборот, культивировать внутри цитоплазмы. И это дало возможность эукариотным организмам выйти за пределы этих крошечных аэробных карманов, когда вся биосфера стала кислородной. Установления этого симбиоза с митохондриями позволило эукариотным организмам жить в атмосфере, наполненной этим ужасно агрессивным веществом – кислородом.

А.Г. Модульная сборка получилась.

В.М. Да, получился такой удивительный и очень важный симбиоз. И на этом, конечно, симбиоз не закончился. Симбиотическое происхождение предполагается для многих других органелл эукариотной клетки, например, для жгутика. На картинке показано два этапа симбиоза: один раз – с митохондрией, а другой – с какой-то подвижной бактерией (похожей на спирохету), которая стала прообразом жгутика. Удивительно, но ведь жгутики и реснички всех эукариотных организмов совершенно одинаковы. Если вы возьмете инфузорию-туфельку, какую-нибудь трихомонаду, ресничного червя, сперматозоид папоротников (у папоротников есть сперматозоиды!) и эпителий трахеи человека, то обнаружите совершенно идентичное строение. И, возможно, это строение унаследовано тоже от какого-то симбионта – древней подвижной спирохетоподобной бактерии.

Происхождение эукариотной клетки – событие, произошедшее около 2 млрд. лет назад. Именно в породах этого времени мы находим остатки крупных сферических клеток 50-60 микрон в диаметре – так называемые акритархи. Таких больших по объему клеток среди прокариот не бывает. Вот почему, скорее всего, рубеж кислородной революции – 2 млрд. лет назад – это одновременно и время появления эукариот. Кроме того, в породах того времени обнаружены остатки особых химических веществ – стеролов, которые образуются только в ядрах эукариотных организмов.

Но и на этом симбиоз не закончился. За счет симбиоза возникли различные группы эукариотных растений. Так, красные водоросли возникли за счет симбиоза каких-то хищных гетеротрофных организмов с цианобактериями. Это следует из того, что пигменты хлоропластов (так называют органеллы, занимающиеся фотосинтезом) красных водорослей совершенно такие же, как пигменты цианобактерий. В хлоропластах есть собственная кольцевая ДНК (как у бактерий), собственные рибосомы, они автономны и размножаются путем деления. Иначе говоря, цианобактерии вступили в симбиоз с хищным простейшим и стали его хлоропластами.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 | Следующая
  • 0 Оценок: 0

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации