Электронная библиотека » Александр Шишонин » » онлайн чтение - страница 5


  • Текст добавлен: 16 октября 2020, 04:55


Автор книги: Александр Шишонин


Жанр: Здоровье, Дом и Семья


Возрастные ограничения: +18

сообщить о неприемлемом содержимом

Текущая страница: 5 (всего у книги 16 страниц) [доступный отрывок для чтения: 5 страниц]

Шрифт:
- 100% +
Отто Генрих Варбург

08.10.1883 – 01.08.1970

«Рак, в отличие от других заболеваний, имеет бесчисленное множество вторичных причин возникновения. Но даже для рака есть всего одна основная причина. Грубо говоря, основная причина рака – это замена дыхания с использованием кислорода в теле нормальной клетки на другой тип энергетики – ферментацию глюкозы».

К изучению трудов Отто Варбурга меня привела в некотором роде случайность. На просторах интернета я пытался найти подтверждения работы теории ЦААКЭБ относительно онкологических процессов. Однажды на стене Facebook я отметил для себя интересную статью об ученом из Италии – Тулио Симончини, который успешно вылечил нескольких онкологических пациентов в запущенной стадии, путем введения в организм больных пищевой соды, как с пищей, так и внутримышечно с целью общего защелачивания организма. В качестве ссылки приводилась статья об опытах Отто Варбурга и развитии им «биохимической теории рака». Учение Варбурга позволило мне развить в разделе специальных теорий – теорию критической адаптации.

Отто Варбург родился 8 октября 1883 года в немецком городе Фрайбурге у Эмиля и Элизабет Варбургов. Отец Отто был профессором физики и талантливым музыкантом, его предками были учителя, ученые, бизнесмены, артисты, банкиры и филантропы. В доме Варбургов часто бывали музыканты, артисты и коллеги отца, в том числе физики Макс Планк и Альберт Эйнштейн.

Отто Варбург был учеником выдающегося учёного Эрнста Фишера. Уже в возрасте 23 лет Отто защитил докторскую диссертацию по химии, после чего продолжил обучение у Людольфа фон Крэля в Гейдельберге и в 1911 году заслужил степень доктора медицины.

Когда началась первая мировая война, Варбург записался добровольцем в армию и непродолжительное время прослужил в чине офицера кавалерии вплоть до своего ранения. За заслуги во время Первой мировой войны Варбург награжден Железным крестом. Ближе к концу войны, когда её исход был очевиден, Альберт Эйнштейн, друг отца Отто, написал по просьбе друзей письмо Отто, в котором просил его вернуться в академию, так как потерять такой талант в науке было бы трагедией. Варбург прислушался к его увещеваниям и вернулся в Берлинскую лабораторию на должность профессора. На протяжении 50 лет своей научной деятельности Отто Варбург проводил комплексные исследования по фотосинтезу, изучению рака и ферментов клеточных окислительных реакций. Им разработаны аналитические методы, которые включают манометрию, используемую для измерения давления газов, спектрофотометрию, методику выполнения тканевых срезов для определения потребления кислорода без механического разрушения клеток. Исследования Варбурга были посвящены процессам клеточного дыхания, ферментам, окислительно-восстановительным реакциям в активной клетке.

Одним из самых весомых вкладов в науку, за который Отто Варбург был удостоен Нобелевской премии по физиологии и медицине в 1931 году с формулировкой «за открытие природы и функций «дыхательных ферментов», стало открытие фермента с-цитохромоксидазы. В своей работе он ингибировал дыхание в суспензии дрожжей при помощи CO, а затем получал спектры поглощения, снимая ингибирование путём облучения когерентным пучком света с разной длиной волны. Из полученных данных следовало, что ингибируемый фермент – гемопротеин, в котором гем находится в комплексе с CO. Варбург связал новый, неизвестный белок с функцией клеточного дыхания и назвал его Atmungsferment или «дыхательный фермент».

В 1932 году Варбург в первый раз получил новый дыхательный фермент желтого цвета, названный флавином. Оказалось, что это агент большой группы флавопротеинов – окислительных ферментов, образующих совместно с цитохрохромами дыхательную цепочку. Через три года было выделено ещё одно важное соединение – никотинамид, входящий в состав ферментов, которые участвуют в переносе водорода. Ученый сконструировал аппарат для изучения процессов тканевого дыхания, брожения, ферментативных реакций (аппарат Варбурга).

В продолжение своих исследований относительно клеточного дыхания, Отто Варбург сформировал теорию возникновения онкологических заболеваний у человека. Выдающийся ученый выдвинул невероятную по своей простоте и оригинальности версию о прямой связи между нехваткой кислорода и аномальным поведением здоровых клеток нашего организма.

В научных трудах Отто Варбурга говорится, что клетки злокачественных новообразований черпают жизненную энергию, проводя в своих митохондриях неокислительную, то есть бескислородную реакцию распада глюкозы, в то время как митохондрии здоровых клеток человеческого организма проводят окислительную реакцию распада. Таким образом, в условиях значительного уменьшения парциального давления кислорода у клетки есть два выхода: либо погибнуть, либо трансформироваться в злокачественную анаэробную клетку и начать бесконтрольно размножаться, подобно самостоятельному организму.

Долгое время теория Отто Варбурга представлялась недостаточно убедительной, поскольку она описывала лишь один из побочных эффектов рака, а не его первопричину. Сегодня американским ученым удалось сделать шаг вперед и подкрепить фундаментальные исследования немецкого химика новыми доказательствами, суть которых будет раскрыта в этой книге.

Отто Варбург заложил фундамент в изучение дыхательного цикла клетки, описал преимущества аэробного обмена перед анаэробным, связал процессы изменения дыхания клеток с кислотно-щелочным балансом среды в живом организме, чем предвосхитил становление современной онкологии. Вся лабораторная деятельность Варбурга фактически является убедительным обоснованием теории критической адаптации, с которой вы встретитесь далее.

Это еще один пример «эксперимента наоборот» – сначала Варбург на практике провел необходимые эксперименты и только спустя десятки лет кибернетики подвели под его работы стройные теоретические физико-математические конструкции.

Ляпунов Алексей Андреевич

25.09.1911 – 23.06.1973

«Управление, основанное на передаче информации, является составной частью всякой жизнедеятельности, более того, управление можно объявить характеристическим свойством жизни в широком смысле».

К личности А.А. Ляпунова меня привела книга Иосифа Самуиловича Шкловского – «Вселенная, жизнь, разум», про которую мы еще напишем подробнее. Ближе к концу книги Шкловский очень интересно преподносит информацию о математике Ляпунове и его работах.

Историческая справка:

И.С. Шкловский был одним из первых инициаторов движения SETI по поиску внеземных цивилизаций и возможного вступления в контакт с ними. В 1965 году прошла первая конференция этого движения в Бюрокане (Армения) в обсерватории (открыта в 1956 году), которую создал Амбарцюмян Виктор Амазаспович.

Без понимания работ Ляпунова я бы не смог правильно интерпретировать работы Павлова в контексте биологической термодинамики. Ляпунов дал мне тот необходимый математический аппарат, с помощью которого стало возможно подтвердить в теории «природные эксперименты».

Алексей Андреевич Ляпунов – выдающийся советский математик, один из основоположников кибернетики, науки об общих закономерностях получения, хранения, передачи и преобразования информации в сложных управляющих системах, будь то машины, живые организмы или общество. Член-корреспондент АН СССР. Специалист в области теории функций вещественного переменного и математических вопросов кибернетики. Его основные труды относятся к теории множеств, теоретическим вопросам программирования, математической лингвистике и математической биологии.

Алексей Андреевич принадлежал к древнему роду, вписавшему славные страницы в отечественную историю. По семейным преданиям, род Ляпуновых берет свое начало от князя Константина Галицкого, брата Александра Невского. С начала XIX века род Ляпуновых прочно входит в мир созидателей духовной культуры России – науки, искусства и медицины. Композитор С. М. Ляпунов, академики: математик А. М. Ляпунов, филолог-славист Б. М. Ляпунов и физиолог И. М. Сеченов приходились Алексею Андреевичу близкими родственниками (брат И. М. Сеченова был женат на сестре А. М. и Б. М. Ляпуновых).

В 1928 г. А. А. Ляпунов поступил на физико-математический факультет Московского университета. Однако через полтора года ему пришлось покинуть университет «как лицу дворянского происхождения». С 1932 г. Алексей Андреевич становится учеником академика Н. Н. Лузина. Под его руководством Алексей Андреевич получил математическое образование, а вскоре и первые результаты в дескриптивной теории множеств. В этой области математики А.А. Ляпунов работал до конца жизни. Теории множеств и теории функций посвящены 62 работы Алексея Андреевича, включая монографию.

С 1961 г. Алексей Андреевич работал в Институте математики Сибирского отделения АН СССР, где фактически создал отделение кибернетики. В Новосибирске он также основал кафедру теоретической кибернетики Новосибирского университета и лабораторию кибернетики Института гидродинамики СО АН СССР, которыми руководил до конца своей жизни.

В 1964 г. А. А. Ляпунов был избран членом-корреспондентом АН СССР по Отделению математики. В 1996 году одной из самых авторитетных профессиональных организаций в сфере высоких технологий – IEEE Computer Society – Ляпунову была присуждена медаль «Computer Pioneer».

Глубоким и постоянным был интерес Алексея Андреевича к биологии. Уже в тридцатых годах он столкнулся с тяжелым положением в генетике и встал на ее защиту. По инициативе А. Н. Колмогорова Алексей Андреевич вместе с Ю. Я. Керкисом проводил тогда статистическое исследование экспериментов по расщеплению признаков при наследовании. В пятидесятых годах Алексей Андреевич возобновил активную борьбу за восстановление отечественной биологии. Собственные активные исследования Алексея Андреевича в биологии относятся к последнему десятилетию его жизни. По оценке Н. В. Тимофеева-Ресовского и А. Г. Маленкова, помимо значительного числа важных конкретных результатов, Алексей Андреевич наметил контуры теоретической биологии. Нельзя не упомянуть об одном из главных вопросов, волновавших Алексея Андреевича, вопросе определения жизни с позиций устойчивости и управления. Обращаясь к нему, Алексей Андреевич подчеркивал иерархичность управляющих систем в живой природе.

Теорема Ляпунова о выпуклости занимает особое место в современной математике, поскольку лежит на стыке теории выпуклых тел и теории меры. Теорема Ляпунова стала отправной точкой многочисленных исследований как в области векторного интегрирования в рамках математического анализа, так и в сфере геометрического изучения специальных конечномерных выпуклых тел, служащих множествами значений безатомных векторных мер. Удивительность открытия Ляпунова связана с парадоксальным и хрупким балансом взаимодействия разнообразных конечномерных и бесконечномерных идей.

Важно отметить исключительную роль теоремы Ляпунова в обосновании «бэнг-бэнг» принципа в теории оптимального управления. Этот принцип утверждает, что оптимальные управления осуществляются крайними точками множества допустимых управлений. Смысл «бэнг-бэнг» принципа состоит в том, что в условиях ограниченных ресурсов для оптимального перехода управляемой системы из одного состояния в другое за минимальное время необходимо использовать крайнее «бэнг-бэнг» управление. Иначе говоря, если у системы есть оптимальное управление, у нее есть оптимальное «бэнг-бэнг» управление. Приведенная выше информация пригодится нам в дальнейшем в главе о построении конвергентного моделирования биопроцессов.

Для людей из ближайшего окружения Алексея Андреевича он был не только выдающимся математиком и одним из основоположников кибернетики, но и обаятельным и интересным собеседником, при общении с которым ощущалось соприкосновение с редким явлением духовной культуры. Он прекрасно знал литературу, интересовался архитектурой и живописью, любил демонстрировать свою минералогическую коллекцию. В совершенстве владея французским языком и никогда не выезжая за пределы своей страны, Алексей Андреевич глубоко знал историю, искусство и культуру Франции. Истинная суть феномена Алексея Андреевича – беззаветное служение Науке и последовательное гражданственное отношение ко всем реалиям нашего времени.

В данной книге роль Ляпунова и его любимого термина «управляемые системы» являются мощнейшим стержнем, который пронизывает все тело изложения материала.

Зубов Владимир Иванович

14.04.1930 – 27.10.2000

«А я дверей не закрываю,

Замков не вешаю стальных,

Друзей с любовью принимаю,

С отрадой в сердце – остальных».

Прикладная математика процессов управления, которой всю свою яркую жизнь занимался В. И. Зубов, это та область знаний, которая необходима в термодинамической биологии для того, чтобы описывать процессы сознательного (внешнего) управления применительно к разумной биосистеме (человеку), поскольку разум для нашего тела является мощнейшей внешней управляющей силой. Этим важны математические подходы Зубова в отличие от кибернетических подходов Ляпунова, которые больше применимы для описания и моделирования именно автоматических (бессознательных) процессов управления, проходящих в теле, но не выходящих за его рамки. Но именно поступательное моделирование биопроцессов, начиная с биокибернетики и переходящее в процессы внешнего управления с помощью разума, позволяет нам полностью и безошибочно строить биоматематические модели и давать прогнозы или целенаправленно находить ответы на разных от микро– до макроуровней устройства живого вещества.

Владимир Иванович Зубов происходил из семьи купцов первой гильдии, которая была лишена прав и состояния в 1917 году, в связи с чем жизнь семьи была отягощена бедностью. В 1944 году, когда Владимиру Ивановичу было 14 лет, произошла трагедия: в результате взрыва гранаты он потерял зрение. Узнав, что лучшая школа для слепых и слабовидящих находится в Ленинграде, Владимир переехал туда учиться.

Зубов обладал удивительной способностью следить за сложнейшими математическими выкладками, произносимыми вслух, и часто замечал в них ошибки, которые пропускали люди зрячие, видевшие выкладки, написанные на доске или плакатах. Ему рано стали давать на рецензию анонимные работы, на которые он писал содержательные отзывы с припиской – «Все правильно, как у Ляпунова». Позже, лет через десять, Владимир Иванович узнал, что это были статьи сидевшего в тюрьме, впоследствии видного ученого, Богданова Юрия Станиславовича.

В.И. Зубов защитил докторскую диссертацию в тридцать лет и работал научным консультантом в ряде исследовательских институтов Министерства судостроительной промышленности.

Характерной чертой Зубова-учёного была научная дерзость: он не боялся браться за решение актуальнейших и труднейших задач, стоящих перед наукой. Первая же монография Владимира Ивановича «Методы A.M. Ляпунова и их применение», изданная в 1957 году, была переведена за границей и принесла автору всемирную научную известность (дабы не ввести в заблуждение пытливого читателя, сразу внесем уточнение – Ляпунов Александр Михайлович – это двоюродный дед Ляпунова Алексея Андреевича, о вкладе которого вы уже прочитали выше).

В дальнейшем Владимир Иванович Зубов направил все свои замечательные способности на разработку только что появившейся теории оптимальных процессов не только как учёный-теоретик, но и как учёный-организатор науки. Он основал в Ленинградском государственном университете кафедру теории управления. Кафедра является старейшей на факультете прикладной математики процессов управления. Её история начинается до организации самого факультета. Она была открыта в 1967 году на базе лаборатории теории управляющих устройств и механизмов математико-механического факультета.

В 1968 году Владимиру Ивановичу Зубову была присуждена Государственная премия СССР за цикл работ по теории автоматического регулирования. С тех пор и до 2000 года В. И. Зубов являлся бессменным заведующим кафедры теории управления. В 1969 году по постановлению Совета Министров СССР на базе кафедры теории управления был открыт первый в нашей стране факультет прикладной математики процессов управления.

Изначально в поле зрения кафедры находились три крупнейшие проблемы теории управления: задача управления техническими объектами, задача управления технологическими процессами и задача распределения сил и средств. В частности, учёными кафедры были решены задачи стабилизации и управления вращательным движением твердого тела, управления нагревом массивных тел и составления расписания работы пресса и распределения капиталовложений по отраслям.

Человек невероятной жизненной энергии, Зубов обладал редким свойством – видеть в едином многое, а во многом единое. Владимир Иванович Зубов в любой области опирался на одни и те же принципы – общую теорию управления. Структура устройства иерархичных термодинамических сфер находит бесспорное математическое подтверждение в теории управления Зубова.

Путилов Константин Анатольевич

29.04.1900 – 03.01.1966

«Важной частью учения о термодинамических свойствах тел является теория соответственных состояний или, правильнее сказать, сравнительная физика».

Поскольку термодинамику мы изучаем, как правило, в курсе физики для средней школы, то такие понятия как первый закон термодинамики и второй закон термодинамики для меня были известны. Но вот третий закон термодинамики, а особенно нулевой закон термодинамики, как более сложные физические понятия не представляли для меня особенного практического интереса. Понять смысл этих постулатов природы мне удалось уже потом, в процессе создания учения о соподчиненных сферах. Из этих двух законов наибольшую роль в осознании работы биоструктур играет нулевое начало термодинамики, которое ещё называют принципом термодинамической допустимости Путилова.

В какой-то момент мне удалось осознать, что полноценное целостное математическое компьютерное моделирование работы организма на молекулярном уровне не представляется возможным из-за гигантского, не поддающегося никакому исчислению, количества деталей, которые в свою очередь могут взаимодействовать между собой совершенно различными способами. Вся эта бесконечность вариаций молекулярного взаимодействия сводит к нулю пользу от применения к моделированию организма в целом методов статистической математики.

Ключевая мысль, которая позволила приблизиться к теоретической возможности, несмотря на огромное количество деталей, всё-таки создать качественную целостную математическую картину жизнедеятельности организма, возникла в моем сознании во время прочтения, уже упомянутой ранее, книги Шкловского «Вселенная, жизнь, разум». В ней автор рассказывает одну историю, произошедшую на первой конференции SETI.

Остановимся на этом случае более подробно. Во время выступления один из учёных докладывал, что главное в науке – это количество накопленной информации, поэтому чем больше мы сможем обрабатывать и хранить информации, тем умнее и могущественнее мы будем становиться. На что один из академиков, входящих в президиум, очень интересно это утверждение развенчал: «Можно я задам один вопрос? Вы утверждаете, что самое важное – это информация и её количество. Чем больше количество информации, тем умнее мы становимся. Тем глубже проникаем в тайны природы. Тогда объясните, как это соотнести с тем фактом, что Эйнштейн в своё время придумал формулу E = mc2. Сколько информации содержится в этой формуле?»

Эта ситуация красочно описывает тенденции, властвующие в науке и в наше время высоких технологий, ракет и электронных микроскопов. Самые передовые и просвещенные группы учёных современности, опираясь на финансовые и компьютерные возможности, начинают декларировать, что самое главное и самое нужное – это создать компьютеры, способные с мгновенной скоростью обрабатывать сверхгигантские массивы данных, при этом утверждая, что это и есть путь успеха и научных прорывов. Ученые, применяющие такие подходы, в некотором роде обрели леность ума: вместо того, чтобы путем сильнейшего напряжения умственных способностей (так называемых «научных мучений») пытаться вскрыть с помощью скальпеля разума структуру реальности, они предпочитают просто сваливать в мощнейшую информационную машину, как в мусорное ведро, гигантские массивы big data. При этом они утверждают, что чем громаднее и глубже будет это «ведро», тем больше тайн природы откроется нашему взору. Я, честно говоря, не понимаю, на что они при этом надеются.

Можно абсолютно чётко утверждать, что это тупиковый путь. В данный исторический период этот вариант развития науки исчерпал себя почти полностью. Правда, он принес при этом немалые плоды человечеству. А вот дальнейшие научные горизонты будут покоряться лишь тем искателям, которые сделают ставку не на обработку сверхбольших массивов информации, а на поиск алгоритмов правильного функционирования и циркулирования информации в системе. Алгоритм может быть самый простой – E = mc2. Но сколько информации будет циркулировать по этому алгоритму? Да сколько угодно! Самое интересное, что сколько бы мы не накачивали информацией такой алгоритм, то всегда нам будет помогать понимание того, что за идею он собой представляет.

Так вот, в математическом моделировании биологических систем самое важное – это найти общий (надорганизменный) алгоритм протекания потоков информации. Вот что самое важное! Но как нащупать эти алгоритмы?

Ответ пришел от Путилова! Когда я натолкнулся на его формулировку нулевого начала термодинамики, я понял, что это и есть тот основополагающий физический принцип, который позволяет при его применении к моделированию биологических систем выявлять уже сами биологические алгоритмы. Этот принцип стоит над биологией и проявляется в биологии.

Путилов Константин Анатольевич – крупный советский физик, методист, опытнейший педагог, выдающийся специалист в области молекулярной физики и термодинамики, доктор физико-математических наук, профессор, родился 29 апреля 1900 г. в г. Мехов Келецкой губернии.

В 1918 г. окончил Пензенское реальное училище. В 1919–1923 гг. служил добровольцем в рядах Красной Армии, был инструктором, лектором и инспектором политуправлений на Урале и на Кавказе. Очень рано начал научную деятельность. Еще до поступления в университет он принимал активное участие в работе семинара по молекулярной физике на физическом факультете МГУ. В 1926 г. поступил на физико-математический факультет Московского университета. В период учебы опубликовал ряд научных работ и вскоре успешно защитил дипломную работу по теме «К электрической теории молекулярных сил». Впоследствии эти исследования послужили основой при разработке нового раздела физики, названного им молекулярной термодинамикой. Еще будучи студентом, он читал лекции по курсу физики в Центральном институте повышения квалификации педагогов. В 1930 г. с отличием окончил физико-математический факультет Московского государственного университета по специальности «Теоретическая физика». Свои исследования по термодинамике К.А. Путилов начал с уточнения основных понятий и законов и развил систему воззрений, которые были обобщены в цикле лекций, прочитанных им в 1938 г. На основе этих лекций им была издана книга «Лекции по термодинамике». Итогом всей его работы в области термодинамики была почти законченная рукопись «Термодинамика», которая была подготовлена к печати и опубликована в 1971 г. уже после его смерти. К исследованиям К.А. Путилова относятся также его работы по температурной зависимости насыщенного пара, по свойствам металлов, по теории двигателей. В разные годы он заведовал кафедрами физики многих институтов: Московского авиационного института (1943–1944), Высшего технического училища им. Н.Э. Баумана и др. Был научным консультантом в Институте прикладной минералогии. Опубликовал около 310 научных трудов в отечественных и зарубежных журналах. Автор нескольких изобретений и первого отечественного фундаментального учебника по курсу физики для высших учебных заведений. Первое издание этого учебника вышло в 1934 г.

Мало кто знает, что Константин Анатольевич являлся одним из вдохновителей идеи создания гидрореактивного двигателя. Все работы по конструированию долгое время были строго засекречены. На заре «холодной войны» постановлением Сталина в срочном порядке была развернута работа Специальной научно-исследовательской лаборатории по гидрореактивным двигателям №1, которую возглавил Путилов.

Константин Анатольевич был талантливым преподавателем. У него был удивительный дар превращать любого студента в исследователя, находившего нетрадиционные решения. Так, для определения минимального сопротивления самолета Путилов предложил в аэродинамической трубе с восходящим потоком горячего воздуха поместить модель, облепленную воском. Под воздействием тепла и силы тяжести воск растекался, образуя оптимальную форму модели.

Одним из важнейших столпов современной термодинамики является принцип термодинамической допустимости Путилова, который гласит: «в термодинамике допустимо пользоваться какими угодно воображаемыми идеализированными по своим свойствам телами и приспособлениями, без риска применяя эти представления в рассуждениях прийти к неверным результатам, если предварительно доказано, что их реализация, как бы ни были неправдоподобны их свойства, не противоречила бы ни первому, ни второму началу термодинамики». В термодинамике достаточно распространено использование для мысленных экспериментов разного рода воображаемые идеализированные тела, приспособления и механизмы. То обстоятельство, что такой подход не приводит к противоречию между теорией и опытными данными позволило К. А. Путилову сформулировать данный принцип.

Этот принцип позволяет использовать мысленные эксперименты для осознания, понимания и объяснения многих термодинамических механизмов, что позволяет прогнозировать функционирование той или иной модели. Принцип Путилова так же еще называют нулевым или общим началом термодинамики. Использование его биологами и биохимиками особенно целесообразно в построении термодинамических моделей функционирования живой материи, поскольку в живом организме одномоментно происходит огромное количество биохимических реакций разного толка, и в отличие от «технарей» биологи не имеют возможности моделировать каждую систему на практике. И только используя принцип Путилова возможно провести любой мысленный эксперимент с биологической моделью.

Принцип позволяет предположить наличие неких, еще не открытых наукой, биологических инструментов. Еще Эрвин Бауэр предполагал наличие такого принципа, он называл это «принципом биологической дедукции». Здесь можно и нужно поставить знак равенства. Принцип Путилова – принцип биологической дедукции. Принцип Путилова явился основой моих мысленных экспериментов, в результате которых появились теории, которые будут подробно рассмотрены в соответствующем разделе нашей книги.

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2 3 4 5
  • 4.1 Оценок: 7

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации