Текст книги "Глоссариум по искусственному интеллекту: 2500 терминов"
Автор книги: Александр Власкин
Жанр: Руководства, Справочники
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 8 (всего у книги 35 страниц) [доступный отрывок для чтения: 12 страниц]
«Л»
Ленивое обучение (Lazy learning) в искусственном интеллекте – это метод обучения, при котором обобщение данных обучения откладывается до тех пор, пока в систему не будет сделан запрос, в отличие от активного обучения, когда система пытается обобщить данные обучения до получения запросов. Этот тип обучения также известен как обучение на основе экземпляров. Ленивые классификаторы очень полезны при работе с большими наборами данных, которые имеют несколько атрибутов.
Лингвистическая аннотация (Linguistic annotation) – также известная как текстовая аннотация корпуса, – это маркировка языковых данных в текстовой или устной форме. Лингвистическая аннотация направлена на выявление и пометку грамматических, фонетических и семантических лингвистических элементов в тексте или аудиозаписи.
Линейная регрессия (Linear regression) – это метод моделирования, который помогает в построении отношений между зависимой скалярной переменной и одной или несколькими независимыми переменными. Они также известны как переменная результата и предикторная переменная. Хотя линейная регрессия уходит своими корнями в статистику, она также является важным инструментом машинного обучения для таких задач, как прогнозное моделирование. Линейная регрессия пытается смоделировать взаимосвязь между двумя переменными, подгоняя линейное уравнение к наблюдаемым данным.
Лисп (LISt Processing – «обработка списков») – это семейство языков программирования, основанных на представлении программы системой линейных списков символов, которые притом являются основной структурой данных языка. Лисп считается вторым после Fortran старейшим высокоуровневым языком программирования. [3838
Лисп [Электронный ресурс] //progopedia.ru URL: http://progopedia.ru/language/lisp/
[Закрыть]]
Личная информация (Personally Identifiable Information) – это любая часть информации, которая может использоваться сама по себе или в сочетании с какой-либо другой информацией для идентификации конкретного человека.
Ловушка NaN (NaN trap) – это элемент числового типа данных, который можно интерпретировать как неопределенное или непредставимое значение, особенно в арифметике с плавающей запятой. Когда одно число в вашей модели становится NaN во время обучения, что приводит к тому, что многие или все другие числа в вашей модели в конечном тоже итоге становятся NaN. [3939
Ловушка NaN [Электронный ресурс] //en.wikipedia.org URL: https://en.wikipedia.org/wiki/NaN (дата обращения: 07.07.2022)
[Закрыть]]
Логарифм отношения шансов (Log-odds) – это логарифм отношения вероятностей наступления и не наступления события. Log-odds – это краткий способ обозначения взятия натурального логарифма из шансов. Когда вы берете натуральный логарифм чего-то, вы в основном делаете его более нормально распределенным. Когда мы делаем что-то более нормально распределенное, мы ставим его в таком масштабе, с которым очень легко работать.
Логика описания (Description logic) – это семейство формальных языков представления знаний. DL используются в искусственном интеллекте для описания и обоснования соответствующих концепций предметной области (известных как терминологические знания). Это особенно важно для обеспечения логического формализма для онтологий и Semantic Web: Web Ontology Language (OWL). Наибольшее применение DL и OWL находит в биомедицинской информатике, где DL помогает в кодификации биомедицинских знаний.
Логика первого порядка (также известная как исчисление предикатов первого порядка и логика предикатов) (First-order logic) – это набор формальных систем, используемых в математике, философии, лингвистике и информатике. Логика первого порядка использует количественные переменные вместо нелогических объектов и допускает использование предложений, содержащих переменные, так что вместо таких утверждений, как Сократ – человек, могут быть выражения в форме «существует такое X, что X есть Сократ и X – человек», и существует квантор, а X – переменная. Это отличает ее от логики высказываний, которая не использует кванторы или отношения.
Логика по умолчанию (Default logic) – это немонотонная логика, предложенная Раймондом Рейтером для формализации рассуждений с предположениями по умолчанию. Логика по умолчанию может выражать такие факты, как «по умолчанию, что-то истинно».
Логика разделения (Separation logic) – расширение логики Хоара – это способ рассуждения о программах. Язык утверждений логики разделения является частным случаем логики сгруппированных импликаций (BI).
Логистическая регрессия (Logistic regression) – это статистический метод для анализа набора данных, в котором есть одна или несколько независимых переменных, которые определяют результат. Результат измеряется с помощью дихотомической переменной (в которой есть только два возможных результата). Она используется для прогнозирования двоичного результата (1/0, да / нет, истина / ложь) с учетом набора независимых переменных. Логистическую регрессию можно рассматривать как особый случай линейной регрессии, когда исходная переменная является категориальной, где мы используем логарифм шансов в качестве зависимой переменной. Проще говоря, он предсказывает вероятность возникновения события путем подгонки данных клогитфункции. В некоторых случаях зависимые переменные могут иметь более двух результатов, например, в браке / не замужем / в разводе, такие сценарии классифицируются как полиномиальная логистическая регрессия. [4040
Логистическая регрессия [Электронный ресурс] www.machinelearningmastery.ru URL: https://www.machinelearningmastery.ru/logistic-regression-for-dummies-a-detailed-explanation-9597f76edf46/ (дата обращения: 07.07.2022)
[Закрыть]]
Логистическая функция ошибки (также функция потерь логистической регрессии) (Log Loss) – Эту функцию называют также «логлосс» (logloss / log_loss), перекрёстной / кросс-энтропией. В большинстве обучающих сетей – это ошибка, которая рассчитывается как разница между фактическим выходным значением y и прогнозируемым выходным значением ŷ. Функция, используемая для вычисления этой ошибки, известна как функция потерь. [4141
Логистическая функция ошибки [Электронный ресурс] //dyakonov.org URL: https://dyakonov.org/2018/03/12/ (дата обращения: 07.07.2022)
[Закрыть]]
Логит (Logits) – это функция, также известная как функция логарифмических шансов, – это функция, которая представляет значения вероятности от 0 до 1 и от отрицательной бесконечности до бесконечности. Эта функция обратна сигмовидной функции, которая ограничивает значения от 0 до 1 по оси Y, а не по оси X. Поскольку логит-функция существует в диапазоне от 0 до 1, эта функция чаще всего используется для понимания вероятностей используется аналогично сигмовидной функции в нейронных сетях. Сигмоидальная или активационная функция выдает вероятность, тогда как логит-функция принимает вероятность и выдает действительное число между отрицательной и положительной бесконечностью. Как и сигмовидная функция, логит-функции часто размещаются в качестве последнего слоя в нейронной сети, поскольку это может упростить данные. Например, логит-функция часто используется на последнем слое нейронной сети, используемой в задачах классификации. Поскольку сеть определяет вероятности для классификации, функция логита может преобразовывать эти вероятности в действительные числа.
Логит модель (Logit model) – это статистическая модель, используемая для предсказания вероятности возникновения интересующего нас события с помощью логистической функции [4242
Логистическая регрессия. [Электронный ресурс] // www.statmethods.ru. URL: https://www.statmethods.ru/statistics-metody/logisticheskaya-regressiya/ (дата обращения: 03.02.2022)
[Закрыть]].
Логит-функция (Logit Function) – это обратная сигмоидальная «логистическая» функция, используемая в математике, особенно в статистике.
Логическая запись (Logical record) – это все данные для данной единицы анализа. Он отличается от физической записи тем, что может потребоваться несколько физических записей для хранения всех данных для данной единицы анализа. Например, в данных изображения карты «карта» представляет собой физическую запись, и обычно требуется несколько «карт» для хранения всей информации для одного случая или единицы анализа.
Логическое программирование (Logic programming) – это парадигма программирования, которая основывается на формальной логике. Любая программа, написанная на логическом языке программирования, представляет собой набор предложений в логической форме, выражающий факты и правила о некоторой проблемной области. Также, – это тип парадигмы программирования, в которой вычисления выполняются на основе хранилища знаний фактов и правил; LISP и Prolog – два языка логического программирования, используемые для программирования AI.
Логическое программирование ограничений (Сonstraint logic programming) – это расширенная версия логического программирования, которая создается путем комбинирования ограниченного программирования с логическим программированием. Ограниченное программирование – это форма декларативного программирования, которая использует математические ограничения, чтобы определить, как переменные в программе связаны друг с другом.
Ложноотрицательный показатель (False negative rate) – это доля фактических положительных примеров, для которых прогнозируется отрицательный класс. Ложноотрицательный показатель равен отношению ложных отрицательных результатов к сумме ложных отрицательных и истинно положительных результатов.
Ложный отрицательный результат (False Negative) – это случай, в котором модель ошибочно определила отрицательный класс. Например, модель сделала вывод, что конкретное сообщение электронной почты не было спамом (отрицательный класс), но по факту оно действительно было спамом.
Ложный положительный результат (False Positive) – это случай, в котором модель ошибочно предсказала положительный класс. Например, модель сделала вывод, что конкретное сообщение электронной почты было спамом (положительный класс), но на самом деле это письмо являлось частью важной переписки. Частота ложных срабатываний (FPR) – ось X на кривой ROC.
Локальное устройство (Local device) – это устройства, входящие в сеть, которая покрывает относительно небольшую территорию или небольшую группу зданий.
Локальный сервер (Local server) – это хостинг, работающий при помощи программ, которые осуществляют его эмуляцию на личном компьютере.
Лямбда (Lambda) – это функция в программировании на Python, анонимная функция или функция без имени. Это небольшая и ограниченная функция, состоящая не более чем из одной строки. Как и обычная функция, лямбда-функция может иметь несколько аргументов в одном выражении. [4343
Лямбда [Электронный ресурс] www.guru99.com URL: https://www.guru99.com/python-lambda-function.html (дата обращения: 07.07.2022)
[Закрыть]]
«М»
Маркер (Token) в языковой модели – это элементарная единица, на которой модель обучается и делает прогнозы.
Марковская модель (Markov model) — это статистическая модель, имитирующая работу процесса, похожего на марковский процесс с неизвестными параметрами, задачей которой является определение неизвестных параметров на основе наблюдаемых данных.
Марковские процессы принятия решений (MDP) (Markov decision process) – это стохастический процесс управления с дискретным временем. Он обеспечивает математическую основу для моделирования принятия решений в ситуациях, когда результаты частично случайны и частично находятся под контролем лица, принимающего решения. MDP полезны для изучения задач оптимизации, решаемых с помощью динамического программирования и обучения с подкреплением.
Марковский процесс (Markov process) – это случайный процесс, эволюция которого после любого заданного значения временного параметра t не зависит от эволюции, предшествовавшей t, при фиксированных параметрах процесса [4444
Марковский процесс [Электронный ресурс] //en.wikipedia.org. URL: https://ru.wikipedia.org/wiki/%D0%9C%D0%B0%D1%80%D0%BA%D0%BE%D0%B2%D1%81%D0%BA%D0%B8%D0%B9_%D0%BF%D1%80%D0%BE%D1%86%D0%B5%D1%81%D1%81 (дата обращения: 07.07.2022)
[Закрыть]].
Марковское свойство (Markov property) – этот термин, относится к свойству случайного процесса без памяти. Назван в честь русского математика Андрея Маркова. [4545
Марковское свойство [Электронный ресурс] //wikimili.com URL: https://wikimili.com/en/Markov_property/ (дата обращения: 07.07.2022)
[Закрыть]]
Маска R-CNN (Mask R-CNN) – это свёрточная нейронная сеть (CNN), передовая технология сегментации изображений. Этот вариант глубокой нейронной сети обнаруживает объекты на изображении и создает высококачественную маску сегментации для каждого экземпляра. Используя Mask R-CNN можно автоматически сегментировать и создавать попиксельные маски для каждого объекта на изображении. Можно применять Mask R-CNN как к изображениям, так и к видеопотокам.
Маскированная языковая модель (Masked language model) – это языковая модель, которая предсказывает вероятность того, что токены-кандидаты заполнят пробелы в последовательности. Большинство современных моделей маскированного языка являются двунаправленными.
Масштабирование (Scaling) – это обычно используемая практика в разработке признаков, чтобы оптимизировать диапазон значений объекта, чтобы он соответствовал диапазону других объектов в наборе данных.
Масштабируемость (Scalability) – это способность системы, сети или процесса справляться с увеличением рабочей нагрузки (увеличивать свою производительность) при добавлении ресурсов (обычно аппаратных).
Математическая оптимизация (математическое программирование) (Mathematical optimization) – это выбор наилучшего элемента по некоторому критерию из некоторого набора доступных альтернатив. Это чрезвычайно мощная технология предписывающей аналитики, которая позволяет компаниям решать сложные бизнес-задачи и более эффективно использовать доступные ресурсы и данные
Матрица неточностей (Confusion matrix) – это таблица ситуационного анализа, в которой суммируются результаты прогнозирования модели классификации в машинном обучении. Записи в наборе данных сводятся в виде матрицы в соответствии с реальной категорией и оценкой классификации, сделанной моделью классификации.
Матрица элементов (Item matrix) — в рекомендательных системах – это матрица вложений, созданная матричной факторизацией, которая содержит скрытые сигналы о каждом элементе. Каждая строка матрицы элементов содержит значение одной скрытой функции для всех элементов. Матрица элементов имеет то же количество столбцов, что и целевая матрица, которая факторизуется. Например, если система рекомендаций по фильмам оценивает 10 000 названий фильмов, матрица элементов будет состоять из 10 000 столбцов.
Матричная факторизация (Matrix factorization) – это разложение одной матрицы на производные нескольких матриц. Существует множество различных способов факторизации матриц. Многие сложные матричные операции не могут быть решены эффективно или стабильно с использованием ограниченной точности компьютеров. Разложение матриц на составные части упрощает вычисление более сложных матричных операций.
Машина Больцмана (Boltzmann machine) – это вид стохастической рекуррентной нейронной сети, изобретенной Джеффри Хинтоном и Терри Сейновски. Машина Больцмана может рассматриваться как стохастический генеративний вариант сети Хопфилда. Эта модель оказалась первой нейронной сетью, способной обучаться внутренним репрезентациям, и может представлять и решать сложные комбинаторные задачи.
Машина опорных векторов (Support Vector Machine) – это популярная модель обучения с учителем, разработанная Владимиром Вапником и используемая как для классификации данных, так и для регрессии. Тем не менее, он обычно используется для задач классификации, построения гиперплоскости, где расстояние между двумя классами точек данных максимально. Эта гиперплоскость известна как граница решения, разделяющая классы точек данных по обе стороны от плоскости.
Машина повышения градиента (Gradient boost machine) – это тип метода машинного обучения, в котором используется ансамбль слабых моделей прогнозирования для выполнения задач регрессии и классификации.
Машина Тьюринга (Turing machine) – это математическая модель вычислений, определяющая абстрактную машину, которая манипулирует символами на полосе ленты в соответствии с таблицей правил. Несмотря на простоту модели, для любого компьютерного алгоритма можно построить машину Тьюринга, способную имитировать логику этого алгоритма.
Машинное восприятие (Machine perception) – это способность системы получать и интерпретировать данные из внешнего мира аналогично тому, как люди используют наши органы чувств. Обычно это делается с подключенным оборудованием, хотя можно использовать и программное обеспечение.
Машинное зрение (Machine Vision) – это применение общего набора методов, позволяющих компьютерам видеть, для промышленности и производства.
Машинное обучение (Machine Learning) – это область исследования, которая дает компьютерам возможность учиться без явного программирования [4646
Машинное обучение [Электронный ресурс] // en.wikipedia.org. URL: https://en.wikipedia.org/wiki/Arthur_Samuel (дата обращения: 14.01.2022)
[Закрыть],4747
Машинное обучение [Электронный ресурс] // datascience.stackexchange.com. URL: https://datascience.stackexchange.com/questions/37078/source-of-arthur-samuels-definition-of-machine-learning (дата обращения: 14.01.2022)
[Закрыть]]. Также под машинным обучением понимают технологии автоматического обучения алгоритмов искусственного интеллекта распознаванию и классификации на тестовых выборках объектов для повышения качества распознавания, обработки и анализа данных, прогнозирования [4848
Технологии искусственного интеллекта. [текст].– Москва: Агентство промышленного развития Москвы, 2019.-155 с. [Электронный ресурс] // apr.moscow. URL: https://apr.moscow/analitics/promyshlennost-moskvy (дата обращения: 02.02.2022).
[Закрыть]]. Также машинное обучение определяют, как одно из направлений (подмножеств) искусственного интеллекта, благодаря которому воплощается ключевое свойство интеллектуальных компьютерных систем – самообучение на основе анализа и обработки больших разнородных данных. Чем больше объем информации и ее разнообразие, тем проще искусственному интеллекту найти закономерности и тем точнее будет получаемый результат.
Машинное обучение Microsoft Azure (платформа автоматизации искусственного интеллекта) – это функция, которая предлагает расширенную облачную аналитику, предназначенную для упрощения машинного обучения для бизнеса. Бизнес-пользователи могут моделировать по-своему, используя лучшие в своем классе алгоритмы из пакетов Xbox, Bing, R или Python или добавляя собственный код R или Python. Затем готовую модель можно за считанные минуты развернуть в виде веб-службы, которая может подключаться к любым данным в любом месте. Его также можно опубликовать для сообщества в галерее продуктов или на рынке машинного обучения. В Machine Learning Marketplace доступны интерфейсы прикладного программирования (API) и готовые сервисы. Также, – это способность машин автоматизировать процесс обучения. Входными данными этого процесса обучения являются данные, а выходными данными – модель. Благодаря машинному обучению система может выполнять функцию обучения с данными, которые она принимает, и, таким образом, она становится все лучше в указанной функции.
Машинное прослушивание (Machine listening) – это класс прикладного искусственного интеллекта, используемый для восприятия звука, понятного машинам.
Машинный интеллект (Machine intelligence) — это раздел компьютерных наук, занимающийся воспроизведением или имитацией человеческого интеллекта, самосознания, знаний, мышления в компьютерных программах. Это также обобщающий термин для различных типов алгоритмов обучения, включая машинное обучение и глубокое обучение.
Машинный перевод (Machine Translation) – это раздел компьютерной лингвистики, с использованием программного обеспечения для перевода текста или речи с одного языка на другой. [4949
Машинный перевод [Электронный ресурс] //towardsdatascience.com URL: https://towardsdatascience.com/machine-translation-a-short-overview-91343ff39c9f (дата обращения: 07.07.2022)
[Закрыть]]
Машинный разум (Machine intelligence) – это общий термин, охватывающий машинное обучение, глубокое обучение и классические алгоритмы обучения.
Машины опорных векторов или сети опорных векторов (Support-vector machines, Support-vector networks) – это контролируемые модели обучения с соответствующими алгоритмами обучения, которые анализируют данные для классификации и регрессионного анализа. Разработаны в AT&T Bell Laboratories Владимиром Вапником с коллегами в 1992 году. Машины опорных векторов являются одним из самых надежных методов прогнозирования, основанным на статистическом обучении или теории теории Вапника – Червоненкиса, предложенной Вапником (1982, 1995) и Червоненкисом (1974). Учитывая набор обучающих примеров, каждый из которых помечен как принадлежащий к одной из двух категорий, алгоритм обучения машины опорных векторов строит модель, которая относит новые примеры к той или иной категории, превращая ее в невероятностный двоичный линейный классификатор (хотя методы такие как масштабирование Платта, существуют для использования машин опорных векторов в вероятностной классификации). Машины опорных векторов сопоставляют обучающие примеры с точками в пространстве, чтобы максимизировать ширину разрыва между двумя категориями. Затем новые примеры сопоставляются с тем же пространством, и их принадлежность к категории определяется в зависимости от того, на какую сторону разрыва они попадают. В дополнение к выполнению линейной классификации SVM могут эффективно выполнять нелинейную классификацию, используя так называемый трюк ядра, неявно отображая свои входные данные в многомерные пространства признаков. Когда данные не размечены, обучение с учителем невозможно, и требуется подход к обучению без учителя, который пытается найти естественную кластеризацию данных в группы, а затем сопоставляет новые данные с этими сформированными группами. Алгоритм кластеризации опорных векторов, созданный Хавой Зигельманн и Владимиром Вапником, применяет статистику опорных векторов, разработанную в алгоритме машин опорных векторов, для категоризации неразмеченных данных.
Международный фонетический алфавит (МФА) ((PA (International Phonetic Alphabet)) – это система фонетической записи, основанная на латинском алфавите, разработанная Международной фонетической ассоциацией в качестве стандартизированного представления звуков разговорной речи.
Мероприятия по информатизации (Informatization activities) – это предусмотренные мероприятия программ цифровой трансформации государственных органов, направленные на создание, развитие, эксплуатацию или использование информационно-коммуникационных технологий, а также на вывод из эксплуатации информационных систем и компонентов информационно-телекоммуникационной инфраструктуры.
Мероприятия программы цифровой трансформации, осуществляемые государственным органом (Measures of the digital transformation program carried out by a state body) – это объединенная единой целью совокупность действий государственного органа, в том числе мероприятий по информатизации, направленных на выполнение задач по оптимизации административных процессов предоставления государственных услуг и (или) исполнения государственных функций, созданию, развитию, вводу в эксплуатацию, эксплуатации или выводу из эксплуатации информационных систем или компонентов информационно-коммуникационных технологий, нормативно-правовому обеспечению указанных процессов или иных задач, решаемых в рамках цифровой трансформации.
Метаданные (Metadata) – это термин, который относится к структурированным данным. Метаданные – это старая концепция (например, карточные каталоги и указатели), но метаданные часто необходимы для того, чтобы цифровой контент был полезным и значимым. Метаданные могут собирать общую или конкретную информацию о цифровом контенте, которая может определять административные, технические или структурные характеристики цифрового контента. «Метаданные сохранения» – это термин для более широкого набора метаданных, которые документируют жизненный цикл цифрового контента от создания до обработки, хранения, сохранения и использования с течением времени. Сохранение метаданных требуется на совокупном уровне (например, на уровне коллекции и исследования) и на уровне элемента (например, на уровне файла и переменной). Например, все действия по сохранению, применяемые к цифровому контенту с течением времени, должны фиксироваться в метаданных сохранения. Словарь данных «Стратегии внедрения метаданных сохранения» (PREMIS) – это разработка сообщества цифрового сохранения, которая движется к тому, чтобы стать стандартом. Существуют дополнительные специфичные для формата (например, словарь данных неподвижных изображений NISO) и другие стандарты, определяющие дополнительные метаданные для сохранения. ICPSR подготавливает запись метаданных для каждой коллекции данных, и мы представляем доступную для поиска базу данных записей метаданных на нашем общедоступном веб-сайте. ICPSR определил набор элементов метаданных на уровне файлов для сохранения. Инициатива ICPSR по улучшению процессов включает идентификацию метаданных на каждом этапе конвейера.
Мета-обучение (Meta-learning) – является одним из наиболее активных направлений исследований в области глубокого обучения, подмножеством машинного обучения, которое обнаруживает или улучшает алгоритм обучения. Система мета-обучения также может быть направлена на обучение модели быстрому освоению новой задачи на основе небольшого объема данных или опыта, полученного в предыдущих задачах. В контексте систем ИИ, метаобучение можно определить, как способность приобретать универсальность знаний. Путь к универсальности знаний предполагает от агентов ИИ «Учиться учиться». Основные типы метаобучающихся моделей: Мета-обучение несколько выстрелов; Оптимизатор мета-обучения; Метрическое мета-обучение; Рекуррентная модель мета-обучения [5050
Мета-обучение [Электронный ресурс] www.machinelearningmastery.ru URL: https://www.machinelearningmastery.ru/learning-to-learn-a-gentle-introduction-to-meta-learning-4befb76da91a/ (дата обращения: 07.07.2022)
[Закрыть]].
Метаэвристика (Metaheuristic) – это процедура и эвристика более высокого уровня, предназначенная для поиска, генерации или эвристики, которая может обеспечить достаточно хорошее решение задачи оптимизации, особенно при неполной или несовершенной информации, или ограниченной вычислительной мощности. Метаэвристика отбирает подмножество решений, которое в другом случае слишком велико, чтобы его можно было полностью перечислить или исследовать каким-либо иным образом.
Метка или разметка (Label) – это разметка данных перед тем, как их использовать в системах машинного обучения. Эти метки могут быть в виде слов или цифр. Чтобы сделать данные понятными или в удобочитаемой форме, обучающие данные часто помечаются метками – словами.
Метод k-средних (K-means) – это наиболее популярный метод кластеризации. Был изобретён в 1950-х годах математиком Гуго Штейнгаузом и почти одновременно Стюартом Ллойдом. Кластеризация K-средних один из самых простых и популярных алгоритмов машинного обучения без учителя. Как правило, неконтролируемые алгоритмы делают выводы из наборов данных, используя только входные векторы, не обращаясь к известным или помеченным результатам.
Метод Монте-Карло (Monte Carlo Methods) – это метод многократного имитационного моделирования вероятностей, представляет собой математический метод, с помощью которого можно оценить возможные результаты неопределенного события. Метод Монте-Карло был изобретен Джоном фон Нейманом и Станиславом Уламом во время Второй мировой войны с целью улучшения процесса принятия решений в условиях неопределенности. Название методу дал известный своими казино город в Монако, поскольку в основе данного подхода к моделированию лежит принцип генерации случайных чисел, применяемый в рулетке.
Метод обратного распространения ошибки (Error backpropagation) – это метод вычисления градиента, который используется при обновлении весов многослойного перцептрона. Впервые метод был описан в 1974 г. А. И. Галушкиным. Метод включает в себя большое количество итерационных циклов с обучающими данными.
Метод ядра (Kernel method). В машинном обучении – этот метод представляет собой класс алгоритмов для анализа шаблонов, наиболее известным из которых является машина опорных векторов (SVM). Общая задача анализа шаблонов состоит в том, чтобы найти и изучить общие типы отношений (например, кластеры, ранжирование, главные компоненты, корреляции, классификации) в наборах данных.
Метод COBWEB (COBWEB) – это классический метод инкрементальной концептуальной кластеризации, который был изобретен профессором Дугласом Фишером в 1987 году. В отличие от традиционной кластеризации, которая обнаруживает группы схожих объектов на основе меры сходства между ними, концептуальная кластеризация определяет кластеры как группы объектов, относящейся к одному классу или концепту – определённому набору пар «атрибут-значение». Алгоритм COBWEB создаёт иерархическую кластеризацию в виде дерева классификации: каждый узел этого дерева ссылается на концепт и содержит вероятностное описание этого концепта.
Методология разработки и операции (DevOps development & operations) – это набор методик, инструментов и философия культуры, которые позволяют автоматизировать и интегрировать между собой процессы команд разработки ПО и ИТ-команд. Особое внимание в DevOps уделяется расширению возможностей команд, их взаимодействию и сотрудничеству, а также автоматизации технологий. Под термином DevOps также понимают особый подход к организации команд разработки. Его суть в том, что разработчики, тестировщики и администраторы работают в едином потоке – не отвечают каждые за свой этап, а вместе работают над выходом продукта и стараются автоматизировать задачи своих отделов, чтобы код переходил между этапами без задержек. В DevOps ответственность за результат распределяется между всей командой [5151
Методология разработки и операции ps [Электронный ресурс] www.atlassian.com URL: https://www.atlassian.com/ru/devops (дата обращения: 07.07.2022)
[Закрыть],5252
Методология разработки и операции [Электронный ресурс] //mcs.mail.ru URL: https://mcs.mail.ru/blog/chto-takoe-metodologiya-devops (дата обращения: 07.07.2022)
[Закрыть]].
Методы эвристического поиска (Heuristic search techniques) – это методы, которые сужают поиск оптимальных решений проблемы за счет исключения неверных вариантов
Методы эвристического поиска (Heuristic search techniques) – это методика, которая сужает поиск оптимальных решений проблемы, исключая неверные варианты. [5353
Методы эвристического поиска [Электронный ресурс] //intuit.ru URL: https://intuit.ru/studies/professional_skill_improvements/1574/courses/507/lecture/ (дата обращения: 07.07.2022)
[Закрыть]]
Метрика (Metric) – это функция в задачах машинного обучения для оценки качества моделей и сравнения различных алгоритмов машинного обучения. [5454
Метрика [Электронный ресурс] www.machinelearningmastery.ru URL: https://www.machinelearningmastery.ru/20-popular-machine-learning-metrics-part-1-classification-regression-evaluation-metrics-1ca3e282a2ce/ (дата обращения: 07.07.2022)
[Закрыть]]
Метрика справедливости (Fairness metric) – это математическое определение «справедливости», которое поддается измерению. Многие показатели справедливости являются взаимоисключающими.
Метрики API (Application Programming Interface или интерфейс программирования приложений) (tf. metrics) TensorFlow – это функция для оценки моделей. Например, tf.metrics.accuracy определяет, как часто прогнозы модели соответствуют меткам.
Механизм внимания (Attention mechanism) – это одно из ключевых нововведений в области нейронного машинного перевода. Внимание позволило моделям нейронного машинного перевода превзойти классические системы машинного перевода, основанные на переводе фраз. Основным узким местом в sequence-to-sequence обучении является то, что все содержимое исходной последовательности требуется сжать в вектор фиксированного размера. Механизм внимания облегчает эту задачу, так как позволяет декодеру оглядываться на скрытые состояния исходной последовательности, которые затем в виде средневзвешенного значения предоставляются в качестве дополнительных входных данных в декодер.
Механизм логического вывода (Inference engine) – это составная часть системы, которая применяет логические правила к базе знаний, чтобы вывести новую информацию. Первые механизмы вывода были компонентами экспертных систем. Типичная экспертная система состоит из базы знаний и механизма вывода. В базе знаний хранятся факты об окружающем мире. Механизм вывода применяет логические правила к базе знаний и выводит новые знания. [5555
Механизм логического вывода [Электронный ресурс] //ru.wikipedia.org URL: https://ru.wikipedia.org/wiki (дата обращения: 07.07.2022)
[Закрыть]]
Мехатроника (Mechatronics) – это наука, которая существует на стыке механики, электроники, машиностроения, вычислительной техники и электронного управления. Это одна из наиболее динамично развивающихся областей техники и науки. Слово «мехатроника» был введен в техническую терминологию японской компанией Yaskawa Elektric Corporation в 1969 году (компания, основанная в 1915 г.) и с 1971 г. охраняется как торговое наименование.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?