Электронная библиотека » Эндрю Макафи » » онлайн чтение - страница 3


  • Текст добавлен: 26 декабря 2017, 18:00


Автор книги: Эндрю Макафи


Жанр: Экономика, Бизнес-Книги


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 3 (всего у книги 23 страниц) [доступный отрывок для чтения: 8 страниц]

Шрифт:
- 100% +
Преимущества человека в «Своей игре»!

Компьютеры настолько хорошо научились совмещать анализ закономерностей со сложной коммуникацией, что порой побеждают людей на их собственном поле. В 2011 году одним из участников игрового шоу Jeopardy! был не человек, а суперкомпьютер по имени Watson. Он был разработан компанией IBM специально для участия в этой игре (и получил свое имя в честь легендарного руководителя компании IBM Томаса Уотсона-старшего). Игра Jeopardy! (ее российский лицензионный аналог называется «Своя игра») дебютировала в 1964 году, а к 2012-му стала пятой по популярности синдицированной (то есть переданной для трансляции сразу нескольким вещателям) телепрограммой в Америке.[34]34
  “Top 10 TV ratings / Top 10 TvShows / Nielsen”, Evernote, 18 августа 2012 г., https://www.evernote.com/shard/s13/sh/a4480367–9414–4246-bba4-d588d60e64ce/bb3f380315cd10deef79e33a88e56602 (по состоянию на 23 июня 2013 г.).


[Закрыть]

Обычно каждый выпуск программы, в ходе которой ведущий Алекс Требек задает простые вопросы на различные темы, а участники стараются опередить других, дав правильный ответ, смотрит почти семь миллионов человек.[35]35
  Точнее говоря, Требек зачитывает ответ, а участники должны сформулировать вопрос, на который может быть дан этот ответ.


[Закрыть]

Долговечность и популярность шоу связаны с тем, что его легко понять, но в него невероятно сложно играть. Почти каждый человек знает ответы на некоторые вопросы в каждом отдельно взятом эпизоде, однако мало кто знает ответы на почти все из них. Вопросы охватывают широкий диапазон тем, и участники заранее не знают, какие темы им достанутся. Им нужно быть одновременно быстрыми, дерзкими и точными: быстрыми – поскольку они соревнуются друг с другом за шанс ответить на каждый вопрос; дерзкими – поскольку им приходится отвечать на множество вопросов, причем довольно сложных, для того чтобы собрать достаточно денег для победы; и точными – поскольку у них вычитаются деньги за каждый неверный ответ.

Продюсеры Jeopardy! усложняют задачи участникам, используя шутки, стишки и другие виды словесных игр. К примеру, загадка может звучать так: «Выраженное в виде рифмы напоминание о прошлом родного города команды НБА „Кингз“».[36]36
  “Meet Watson, the Jeopardy! – Playing Computer”, TV.com, 1 декабря 2004 г., http://www.tv.com/news/meet-watson-the-jeopardy-playing-computer-25144/.


[Закрыть]
Чтобы ответить на этот вопрос правильно, игрок должен знать, что означает аббревиатура НБА (в данном случае речь идет о Национальной баскетбольной ассоциации США, а не о Национальном законе о банках (National Bank Act) и не о химическом веществе н-бутиламин), в каком городе играет команда «Кингз» (Сакраменто) и что ответ должен выглядеть как рифма к названию города. Правильный вопрос будет звучать как «Что такое Sacramento memento?», а не «сувенир из Сакраменто» или любой другой фактически правильный ответ. Правильный ответ в таких случаях требует подлинного мастерства в поиске закономерностей и сложной коммуникации. А победа в Jeopardy! требует, чтобы обе эти связи находились неоднократно, точно и почти мгновенно.

Во время сезона 2011 года Watson выступал против Кена Дженнингса и Брэда Раттера, двух самых известных персонажей этой эзотерической индустрии. Дженнингс в 2004 году выиграл рекордное количество игр подряд – а именно 72, – заработал на этом более 3 170 000 долларов призовых денег и стал настоящим народным героем.[37]37
  “What’s The most Money Won on Jeopardy?”, Celebrity Net Worth, 20 мая 2010 г., http://www.celebritynetworth.com/articles/entertainment-articles/whats-themost-money-won-o/.


[Закрыть]
По сути, можно считать, что сам Watson отчасти возник благодаря Дженнингсу.[38]38
  Stephen Baker, Final Jeopardy: Man Vs. Machine and the Quest to Know Everything (Houghton Mifflin Harcourt, 2011), стр. 19.


[Закрыть]
Согласно легенде, которая ходит по компании IBM, Чарльз Ликел, менеджер по исследовательским вопросам компании, интересовавшийся расширением границ искусственного интеллекта, как-то вечером осенью 2004 года ужинал в стейк-хаусе в Фишкилле, штат Нью-Йорк. В 7 часов вечера он заметил, что многие посетители оставили свой ужин, встали из-за столов и перешли в соседний бар. Он заинтересовался, что происходит, и последовал за ними. Оказалось, что все столпились у телевизора и принялись наблюдать за тем, как Дженнингс, выигравший уже 50 игр подряд, продолжает бить свой рекорд. Ликел подумал, что матч между Дженнингсом и суперкомпьютером, умеющим играть в Jeopardy!, может оказаться невероятно популярным, а кроме того, послужит отличным тестом способностей компьютера выявлять закономерности и участвовать в сложной коммуникации.

Поскольку Jeopardy! представляет собой соревнование между тремя участниками, идеальным третьим участником мог бы стать Брэд Раттер, который победил Дженнингса в 2005 году по итогам турнира чемпионов и выиграл более 3 400 000 долларов.[39]39
  “IBM and ‘Jeopardy!’ relive History With Encore Presentation of ‘Jeopardy!’”, Did You Know…, 2013, http://www.jeopardy.com/showguide/abouttheshow/showhistory/.


[Закрыть]
Оба участника обладали огромной эрудицией, были отлично знакомы с игрой и всеми ее тонкостями, а также хорошо знали, как противостоять давлению.

Выиграть у них было непросто, и первые версии Watson были совершенно к этому не готовы. Программисты могли настроить Watson так, чтобы он, отвечая на вопросы, вел себя более агрессивно (а, следовательно, чаще ошибался) или был более осторожным и точным. В декабре 2006 года, вскоре после начала проекта, когда Watson пытался отвечать на вопросы в течение 70 % времени передачи (сравнительно агрессивный подход), он давал правильные ответы лишь в течение 15 % времени. Дженнингс, напротив, правильно отвечал на 90 % вопросов в тех случаях, когда ему удавалось добиться права на ответ (также в течение примерно 70 % времени передачи).[40]40
  Вся статистика по Уотсону и человеческой деятельности взята из кейса Willy Shih, “Building Watson: Not so Elementary, my Dear!”, Harvard Business Schoolcase 612–017, сентябрь 2011 г. (с изменениями от июля 2012 г.), http://hbr.org/product/buildingwatson-not-so-elementary-my-dear/an/612017-PDF-enG.


[Закрыть]

Однако оказалось, что Watson способен быстро учиться. Соотношение агрессивности и точности быстро улучшалось, и, к ноябрю 2010 года (когда машина стала достаточно агрессивной, чтобы добиться в ходе имитации турнира права на ответ в 70 % случаев), примерно 85 % ее ответов оказались верными. Это было впечатляющее достижение, однако компьютер все еще не играл в той же лиге, что и лучшие игроки-люди. Команда Watson продолжала свою работу до середины января 2011 года, когда должны были начаться съемки турнира для будущей трансляции, однако никто до конца не знал, насколько хорошо их создание сможет противостоять Дженнингсу и Раттеру.

Watson побил их обоих. Он правильно отвечал на вопросы на самые разные темы, от «Необычных происшествий на Олимпийских играх» до «Церкви и государства». И хотя суперкомпьютер не продемонстрировал полного совершенства – к примеру, он предложил слово chic, а не class как синоним выражения «стильная элегантность или же группа учеников, заканчивающих обучение в один и тот же год» (категория «Альтернативные значения»), – его результаты все равно были очень хорошими.

Кроме того, Watson действовал с невероятной быстротой, постоянно отбирая у Дженнингса и Раттера право на ответ. К примеру, в первой из двух сыгранных игр Watson первым нажимал на кнопку 43 раза, а затем дал правильные ответы в 38 случаях. А Дженнингс и Раттер в сумме смогли нажать на кнопку всего 33 раза за всю игру.[41]41
  Исследование, проведенное авторами.


[Закрыть]

К концу двухдневного турнира Watson заработал 77 147 долларов – примерно в три раза больше, чем каждый из его оппонентов-людей. Дженнингс, занявший второе место, после ответа на последний вопрос соревнования добавил: «Приветствую наших новых компьютерных повелителей». Позднее он размышлял о происшедшем:

Подобно тому как в XX веке множество людей-работников на фабриках было заменено роботами на сборочных линиях, мы с Брэдом оказались первыми работниками сферы интеллектуальных услуг, замененных новым поколением «думающих» машин. Возможно, что «участник интеллектуальных шоу» – это первая из профессий, которая исчезнет благодаря Watson, однако я уверен, что она не последняя.[42]42
  KenJennings, “MyPunyHumanBrain”, Slate, 16 февраля 2011 г., http://www.slate.com/articles/arts/culturebox/2011/02/my_puny_human_brain.single.html.


[Закрыть]

Парадокс «прогресса» в области роботизации

Последняя важная область, в которой мы замечаем в настоящее время быстрое ускорение, связанное с цифровыми технологиями, – это роботизация, то есть создание машин, способных ориентироваться и взаимодействовать с физическим миром фабрик, складов, полей боя и офисов. Прогресс в этой области также шел довольно медленно, а потом сделал резкий скачок вперед.

Слово «робот» вошло в наш язык благодаря пьесе «Р.У.Р.» («Россумские универсальные роботы»), написанной в 1921 году чешским писателем Карелом Чапеком. И любовь к подобного рода автоматам сохраняется у человечества до сих пор.[43]43
  Isaac Asimov, “The Vocabulary of Science Fiction”, в книге “Asimov on Science Fiction” (New York, Doubleday, 1981), стр. 69.


[Закрыть]
Во времена Великой депрессии в газетах и журналах публиковалось немало историй о том, как роботы могли бы вести войны, совершать преступления, заменять рабочих на производстве и даже побить боксера Джека Дэмпси.[44]44
  “The Robot Panic of the Great Depression”, Slate, 29 ноября 2011 г., http://www.slate.com/slideshows/technology/the-robot-panic-of-the-great-depression.html (по состоянию на 23 июня 2013 г.).


[Закрыть]
В 1941 году Айзек Азимов придумал термин «робототехника» и сформулировал основополагающие правила для молодой научной дисциплины в виде знаменитых «Трех законов робототехника»:

Робот не может причинить вред человеку или своим бездействием допустить, чтобы человеку был причинен вред.

Робот должен повиноваться всем приказам, которые дает человек, кроме тех случаев, когда эти приказы противоречат Первому Закону.

Робот должен заботиться о своей безопасности в той мере, в которой это не противоречит Первому или Второму Законам.[45]45
  “Isaac Asimov Explains His Three Laws of Robots”, Open Culture, 31 октября 2012 г., http://www.openculture.com/2012/10/isaac_asimov_explains_his_three_laws_of_robotics.html (по состоянию на 23 июня 2013 г.).


[Закрыть]

Азимов продолжает оказывать огромное влияние на научную фантастику и создание настоящих роботов уже более 70 лет. Однако одно из этих двух сообществ смогло значительно обогнать в своем развитии другое. Научная фантастика подарила нам болтливых и верных роботов R 2-D 2 и C-3PO, кибернетическую цивилизацию Сайлонов из сериала «Звездный крейсер „Галактика“», ужасного Терминатора и массу бесконечных вариаций андроидов, киборгов и репликантов. А десятилетия исследований в области роботехники подарили нам ASIMO, робота-гуманоида производства компании Honda, провалившего собственную демонстрацию, поскольку он не смог исполнить третий закон Азимова. На проведенной в 2006 году в Токио презентации ASIMO попытался пройти по узкой лестнице, выстроенной на сцене. На третьем шаге колени робота подогнулись, и он упал, полностью разбив свою лицевую панель.[46]46
  Brian lam, “Honda Asimo vs. Slippery Stairs”, 11 декабря 2006 г., http://gizmodo.com/220771/honda-asimo-vs-slippery-stairs?op=showcustomobject&postId=220771&item=0.


[Закрыть]

С тех пор ASIMO починили и научили новым навыкам – теперь он умеет подниматься и спускаться по лестнице, пинать футбольный мяч и танцевать. Однако его недостатки заставляют нас понять неприятную истину: многое из того, что просто и привычно для людей в нашем мире, невероятно сложно для роботов. Как отмечает известный футуролог и специалист по роботехнике Ханс Моравек, «сравнительно легко настроить компьютер так, чтобы он отвечал на вопросы тестов интеллектуальных способностей или играл в шашки на уровне нормального взрослого человека, но почти невозможно наделить его навыками годовалого младенца, когда дело касается восприятия и мобильности».[47]47
  Hans Moravec, Mind Children: The Future of Robot and Human Intelligence (Cambridge, MA: Harvard University Press, 1988), стр. 15.


[Закрыть]

Эта ситуация стала широко известна под названием парадокса Моравека, который в «Википедии» описан следующим изящным образом: «Принцип в областях искусственного интеллекта и робототехники, согласно которому, вопреки распространенному мнению, высококогнитивные процессы требуют относительно небольших вычислений, в то время как низкоуровневые сенсомоторные операции требуют огромных вычислительных ресурсов»[48]48
  “Moravec’s Paradox”, Wikipedia, the Free Encyclopedia, 28 апреля 2013 г., http://en.wikipedia.org/w/index.php?title=moravecpercent27s_paradox&oldid=540679203.


[Закрыть]
.[49]49
  Сенсомоторные навыки связаны со способностью ощущать физический мир и контролировать тело при перемещении в нем.


[Закрыть]
Глубокое наблюдение Моравека очень точно и важно. По словам ученого-когнитивиста Стивена Пинкера,

главный урок 35 лет исследований искусственного интеллекта состоит в том, что сложные проблемы просты, а простые проблемы сложны… При появлении нового поколения разумных устройств с угрозой потерять свою работу из-за машин столкнутся фондовые аналитики, инженеры-нефтехимики и члены комиссий по условно-досрочному освобождению. А садовникам, портье и поварам удастся сохранить свои рабочие места еще несколько десятилетий.[50]50
  Steven Pinker, The Language Instinct (New York: Harper Perennial Modern Classics, 2007), стр. 190–191.


[Закрыть]

Пинкер хочет сказать, что для экспертов в области робототехники задача по созданию машин, навыки которых находятся на уровне, хотя бы немного сопоставимом с уровнем неквалифицированных рабочих, занимающихся ручным трудом, оказалась ужасно сложной. К примеру, пылесос Roomba iRobot не способен делать все то же, что делают горничные, – он просто пылесосит пол. В мире уже продано более 10 миллионов пылесосов Roomba, однако ни один из них не умеет выравнивать кипу журналов на кофейном столике.

Когда дело касается работы в физическом мире, люди имеют огромное преимущество над машинами с точки зрения гибкости. Автоматизировать отдельное действие, такое как припайка провода к печатной плате или скрепление двух деталей с помощью шурупов, довольно просто, однако эта задача не должна меняться с течением времени и должна выполняться в «регулярной» среде. К примеру, печатная плата должна все время быть ориентирована в определенную сторону. Для решения таких задач компании покупают специальное оборудование, инженеры программируют и тестируют его, а затем добавляют в имеющиеся производственные конвейерные линии. Каждый раз, когда задача меняется – к примеру, при каждом изменении местоположения отверстий для шурупов, – производство должно остановиться до тех пор, пока программисты не заменят программу. На современных фабриках, особенно крупных и расположенных в странах с высоким уровнем оплаты труда, высокий уровень автоматизации высок, однако даже там невозможно встретить роботов широкого профиля. Напротив, на этих фабриках стоит специализированное и весьма дорогое оборудование, которое довольно сложно настраивать и перенастраивать.

Переосмысление процесса автоматизации фабрик

Родни Брукс, сооснователь компании iRobot, заметил еще одну важную вещь, присущую современным автоматизированным фабрикам, – людей там редко встретишь, но они все равно там есть. И значительная часть их работы заключается в повторяющихся и довольно бездумных действиях. К примеру, на конвейере, где происходит заполнение банок вареньем, машины заливают точный объем варенья в каждую банку, закручивают крышку и прилепляют этикетку, однако весь этот процесс инициирует человек, который вручную ставит пустые банки на ленту конвейера. Почему этот шаг не автоматизирован? Дело в том, что банки поступают на конвейер упакованными в картонные коробки по 12 штук, и эти коробки просто не позволяют им оставаться в жестко заданной позиции. Подобная степень неточности не представляет никакой проблемы для человека (он просто видит банки в коробке, достает их и ставит на конвейерную ленту), однако у традиционных промышленных автоматов возникают огромные проблемы при работе с банками, которые не оказываются в точно заданном месте каждый раз.

В 2008 году Брукс основал новую компанию, Rethink Robotics, для изучения и строительства нетрадиционного типа промышленных автоматов – роботов, способных справиться с банками и решать множество других задач, которые на сегодняшних фабриках выполняются людьми. По сути, он хочет сделать что-то, противоречащее парадоксу Моравека. Более того, Брукс рисует в своем воображении роботов, которых не будут программировать дорогостоящие инженеры; напротив, в качестве учителей для машин, помогающих им выполнить задание (или освоить новое), могут выступать обычные рабочие, на обучение каждого из которых потребуется меньше часа. Кроме того, машины Брукса сравнительно недороги. Каждая из них стоит около 20 000 долларов, что в разы меньше цены нынешних промышленных роботов. Мы смогли познакомиться с этими потенциальными разрушителями парадокса незадолго до того, как Rethink публично заявила о запуске своей первой линейки роботов под названием Baxter. Брукс пригласил нас в штаб-квартиру компании в Бостоне, чтобы показать эти устройства и то, на что они способны.

При первом же взгляде на Baxter понятно, что это робот-гуманоид. У него имеются две довольно толстые сочлененные «руки» с захватами, напоминающими клешни; у него есть туловище; а голова оснащена жидкокристаллическим экраном, позволяющим «смотреть» на человека, который стоит рядом. Впрочем, у него нет ног; Rethink отказалась от решения довольно сложных задач, связанных с автоматическим движением. Она просто поставила Baxter на колеса, а для его перемещения на большие расстояния используются люди-грузчики. Проведенный компанией анализ показал, что робот все равно может сделать немало полезной работы, даже не имея возможности самостоятельно перемещаться.

Чтобы научить Baxter чему-нибудь, вы берете его за запястье и управляете его руками, совершая именно те действия, которым хотите его научить. Кажется, что рука робота вообще не имеет веса; у нее довольно мощные моторы, поэтому вам не нужно прилагать значительных усилий. Робот умеет следить за безопасностью; его две руки не могут столкнуться (а даже если вы пытаетесь это сделать, моторы начинают вам противостоять), и они автоматически замедляются, если Baxter чувствует в диапазоне своего охвата человека. Робот сконструирован так, чтобы работа с ним была достаточно естественна, интуитивна и безопасна. Впервые приблизившись к нему, мы нервничали, когда он подносил руку к нашим лицам, но беспокойство быстро исчезло, уступив любопытству.

Брукс показал нам несколько роботов за работой в демонстрационном зале. Роботы прямо на наших глазах нарушали парадокс Моравека – они находили и манипулировали множеством различных объектов с помощью «рук», на месте которых были захваты или присоски. Роботы совсем не так быстры, как хорошо обученный рабочий, действующий с полной скоростью, однако этого и не нужно. Большинство конвейеров и сборочных линий не работает на максимальной скорости, на которую способен человек; это приводило бы к слишком быстрому утомлению. У Baxter имеется несколько очевидных преимуществ над людьми. Он может работать весь день, и ему не нужно прерываться на сон, обед или кофе. Он не будет просить у работодателя медицинскую страховку или зарплату. А кроме того, он способен одновременно заниматься двумя не связанными между собой задачами; его руки могут работать независимо друг от друга.

Совсем скоро на сборочных линиях, складах и в офисах рядом с вами

После посещения Rethink и изучения работы Baxter в действии мы поняли, почему в начале 2012 года вице-президент компании Texas Instruments Реми Эль-Казан сказал: «Мы твердо убеждены в том, что рынок робототехники находится на поворотном пункте». И его слова находят немало подтверждений. Объем и разнообразие роботов, использующихся в компаниях, быстро расширяются, а ряд инноваторов и предпринимателей в последние годы сделали немало набегов на парадокс Моравека.[51]51
  Christopher Drew, “For iRobot, the Future Is Getting Closer”, New York Times, 2 марта 2012 г., http://www.nytimes.com/2012/03/03/technology/for-irobot-thefuture-is-getting-closer.html.


[Закрыть]

Kiva, еще одна молодая компания из Бостона, научила свои автоматы быстро, безопасно и эффективно перемещаться по складам. Роботы Kiva похожи на оранжевые металлические пуфики или на роботов R 2-D 2 из «Звездных войн», только расплющенных. Они носятся по складским помещениям примерно на высоте человеческого колена, уступая дорогу людям и друг другу. Поскольку они располагаются близко к земле, им не составляет труда пролезть под стеллажи, поднять их и отвезти работникам-людям. После того как рабочие забирают с полок стеллажей нужное, робот увозит полку, а его место занимает другой. Программа отслеживает местоположение продуктов, полок, роботов и сотрудников и дирижирует постоянным танцем автоматов Kiva. В марте 2012 года Kiva была куплена компанией Amazon – лидером в области развитой складской логистики – более чем за $750 миллионов.[52]52
  Danielle Kucera, “Amazon Acquires Kiva Systems in Second-Biggest Takeover”, Bloomberg, 19 марта 2012 г., http://www.bloomberg.com/news/2012–03–19/amazon-acquires-kiva-systems-in-second-biggest-takeover.html (по состоянию на 23 июня 2013 г.).


[Закрыть]

Boston Dynamics, еще один стартап из Новой Англии, сражается с парадоксом Моравека лицом к лицу. Эта компания строит роботов для поддержки американских войск в ходе полевых операций. Помимо прочего, это роботы умеют переносить тяжелые грузы по местности со сложным рельефом. Робот BigDog, напоминающий гигантского металлического мастифа с длинными тонкими ногами, способен взбираться на крутые склоны, удерживаться на скользком льду и делать массу других вещей, привычных для собак. Удержание равновесия на четырех опорных точках при движении по сложному ландшафту представляет собой непростую инженерную задачу, однако Boston Dynamics удалось добиться в этом неплохих результатов.

В качестве последнего примера прорыва в области роботехники можно рассмотреть Double – устройство, совершенно не похожее на BigDog. Double не бегает рысью по вражеской территории, а катается по ковровому покрытию офисов и больничным коридорам, держа на себе iPad. По существу, это перевернутый вверх ногами маятник с моторизированными колесами внизу и планшетом, прикрепленным к палке высотой около полутора метров. Double обеспечивает телеприсутствие – он позволяет оператору «обходить» отдаленные участки зданий, при этом видеть и слышать, что там происходит. Камера, микрофон и экран iPad служат глазами, ушами и лицом оператора, который видит и слышит все, что видит и слышит iPad. Сам по себе Double выполняет функцию ног, перенося всю конструкцию по зданию в ответ на команды оператора. Компания Double Robotics называет это «наиболее простым и элегантным способом оказаться в другой точке мира без необходимости туда лететь». Первая партия роботов Double по цене $2499 за единицу была распродана почти сразу после объявления об их выпуске осенью 2012 года.[53]53
  Marc Devidts, “First Production Run of Double has Sold out!”, 16 августа 2012 г., http://blog.doublerobotics.com/2012/8/16/welcome-double-update.


[Закрыть]

Следующий этап инноваций в области роботехники может нанести парадоксу Моравека серьезнейший удар, от которого тот больше не сможет оправиться. В 2012 году DARPA объявила о проведении еще одного конкурса; однако на этот раз должны были соревноваться не автомобили без водителя, а роботы. Конкурс DARPA Robotics Challenge (DRC) позволял оценить навыки в области умелого владения инструментами, мобильности, чувствительности сенсоров, телеприсутствия и многих других вопросов в этой области. Согласно информации на сайте департамента DARPA, занимающегося тактическими вопросами технологий,

первостепенная техническая цель DRC состоит в разработке наземных роботов, способных выполнять сложные задачи в опасных и неопределенных условиях среды, созданной человеком. Ожидается, что участники конкурса DRC сконцентрируют свою работу на роботах, способных использовать стандартные инструменты и оборудование, которые доступны в человеческой среде, начиная от ручных инструментов и заканчивая средствами передвижения, причем особое внимание уделят развитию адаптации к инструментам с широкими спецификациями.[54]54
  “DARPA robotics challenge”, n. d., http://www.darpa.mil/our_Work/Tto/Programs/darpa_robotics_challenge.aspx.


[Закрыть]

DARPA совместно с DRC обратилась к сообществу специалистов по роботехнике с просьбой построить и продемонстрировать функционирующие прототипы роботов-гуманоидов к концу 2014 года. Согласно изначальной спецификации, представленной агентством, роботы должны уметь управлять внедорожником, убирать завалы, блокирующие проезд, карабкаться по лестнице, закрывать вентиль и менять насос.[55]55
  DARPA, “Broad Agency Announcement DARPA Robots Challenge Tactical Technology Office”, 10 апреля 2012 г., http://www.fbo.gov/utils/view?id=74d674ab011d5954c7a46b9c21597f30.


[Закрыть]
Может показаться, что эти требования недостижимы, однако хорошо осведомленные коллеги (которые участвуют в конкурсе) уверили нас в том, что это вполне возможно. Для многих конкурс Grand Challenge 2004 был важнейшим элементом развития в постоянно ускоряющемся процессе разработки автономных автомобилей. Есть большая вероятность, что DRC позволит нам наконец-то забыть о парадоксе Моравека.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 | Следующая
  • 4.4 Оценок: 5

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации