Текст книги "Учение о бытии"
Автор книги: Георг Гегель
Жанр: Философия, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 13 (всего у книги 28 страниц)
Разрешение, которое дает Аристотель этим диалектическим построениям, заслуживает высокой похвалы и содержит в себе истинно умозрительные понятия о пространстве, времени и движении. Он противопоставляет бесконечной делимости (которая, поскольку она представляется осуществленною, тожественна бесконечному разделению на части, атомы), на которой основываются знаменитейшие из этих доказательств, непрерывность, свойственную одинаково и времени, и пространству так, что бесконечная, т. е. отвлеченная множественность оказывается содержащеюся в непрерывности лишь в себе, в возможности. Действительное по отношению к отвлеченной множественности, равно как и отвлеченной непрерывности, есть их конкретное, самое время и пространство, как по отношению к последним движение и материя. Отвлеченное есть лишь в себе или только в возможности; оно есть лишь момент некоторого реального. Бейль, находящий в своем Dictionnaire, art. Zenon, предлагаемое Аристотелем разрешение диалектики Зенона «жалким» (pitoyable), не понимает, чтó значит, что материя делима до бесконечности лишь в возможности; он возражает, что если материя делима до бесконечности, то она действительно содержит бесконечное число частей и есть таким образом бесконечность не в возможности, но бесконечность реально и действительно существующая. Между тем самая делимость есть лишь некоторая возможность, а не существование частей, и множественность вообще положена в непрерывности, лишь как момент, как снятая. Остроумный рассудок, в котором, впрочем, никто не превосходит и Аристотеля, также недостаточен для того, чтобы усвоить и обсудить его умозрительные понятия, как не в состоянии вышеприведенная низменность чувственного представления опровергнуть доказательства Зенона; этот рассудок заблуждается, признавая за нечто истинное и действительное такие мысленные вещи, отвлеченности, как бесконечное число частей; а это чувственное сознание неспособно возвыситься над эмпирическим вымыслом.
Кантово разрешение антиномии также сводится лишь к тому, что разум не может превзойти чувственного восприятия и должен брать явление, как оно есть. Это разрешение оставляет в стороне самое содержание антиномии, оно не достигает природы понятия ее определений, из коих каждое, взятое в отдельности, уничтожается и есть в себе лишь переход в свое другое, количество же есть их единство и тем самым их истина.
В. Непрерывная и дискретная величина1. Количество содержит в себе оба момента непрерывности и дискретности. Оно должно быть положено в обеих, как в своих определениях. Оно уже с самого начала есть их непосредственное единство, т. е. оно прежде всего положено лишь в одном из своих определений, в непрерывности, и есть таким образом непрерывная величина.
Иначе непрерывность есть один из моментов количества, который завершается лишь в другом, в дискретности. Но количество есть конкретное единство лишь постольку, поскольку оно есть единство различных моментов. Последние должны быть поэтому взяты также, как различные, но не для того, чтобы снова разрешиться в притяжение и отталкивание, но чтобы по своей истине остаться каждый в своем единстве с другим, т. е. в целом. Непрерывность есть лишь связное, созревшее единство, как единство дискретного; положенное так оно уже не есть момент количества, но все количество, – непрерывная величина.
2. Непосредственное количество есть непрерывная величина. Но количество вообще не есть нечто непосредственное; непосредственность есть здесь определенность, снятие которой есть она сама. Оно должно таким образом быть положено в своей имманентной определенности, которая есть одно. Количество есть дискретная величина.
Дискретность, как и непрерывность, есть момент количества, но есть также сама все количество, именно потому, что она есть момент внутри его, целого, и потому, как отличенное, не выделяется из него, из своего единства с другим моментом. Количество есть бытие вне себя в себе, и непрерывная величина есть это бытие вне себя, продолжающееся без отрицания, как сама себе равная связь. Дискретная же величина есть это бытие вне себя не непрерывное, прерываемое. Но с этим множеством одних не восстановляется вновь множество атомов и вообще пустота, отталкивание. Поскольку дискретная величина есть количество, ее дискретность сама непрерывна. Эта непрерывность в дискретном состоит в том, что одни суть равные между собою, или что они имеют одну и ту же единицу. Дискретная величина есть таким образом внебытие многих одних, как равных, положенное не как многие одни вообще, но как многие одной и той же единицы.
Примечание. Обычные представления о непрерывной и дискретной величине упускают из виду, что каждая из этих величин содержит в себе оба момента, как непрерывность, так и дискретность, и что их различие возникает лишь от того, какой из этих моментов есть положенная определенность, и какой – только сущая в себе. Пространство, время, материя и т. д., суть непрерывные величины, поскольку они суть отталкивания от себя, текучее исхождение из себя, которое вместе с тем не есть переход во что-либо качественно другое или отношение к нему. Они обладают абсолютною возможностью того, чтобы одно повсюду было в них положено, не как пустая возможность простого инобытия (например, если говорят, что было бы возможно, чтобы на месте этого камня стояло дерево); но они содержат принцип одного в самих себе, он есть одно из определений, из коих они образованы.
Наоборот, в дискретной величине не должно упускать из виду непрерывности; этот момент есть, как показано, одно, как единица.
Непрерывная и дискретная величины могут считаться видами количества, но лишь постольку, поскольку величина положена не под каким-либо внешним определением, а под определениями ее собственных моментов; обычный переход от рода к виду вводит в первый по каким-либо внешним для него основаниям разделения внешние определения. Притом непрерывная и дискретная величины еще не суть определенное количество; они суть лишь количество, как таковое, в каждой из его обеих форм. Они называются величинами лишь постольку, поскольку им вообще обще с количеством свойство иметь в нем определенность.
С. Ограничение количестваДискретная величина имеет, во-первых, принципом одно, во-вторых, есть множество одних, в третьих же она по существу непрерывна, есть одно вместе, как снятое, как единица, продолжение себя самого, как такового, при дискретности одного. Поэтому она положена, как одна величина, и ее определенность есть одно, которое есть одно, исключающее в этом положении и существовании, есть граница единицы. Дискретная величина, как таковая, непосредственно не должна быть ограничена; но как отличная от непрерывной, она есть некоторое существование и нечто, определение которого есть одно, и, как некоторое существование, первое отрицание и граница.
Эта граница кроме того, что она относится к единице и есть в ней отрицание, как одно, относится также к себе; она есть объемлющая, охватывающая граница. Граница отличается здесь прежде всего не от «нечто» своего существования, но, как одно, она есть непосредственно сам этот отрицательный пункт. Но бытие, которое здесь ограничено, есть существенно непрерывность, вследствие которой оно переходит за границу и за это одно и безразлично к ним. Таким образом реальное дискретное количество есть некоторое количество или определенное количество, количество, как существование и нечто.
Так как количество, будучи границею, включает в себе многие одни дискретного количества, то оно также полагает их, как снятые в нем; оно есть граница непрерывности вообще, как таковой, и потому здесь различие непрерывной и дискретной величины безразлично, или, правильнее, оно есть граница непрерывности как той, так и другой; обе переходят за нее, чтобы стать определенным количеством.
Вторая глава
ОПРЕДЕЛЕННОЕ КОЛИЧЕСТВО (QUANTUM)
Определенное количество, прежде всего с некоторым определением или границею вообще – есть в своей полной определенности число. Определенное количество разделяется далее, во-вторых, прежде всего на экстенсивное, в котором граница есть ограничение существующего множества, затем поскольку это существование переходит в бытие для себя, – на интенсивное определенное количество, степень, которое, как сущее для себя, и потому, как безразличная граница, также непосредственно внешнее, имеет свою определенность в другом. Как это положенное противоречие – быть определенным так просто в себе и иметь свою определенность вне себя и указывать на нее вне себя, – определенное количество переходит, в третьих, как положенное само по себе внешнее, в количественную бесконечность.
А. ЧислоКоличество есть определенное количество или, иначе, имеет границу; притом и как непрерывная, и как дискретная величина. Различие этих видов не имеет здесь никакого ближайшего значения.
Количество, как снятое бытие для себя, уже в себе и для себя безразлично к своей границе. Но вследствие того граница или свойство быть определенным количеством еще не безразлична к нему; ибо оно содержит внутри себя одно, абсолютную определенность, как свой собственный момент, который таким образом, как положенный в его непрерывности или единице, есть ее граница, остающаяся однако одним, коим она вообще стала.
Это одно есть таким образом принцип определенного количества, но как количественное одно. Тем самым оно, во-первых, есть непрерывное, единица; во-вторых, оно дискретно, оно есть сущее в себе (как в непрерывной величине) или положенное (как в дискретной величине) множество одних, которые равны между собою, обладают этою непрерывностью, имеют ту же единицу. В-третьих, это одно есть также отрицание многих одних, как простая граница, исключение своего инобытия из себя, определение себя в отличие от других определенных количеств. Тем самым одно есть α, относящаяся к себе, β, объемлющая и γ, исключающая другое граница.
Определенное количество, положенное вполне в этих определениях, есть число. Полное положение состоит в существовании границы, как множества, и потому в ее отличии от единицы. Число является поэтому дискретною величиною, но оно вместе с тем имеет непрерывность в единице. Поэтому оно есть определенное количество в его полной определенности, поскольку внутри его граница есть определенное множество, имеющее своим принципом одно, просто определенное. Непрерывность, в которой одно есть лишь в себе, лишь снятое – положенное, как единица, – есть форма неопределенности.
Определенное количество, лишь как таковое, ограничено вообще, его граница есть его отвлеченная, простая определенность. Но поскольку оно есть число, эта граница положена, как многообразная, в себе самой. Она содержит многие одни, составляющие ее существование, но содержит их не неопределенным образом, а в ней заключается определенность границы; граница исключает другое существование, т. е. другие многие, и объемлемые ею одни суть некоторое определенное множество, определенное число (Anzal), противоположность коему, как дискретности, как она есть в числе, есть единица, его непрерывность. Определенное число и единица суть моменты числа.
Относительно определенного числа надлежит еще ближе рассмотреть, каким образом многие одни, из которых оно состоит, заключены в границу; об определенном числе правильно говорится, что оно состоит из многих, так как одни в нем не сняты, а суть в нем, положенные лишь вместе с исключающею границею, относительно которой они безразличны. Но не такова она относительно них. При «существовании» отношение к нему границы выяснилось прежде всего так, что существование, как утвердительное, остается по сю сторону своей границы, а последняя, отрицание, находится вне, на своем краю; равным образом при многих одних перерыв их и исключение других одних является некоторым определением, падающим вне включенных одних. Но там уже выяснилось, что граница проникает существование, простирается так же далеко, как оно, и что поэтому «нечто» по своему определению ограничено, т. е. конечно. Так в количественном отношении число, например, сто, представляют так, что только сотое одно ограничивает многие таким образом, что они составляют сотню. С одной стороны это справедливо; но с другой стороны из сотни одних ни одно не имеет преимущества пред другими, так как они равны; каждое есть в равной мере сотое; поэтому они все принадлежат к той границе, вследствие которой число есть сотня; оно нуждается в каждом из них для своей определенности; прочие одни не образуют, стало быть, относительно сотого одного такого существования, которое как вне, так и внутри границы было бы от нее отлично. Определенное число не есть поэтому множество против включающего ограничивающего одного, но само составляет это ограничение, которое есть определенное количество, многие образуют одно число, одну пару, один десяток, одну сотню и т. д.
Ограничивающее одно есть, стало быть, определенность против другого, отличение одного числа от другого. Но это отличение не становится качественною определенностью, а остается количественным, падает лишь в сравнивающую внешнюю рефлексию; число, как одно, возвращается в себя и безразлично к другому. Безразличие числа против другого есть его существенное определение; оно образует его определенность в себе, но вместе с тем его собственную внешность. Оно есть таким образом цифровое (numerische) одно, как абсолютно определенное, которое вместе с тем имеет форму простой непосредственности, и для которого поэтому вполне внешне отношение к другому. Как одно, число есть, далее оно имеет определенность, поскольку оно есть отношение к другому, его моменты внутри его самого суть различия единицы и определенного числа, а последнее само есть множество одних, т. е. в себе самом эта абсолютная внешность. Это противоречие числа или, вернее, определенного количества внутри себя есть качество определенного количества, в дальнейших определениях которого это противоречие развивается.
Примечание 1-е. Величины пространственная и числовая рассматриваются, как два различных вида; первая для себя есть столь же определенная величина, как и вторая; их различие состоит лишь в различных определениях непрерывности и дискретности, а как определенные количества, они стоят на одной и той же ступени. Вообще говоря, геометрия в пространственной величине имеет предметом непрерывную величину, а арифметика в числовой величине – дискретную. Но при таком различии предмета они не обладают также равным способом и совершенством ограничения или определенности. Пространственная величина обладает определенностью лишь вообще; поскольку же она рассматривается, как просто определенное количество, она имеет нужду в числе. Геометрия, как таковая, не измеряет пространственных фигур, не есть искусство измерения, она лишь сравнивает их. И при ее определениях последнее исходит отчасти от равенства сторон, углов, от равного расстояния. Так, например, круг, основывающийся единственно на равенстве расстояний всевозможных его точек от центра, не требует для своего определения никакого числа. Эти покоящиеся на равенстве или неравенстве определения суть истинно геометрические. Но они недостаточны, и для других определений, например, треугольника, четырехугольника потребно число, которое в своем принципе, одном, содержит определенность для себя, а не определение при помощи чего-либо другого, т. е. при помощи сравнения. Пространственная величина, правда, находит в точке определенность, соответствующую одному; но точка, поскольку она выходит вне себя, становится другим – линиею; так как точка есть по существу лишь одно пространства, она в отношении становится непрерывностью, в которой точечность, определенность для себя, снята. Поскольку определенность для себя должна сохраниться в бытии вне себя, линия должна быть представляема, как множество одних, и граница, определение многих одних, возвратиться в себя, т. е. величина линии – равным образом и других пространственных определений – должна быть выражена числом.
Арифметика рассматривает числа и их фигуры или, правильнее, не рассматривает их, а действует над ними. Ибо число есть безразличная, косная определенность; оно должно быть приведено в действие и в отношение извне. Способы этого отношения суть виды счета (Rechnungsarten). Они излагаются в арифметике один после другого, и становится ясным, что один зависит от другого. Нить, руководящая их последовательностью, не выясняется, однако, в арифметике. Но из определения понятия самого числа легко вытекает то систематическое сопоставление, которое законно требуется изложением этих начал в учебниках. На эти основные определения должно здесь вкратце обратить внимание.
Число по своему принципу, одному, есть вообще нечто внешне сочетанное, просто аналитическая фигура, не содержащая в себе никакой внутренней связи. Так как оно есть лишь внешним образом произведенное, то каждый счет есть произведение чисел, считание или определеннее – сосчитывание. Различие этого внешнего произведения, совершающего постоянно одно и то же, может заключаться лишь во взаимном различении сосчитываемых чисел; такое различение само должно проистекать из чего-либо другого и из внешнего определения.
Качественное различие, составляющее определенность числа, есть, как мы видели, различие единицы и определенного числа; к ним сводится поэтому вся определенность понятия, которая может иметь место в видах счета. Различие же, которое присуще числам, как определенным количествам, есть внешнее тожество и внешнее различение, равенство и неравенство, причем эти рефлективные моменты имеют быть рассмотрены при категории различения, как определении сущности[13]13
Во второй части логики. – Прим. перев.
[Закрыть].
Далее нужно предпослать то заключение, что числа могут вообще быть производимы двумя способами, или через присовокупление, или через отделение из образованной уже совокупности; и так как каждое имеет место относительно образованного одним и тем же способом вида числа, то присовокуплению чисел соответствует то, что может быть названо положительным видом счета, а отделение – тому, что может быть названо отрицательным видом счета; определение же самого вида счета не зависит от этой противоположности.
1. После этих замечаний перейдем к изложению способов счета. Первое образование числа есть совокупление многих, как таковых, т. е. из коих каждое положено, лишь как одно – нумерация (счисление). Так как одни противоставлены одно другому, как внешние, то они изображаются в чувственном образе, и действие, через которое производится число, есть счет по пальцам, по точкам и т. п. Что такое четыре, пять и т. д., может быть лишь показано. Остановка на том, сколько сосчитано, поскольку граница есть нечто внешнее, есть нечто случайное, произвольное. Различение определенного числа и единицы, вступающее в силу при процессе счета, обосновывает собою систему – двоичную, десятиричную и т. д. – счисления; она в общем зависит от произвольного выбора за новую, постоянную единицу того или иного определенного числа.
Возникающие через нумерацию числа вновь подвергаются нумерации; и поскольку они положены так непосредственно, они определяются еще без всякого отношения одно к другому, безразлично относительно равенства и неравенства, в случайной относительной величине, – поэтому вообще, как неравные, – сложение. Что 7 и 5 составляют двенадцать, узнается таким путем, что к 7 принумеровывается еще 5 одних по пальцам или иным способом, результат чего удерживается затем в памяти наизусть, так как в этом случае нет ничего внутреннего. Равным образом мы узнаем, что 7*5=35, через счет по пальцам и т. п., прибавляя к одной семерке еще другую, повторяя это пять раз и затем также удерживая результат в памяти. Труд такой нумерации, нахождение сумм и произведений, совершается при помощи «одно да одно» или «единожды одно одно», чтó также можно выучить лишь наизусть.
Кант (во «Введении к критике чистого разума», V) считает предложение 7+5=12 синтетическим. «Правда, говорит он, можно бы было сначала подумать (конечно!), что это чисто аналитическое предложение, получаемое из понятия суммы семи и пяти по началу противоречия». Понятие суммы не означает ничего более, кроме того отвлеченного определения, что эти два числа должны быть совокуплены и притом, как числа, внешним образом, т. е. без помощи понятий, что начиная с семи нужно продолжать нумерацию до тех пор, покуда будут исчерпаны прибавляемые единицы, счетом до пяти; результат носит уже известное заранее название двенадцати. «Но, продолжает Кант, при ближайшем рассмотрении оказывается, что понятие суммы 7-ми и 5-ти не содержит ничего, кроме соединения двух чисел в одно, причем вовсе не мыслится о том, какое это одно число, соединяющее в себе оба»; …«сколько бы я ни расчленял мое понятие о такой возможной сумме, я все же не найду в ней двенадцати». Действительно, с мыслию о сумме, с расчленением понятия, переход от этой задачи к ее результату не имеет ничего общего; «должно выйти за пределы этих понятий, прибегнуть к помощи воззрения, пяти пальцев и т. п. и присоединить таким образом к понятию семи единиц данные в воззрении пять», прибавляет он. Конечно, пять дано в воззрении, т. е. есть совершенно внешнее сочетание произвольно повторенной мысли, одного; но и семь есть столь же мало понятие; здесь нет никаких понятий, за пределы которых выходят. Сумма 5-ти и 7-ми означает чуждое понятию соединение обоих чисел; этот столь чуждый понятию счет, начиная от семи, продолженный до тех пор, пока будет исчерпано пять, можно назвать сочетанием, синтезированием, также как нумерацию одних – синтезированием, которое, однако, имеет совершенно аналитическую природу, так как это связь совершенно искусственная (gemacht), в нее не привзошло ничего, что не было бы совершенно внешним. Требование сложить 7 с 5-ю относится к требованию нумерации вообще, как требование продолжить прямую линию к требованию провести прямую линию.
Насколько пусто выражение «синтез», настолько же пусто то определение, что он происходит а priori. Правда, счет не есть определение чувственное, остающееся а posteriori при принятии кантова определения воззрения, и счет есть, конечно, действие на почве отвлеченного воззрения, т. е. такого, которое определяется категориею одного, причем отвлекается как от всех прочих чувственных определений, так и от понятий. А priori есть вообще нечто неопределенное; чувственное определение – стремление, чувство и т. п. – также содержит в себе момент априорности, а с другой стороны пространство и время, как существующее, временное и пространственное, определяются а posteriori.
В связи с этим можно прибавить, что утверждение Канта о синтетическом свойстве основоначал чистой геометрии также мало основательно. Признавая, что многие из них в действительности суть аналитические суждения, он приводит в доказательство первого мнения лишь то основоположение, что прямая линия есть кратчайшее расстояние между двумя точками. «Именно мое понятие о прямизне не говорит ничего о величине, а только о качестве; понятие кратчайшего привнесено, стало быть, совершенно извне и никаким расчленением не может быть извлечено из понятий прямой линии; следовательно, здесь должно прибегнуть к пособию воззрения, которое делает синтез единственно возможным». Но тут идет речь не о понятии прямого вообще, а о прямой линии, а эта последняя есть уже нечто протяженное, наглядное. Определение же (или, если угодно, понятие) прямой линии состоит, конечно, ни в чем ином, как в том, что она есть только простая линия, т. е. что в своем выходе вне себя (так называемом движении точки) относится только к себе, что в ее протяжении не положено никакого различия определений, никакого отношения к какой-либо точке или линии вне ее: она есть только в себе простое направление. Эта простота есть конечно ее качество, и если по-видимому прямую линию трудно определить аналитически, то единственно вследствие определения простоты или отношения к себе самой и просто потому, что при определении рефлексия прежде всего имеется в виду преимущественно множественность, определение через другое; но просто для себя нисколько не трудно понять это определение простоты протяжения в себе, это отсутствие определения через другое; определение Евклида не содержит в себе ничего, кроме этой простоты. Переход же этого качества в количественное определение (кратчайшей), в котором должен состоять синтез, совершенно аналитический. Линия, как пространственная, есть количество вообще; простейшее, что может быть сказано о количестве, есть наименьшее, и это, высказанное о линии, есть кратчайшее. Геометрия может принять эти определения, как дополнение к определению; но Архимед в своих Книгах о шаре и цилиндре поступил всего целесообразнее, установив определение прямой линии, как аксиому, столь же правильно, как поступил Евклид, поставив в числе аксиом определение, касающееся параллельных линий, так как развитие его, чтобы стать настоящим определением, потребовало бы также не относящихся непосредственно к пространственности, но более отвлеченных качественных определений, каковы в применении к линии простота, равенство направления и т. п. Эти древние сообщили и своим наукам пластический характер, строго ограничивая свое изложение особенностями данного содержания, а потому исключая то, что было бы разнородно ему.
Понятие, которое Кант установил в учении о синтетических суждениях a priori – понятие различного, которое вместе с тем нераздельно, тожественного, которое само по себе есть нераздельное различие, принадлежит к тому, что в его философии есть великого и бессмертного. Правда, воззрению также присуще это понятие, так как последнее есть понятие, как таковое, и все в себе есть понятие, но определения, которые даны в приведенных примерах, не выражают его; напротив, число и счет чисел есть тожество и произведение тожества, которые суть лишь внешний, поверхностный синтез, единство единиц, которые в них не тожественны между собою, но положены лишь как внешние, раздельные для себя; в прямой линии то определение, что она есть кратчайшая между двумя точками, содержит в себе скорее лишь момент отвлеченно тожественного, не основываясь на различении в нем самом.
Я возвращаюсь от этого отступления к самому сложению. Соответствующий ему отрицательный вид счета, вычитание, есть также совершенно аналитическое отделение чисел, которые, как и в сложении, вообще определяются, лишь как неравные одно относительно другого.
2. Ближайшее определение есть равенство чисел, подлежащих нумерации. Вследствие этого равенства, число есть единица, и в нем выступает различие единицы и определенного числа. Умножение имеет задачею сосчитать вместе определенное число таких единиц, которые сами суть определенные числа. При этом безразлично, какое из обоих чисел полагается за единицу, и какое за определенное число, говорим ли мы четырежды три, где четыре есть определенное число, а три – единица, или, наоборот, трижды четыре. Выше уже указано, что первоначальное нахождение произведения совершается посредством простой нумерации, т. е. отсчитывания на пальцах и т. п.; позднее возможность непосредственного получения произведения основывается на собрании таких произведений, на таблице умножения и на выучивании ее наизусть.
Деление есть отрицательный вид счета по тому же определению различия. При этом также безразлично, какой из двух его факторов, делитель или частное, принять за единицу или за определенное число. Делитель принимается за единицу, а частное за определенное число, если задача деления полагается в том, чтобы узнать, сколько раз (определенное число) одно число (единица) содержится в данном числе; наоборот, делитель считается определенным числом, а частное единицею, когда требуется разделить данное число на данное определенное число равных частей и найти величину последних (единицы).
3. Оба числа, которые определяются одно в противоположность другому, как единица и определенное число, как числа, непосредственно противоположны и потому вообще неравны. Дальнейшее равенство есть равенство самых единицы и определенного числа; таким образом заканчивается движение к равенству определений, заключающихся в определении числа. Счисление согласно этому полному равенству есть возведение в степень (отрицательный вид этого счисления – извлечение корня) и именно прежде всего возвышение числа в квадрат, полная определенность счета в себе самом, при которой 1) многие слагаемые числа суть одни и те же и 2) их множество или определенное число само тожественно многократно положенному числу, единице. Более не оказывается никаких определений в понятии числа, которые представляли бы собою различие; не имеет места и дальнейшее приравнивание различия, заключающегося в числе. Возвышение в степени, высшие, чем квадрат, есть формальное продолжение того же процесса, причем отчасти – при четных показателях – происходит лишь повторение возвышения в квадрат, отчасти, при нечетных показателях, вновь выступает неравенство; при формальном же равенстве (напр., прежде всего при кубе) нового фактора как с определенным числом, так и с единицею, он является единицею против числа (квадрат, 3 против 3*3) неравное. Еще более при кубе четырех, где определенное число, 3, указывает на то, сколько раз число, составляющее единицу, множится само на себя, отлично от него. Тут даны определения сами по себе, как существенное различие понятия, определенное число и единица, которые должны быть приравнены для того, чтобы выход из себя вполне возвратился в себя. В только что изложенном заключается далее основание, почему с одной стороны решение уравнений высших степеней должно сводиться к решению квадратных уравнений, а с другой – почему уравнение нечетных степеней определяются лишь формально, и именно если корни рациональны, то последние могут быть найдены не иначе, как при помощи мнимых выражений, представляющих собою противоположность того, что суть и выражают собою корни. Арифметический квадрат, согласно вышесказанному, один содержит в себе простую определенность, вследствие чего уравнения высших формальных степеней должны быть приводимы к нему; подобно тому как в геометрии прямоугольный треугольник содержит в себе простую определенность в себе, выражающуюся в пифагоровой теореме, вследствие чего к ней также приводятся для полного определения все прочие геометрические фигуры.
Подвигающееся вперед, в порядке логически построенного суждения, преподавание излагает учение о степенях прежде учения о пропорциях; последние, правда, примыкают к различию единицы и определенного числа, составляющему определение второго вида счета, но они выступают за пределы единицы непосредственного количества, в котором единица и определенное число суть лишь моменты; дальнейшее определение по нему остается для него самого внешним. Число в отношении не есть уже непосредственное количество; оно имеет свою определенность в опосредовании; количественное отношение будет рассмотрено далее.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.