Электронная библиотека » Георг Гегель » » онлайн чтение - страница 20

Текст книги "Учение о бытии"


  • Текст добавлен: 24 марта 2016, 19:41


Автор книги: Георг Гегель


Жанр: Философия, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 20 (всего у книги 28 страниц)

Шрифт:
- 100% +

Лагранж отбросил эту симуляцию и вступил на истинно научный путь; его метод привел к правильному взгляду, так как этот метод состоит в том, чтобы разделить оба перехода, потребные для решения задачи, и каждый из них разработать и доказать для себя. Одна часть этого решения – остающаяся ближайшим образом при примере элементарной задачи нахождения подкасательной – теоретическая или общая часть, именно нахождение первой функции из данного уравнения кривой, регулируется сама для себя; она дает линейное отношение, т. е. отношение прямых линий, входящих в систему определения кривой. Другая часть решения есть нахождение тех связанных с кривою линий, которые состоят в таком отношении. Это достигается прямым путем (Théorie des fonct. anal. p. II chap. II), т. е. без характеристического треугольника, без того, чтобы прибегать к бесконечно малым дугам, ординатам и абсциссам и давать им определения dy и dx, т. е. членов этого отношения, и вместе с тем без того, чтобы непосредственно установлять их равенство с ординатою и подкасательною. Таково, говоря мимоходом, основное положение аналитической геометрии, которое исходит от координат или, чтó то же самое, механики – от параллелограмма сил, и именно потому не испытывает потребности задавать себе труд доказательства. Подкасательная полагается стороною треугольника, другие стороны которого суть ордината и соответствующая ей касательная. Последняя, как прямая линия, имеет своим уравнением р=aq (прибавление +b бесполезно для определения и обусловливается лишь любовью к обобщению); определение отношения p/q есть а, коэффициент q, который есть относительно первая функция уравнения, вообще же должно быть рассматриваемо, лишь как а=p/q, т. е., как сказано, как существенное определение прямой линии, составляющей касательную к кривой. Поскольку затем берется первая функция уравнения кривой, она (функция) есть также определение некоторой прямой линии; поскольку далее одна координата р первой прямой линии и у, ордината кривой, отожествляются, т. е. точка, в которой она, принимаемая за касательную, прикасается к кривой, есть равным образом исходная точка прямой, определяемой первою функциею кривой, то вопрос сводится к доказательству, что эта вторая прямая линия совпадает с первою, т. е. есть касательная; или выражаясь алгебраически, что если y=fx, a p=Fq и если у=р, т. е. fx=Fx, то f'x=F'q. A что принимаемая за касательную прямая и та прямая, которая определяется из уравнения его первою функциею, совпадают, что вторая прямая есть также касательная, – это показывается при помощи приращения i абсциссы и определяемого через развитие функции приращения ординаты. Здесь, следовательно, опять-таки выступает пресловутое приращение; но так как оно вводится для только что объясненной надобности, то и развитие функции при его помощи должно, конечно, считаться чем-то другим сравнительно с ранее упомянутым употреблением приращения для нахождения дифференциального уравнения и для характеристического треугольника. Допускаемое здесь употребление правомерно и необходимо; оно входит в круг геометрии, так как оно служит для геометрического определения касательной, как таковой, которое не может между касательною и кривою, с коею первая имеет общую точку, найти никакой прямой линии, также проходящей через эту точку. Ибо этим определением качество касательной и не-касательной сводится к различению величины, и касательною оказывается та линия, на которую с точки зрения лишь определения приходится наименьшая величина (die grössere Kleinheit). Эта по-видимому лишь относительно наименьшая величина не содержит в себе ничего эмпирического, т. е. зависящего от определенного количества, как такового, она положена качественно самым свойством формулы, если только различие момента, от которого зависит сравниваемая величина, есть различие степени; если последняя объемлет i и i2, и если i, долженствующее в конце концов означать число, изображается дробью, то i2 в себе и для себя менее, чем i, так что даже представление любой величины, которую можно приписать i, здесь излишне и даже неуместно. Поэтому и доказательство наименьшей величины не имеет ничего общего с бесконечно малым, которое тем самым здесь совершенно не выступает, Просто ради его красоты и ради ныне забываемой, но вполне заслуженной славы, я хочу здесь сказать о декартовом методе касательных; он имеет впрочем отношение к природе уравнений, о которых нужно сделать еще дальнейшее замечание. Декарт излагает этот самостоятельный метод, в котором искомое линейное определение также находится путем той же производной функции, в своей и в других отношениях оказавшейся столь плодотворною геометрии (liv. II. 357 и сл. Oeuvres compl. ed. Cousin t. V), в которой он научил великим основоположениям касательно природы уравнений и их геометрического построения, а с тем вместе и приложению анализа к геометрии. Проблема имеет у него форму задачи – провести прямые линии перпендикулярно к любому месту кривой, чем определяются подкасательные и т. п.; понятно то удовлетворение, которое он выражает по поводу своего открытия, касавшегося предмета господствовавшего в то время общего научного интереса, открытия, которое столь геометрично и тем самым столь возвышается над вышеупомянутыми методами простых правил его соперников: «я осмеливаюсь сказать, что эта самая полезная и самая общая из геометрических задач, не только из тех, которые я знаю, но даже из тех, которые я когда-либо желал знать в геометрии». Он основывает решение ее на аналитических уравнениях прямоугольного треугольника, образуемого ординатою точки кривой, в которой должна быть перпендикулярно проведена требуемая прямая линия, затем самою этою линиею, нормальною, и, в третьих, частью оси, отрезаемой ординатою и нормальною, поднормальною. Из известного уравнения кривой подставляется за сим в уравнение треугольника значение или ординаты или абсциссы так, что получается уравнение второй степени (причем Декарт показывает, как к тому же можно свести и кривые, уравнения коих содержат высшие степени), в котором дана лишь одна из переменных величин и притом в квадрате и в первой степени; квадратное уравнение, которое прежде всего является так называемым нечистым. За сим Декарт рассуждает, что если представить себе одну точку кривой точкою пересечения ее с кругом, то этот круг должен пересечь кривую еще в одной точке, и тем самым должны получиться для двух происходящих таким образом и неравных х два уравнения с теми же постоянными величинами и одинаковой формы, – или же лишь одно уравнение с разными значениями х. Но уравнения могут быть сделаны одним для одного треугольника, в котором гипотенуза есть перпендикулярная к кривой, нормальная, что представляется так, что обе точки пересечения становятся совпадающими, если круг становится касающимся к кривой. Но при этом устраняется и неравенство корня х или у квадратного уравнения. В квадратном же уравнении с двумя равными корнями коэффициент члена, содержащего неизвестное в первой степени, вдвое более одного корня, что дает уравнение, посредством которого находятся искомые определения. Этот способ должен считаться гениальным приемом истинно аналитической головы, которому далеко уступает совершенно ассерторически принимаемая пропорциональность подкасательной и ординаты долженствующим быть бесконечно малыми так называемым приращениям абсциссы и ординаты.

Найденное таким путем конечное уравнение, в котором коэффициент второго члена квадратного уравнения равен удвоенному корню или неизвестному, тожественно уравнению, находимому посредством дифференциального исчисления. Дифференцирование х2—ах – b=0 дает новое уравнение 2х – а=0; а дифференцирование х3—рх – q=0 дает 3x2—р=0. Но здесь должно заметить, что правильность таких производных уравнений отнюдь не самоочевидна. Из уравнения с двумя переменными величинами, которые оттого, что они переменны, еще не перестают быть неизвестными, возникает, как указано выше, лишь отношение, по тому приведенному выше простому основанию, что через подстановление функций возвышения в степень вместо самих степеней изменяется значение обоих членов уравнения, и остается еще неизвестным, сохраняется ли между ними уравнение при таком изменении значения. Уравнение dy/dx=Р выражает собою только то, что Р есть отношение, а затем dy/dx не приписывается никакого реального смысла. Об этом отношении =Р также еще неизвестно, какому другому отношению оно равно; оно получает значение лишь через уравнение пропорциональности. Так как было указано выше, что это значение, именуемое приложением, берется извне, эмпирически, то о сказанных выведенных путем дифференцирования уравнениях должно быть также известно извне, имеют ли они равные корни для того, чтобы знать, правильно ли полученное уравнение. Но на это обстоятельство в учебниках определительно не указывают; оно устраняется тем, что, приравнивая нулю уравнение первой степени, сейчас же получают =у, откуда затем при дифференцировании все же получается dy/dx, т. е. лишь отношение. Исчисление функций, конечно, должно во всяком случае иметь дело с функциями возвышения в степень, а дифференциальное исчисление – с дифференциалами, но отсюда еще не следует для себя, что если берутся дифференциалы или функции возвышения в степень каких-либо величин, то эти величины должны быть только функциями других величин. И кроме того, в теоретической части при выводе дифференциалов, т. е. функций возвышения в степень, еще вовсе не думают о том, что величины, с которыми приходится иметь дело после такого вывода, сами должны быть функциями других величин.

Еще можно заметить относительно опущения постоянных величин при дифференцировании, что оно имеет здесь тот смысл, что постоянная величина при равенстве корней безразлична для их определения, так как это определение исчерпывается коэффициентами второго члена уравнения. Так, в приведенном примере Декарта постоянная величина есть квадрат самого корня, следовательно, то последний может быть определен как из нее, так и из коэффициентов, поскольку она, как и коэффициенты, есть функция корней уравнения. В обычном изложении устранение связанной с прочими членами посредством знаков + и – постоянной величины достигается простым механизмом приема, состоящего в том, что для нахождения дифференциала сложного выражения дается приращение лишь переменным величинам, и полученное таким образом выражение вычитается из первоначального. О значении постоянных величин и их опущения, поскольку они сами суть функции и являются нужными или ненужными по этому определению, не поднимается и речи.

С опущением постоянных величин связано такое же замечание по поводу названий дифференцирования и интегрирования, какое ранее было сделано по поводу выражений конечного и бесконечного, а именно что в их определении заключается скорее противоположность того, что выражается этими словами. Дифференцирование означает положение разностей; но через дифференцирование, напротив, уравнение приводится к меньшему объему, опущением постоянной величины устраняется один из моментов определенности; как было указано, корни переменных величин приравниваются, следовательно разность их снимается. При интегрировании же постоянная величина снова должна быть прибавлена; уравнение тем самым интегрируется, но в том смысле, что ранее снятая разность корней снова восстановляется, т. е. что положенное равным дифференцируется. Обычный способ выражения приводит к тому, что существенная сторона дела остается в тени, и все сводится к подчиненной точке зрения, чуждой этой стороне дела, точке зрения отчасти бесконечно малой разности, приращения и т. п., отчасти просто различия между данною и производною функциею, без принятия во внимание специфического, т. е. качественного различения.

Другая главная область, к которой применяется дифференциальное исчисление, есть механика; о значении различных степенных функций, которые получаются из элементарных уравнений ее предмета, движения, было уже попутно упомянуто; я прямо принимаю их здесь. Уравнение, т. е. математическое выражение ложно равномерного движения с=s/t или s=ct, в котором пройденные пространства относятся к протекшим временам, как эмпирическая единица с, означающая величину скорости, не дает никакого повода к дифференцированию; коэффициент с уже вполне определен и известен, и относительно него не может иметь места никакое дальнейшее степенное развитие. Как анализируется s=at2, уравнение падения тел, было уже указано; первый член анализа ds/dt=2at понимается и словесно и реально так, что он должен быть членом суммы (каковое представление мы уже устранили), одною частью движения, которому должна быть присуща сила инерции, т. е. ложно равномерной скорости, таким образом, что в бесконечно малые промежутки времени движение совершается равномерно, а в конечные промежутки времени, т. е. в действительности, неравномерно. Конечно f's=2at; значение а и t известно, равно как тем самым положено определение скорости равномерного движения; так как а=s/t2, то вообще 2at=2s/t; но тем самым мы ни мало не приобретаем дальнейшего знания; лишь ложное предположение, что 2at есть часть движения, как суммы, дает здесь ложную видимость физического предложения. Самый множитель а, эмпирическая единица – определенное количество, как таковое – приписывается тяготению; но если пускается в ход категория силы тяготения, то следовало бы скорее сказать, что именно целое s=at2 есть действие или, правильнее, закон тяготения. Тому же соответствует и выведенное из ds/dt=2at предложение, что если бы прекратилось действие тяготения, то тело со скоростью, приобретенною в конце своего падения, прошло бы пространство вдвое большее пройденного во время, равное времени его падения. Здесь мы встречаем и саму для себя превратную метафизику; конец падения или конец части времени, в которое падает тело, есть всегда сам еще часть времени; если бы он не был такою частью, то наступил бы покой и следовательно – отсутствие скорости; скорость может быть измеряема лишь по пространству, пройденному в некоторую часть времени, а не в конце ее. Если же, наконец, и в других отраслях физики, которые вовсе не имеют дела с движением, например относительно света (за исключением того, что называется его распространением в пространстве) и количественных определений цветов, прибегают к приложению дифференциального исчисления, и первая производная функция квадратной функции именуется и здесь скоростью, то на это следует смотреть как на еще более неуместный формализм вымышляемого существования.

Движение, изображаемое уравнением s=at2, мы находим, говорит Лагранж, на опыте в падении тел; простейшее следующее движение должно бы было иметь уравнение s=ct3, но в природе такого движения не оказывается; мы не знаем, что мог бы означать коэффициент с. Как бы то ни было, есть однако движение, уравнение которого есть s3=at2 – кеплеров закон движения тел солнечной системы; вопрос о том, что должна означать здесь первая производная функция 2at/3s2, и дальнейшее прямое исследование этого уравнения через дифференцирование, нахождение законов и определений этого абсолютного движения с той исходной точки зрения должно бы конечно явиться интересною задачею, в решении которой анализ проявил бы себя в достойном блеске.

Таким образом для себя приложение дифференциального исчисления к элементарным уравнениям движения не представляет никакого реального интереса; формальный же интерес обусловливается общим механизмом исчисления а. Но иное значение получает разложение движения в отношении определения его траектории; если последняя есть кривая, и ее уравнение содержит высшие степени, то требуется переход от прямолинейных функций возвышения в степень к самим степеням, и поскольку первые должны быть выведены из первоначального уравнения движения, содержащего фактор времени, с устранением времени, то этот фактор должен быть ограничен теми низшими функциями, из коих могут быть получены эти уравнения линейных определений. Эта сторона затрагивает интерес другой части дифференциального исчисления.

Предыдущее изложение имело целью выяснить и установить простое специфическое определение дифференциального исчисления и привести тому некоторые элементарные примеры. Это определение оказалось состоящим в том, что для уравнения степенной функции находится коэффициент, так наз. первая (производная) функция, и что то отношение, которое она собою представляет, обнаруживается в моментах конкретного предмета, причем полученным таким образом равенством между обоими отношениями определяются сами эти моменты. Равным образом надлежит по поводу принципа интегрального исчисления вкратце рассмотреть, что получается для его специфического конкретного определения из его приложения. Взгляд на это исчисление упрощается и исправляется уже тем, что оно не признается более методом суммирования, как оно было названо в противоположность дифференцированию, существенным ингредиентом которого считается приращение, чем оно вводилось в существенную связь с формою ряда. Задача интегрального исчисления прежде всего столь же теоретическая или скорее формальная, как и дифференциального исчисления, но при этом обратная последнему; в первом случае исходят от функции, которая рассматривается, как производная, как коэффициент первого возникающего через развитие еще неизвестного уравнения члена, и через нее должна быть найдена первоначальная степенная функция; та функция, которая в естественном порядке развития рассматривается как первоначальная, здесь имеет характер производный, а та, которая ранее считалась производною, есть здесь данная или вообще первоначальная. Формальная сторона этого действия является уже предрешенною дифференциальным исчислением, так как последнее вообще установляет переход и отношение первоначальной функции к возникающей путем ее развития. Если при этом отчасти для того, чтобы подставить ту функцию, от которой должно исходить, отчасти для осуществления перехода ее к первоначальной функции во многих случаях оказывается необходимым прибегнуть к форме ряда, то нужно прежде всего твердо помнить, что эта форма, как таковая, не имеет никакой непосредственной связи с собственным принципом интегрирования.

Но другою стороною задачи этого исчисления является с точки зрения формального действия его приложение. Последнее и является само задачею узнать – в вышеуказанном смысле – то значение, которое свойственно первоначальной функции, рассматриваемой с точки зрения данной функции, принимаемой за первую (производную) и относимой к особому предмету. Само по себе это учение могло бы, по-видимому, войти вполне в состав дифференциального исчисления; но есть дальнейшее обстоятельство, вследствие которого дело оказывается не так просто. Именно поскольку в этом исчислении оказывается, что в производной функции уравнения кривой получается линейное отношение, то тем самым признается, что интегрирование этого отношения дает уравнение кривой в отношении абсциссы и ординаты; или если дано уравнение кривой поверхности, то дифференцирование уже научает значению производной функции такого уравнения, именно что в этой функции ордината представляет функцию абсциссы, стало быть, уравнение кривой линии.

Но тут возникает вопрос, какой из моментов, определяющих предмет, дан в самом уравнении, ибо аналитическое исследование может исходить лишь от данного а и от него переходить к прочим определениям предмета. Дано, например, не уравнение кривой поверхности а, или происходящего через ее вращение тела, или ее дуга, но лишь отношение абсциссы и ординаты в уравнении самой кривой линии. Переходы от таких определений к этому уравнению не составляют поэтому предмета дифференциального исчисления, найти такие отношения есть дело интегрального исчисления.

Но, далее, было уже показано, что дифференцирование уравнения с многими переменными величинами дает развитие степени или дифференциальные коэффициенты, не как уравнение, а только как отношение; задача состоит в том, чтобы в моментах предмета найти для этого отношения, которое есть производная функция, другое равное ему. Напротив, предмет интегрального исчисления есть самое отношение первоначальной к производной в этом случае данной функции, и задача состоит в том, чтобы выяснить значение искомой первоначальной функции в предмете данной производной или, правильнее, так как это значение, например, кривая поверхность или выпрямляемая, представляемая прямою кривая линия и т. п., уже высказано в задаче, в том, чтобы показать, что такое определение может быть найдено через некоторую первоначальную функцию, а также какой момент предмета должен быть принят для исходной (производной) функции.

Обычный метод, пользующийся представлением бесконечно малой разности, легко справляется с делом; для квадратуры кривой он принимает бесконечно малый прямоугольник, произведение ординаты на элемент, т. е. на бесконечно малую часть абсциссы, за трапецию, имеющую одною своею стороной бесконечно малую дугу, противоположную сказанной бесконечно малой части абсциссы; это произведение и интегрируется в том смысле, чтобы интеграл суммы бесконечно многих трапеций дал искомую поверхность, т. е. конечную величину ее элемента. Точно также он образует из бесконечно малой дуги и соответствующих ей ординаты и абсциссы прямоугольный треугольник, в котором квадрат этой дуги считается равным сумме квадратов обоих других бесконечно малых, интегрирование которых и дает конечную дугу.

Этот прием опирается, как на свое предположение, на то общее открытие, которое лежит в основе этой отрасли анализа, имеющее здесь тот смысл, что квадратура кривой, выпрямленная дуга и т. д. находятся к известной данной в уравнении кривой функции в отношении так наз. первоначальной функции к производной. Задача состоит в том, чтобы узнать, если известная часть математического предмета (напр., кривой линии) принимается за производную функцию, какая другая его часть выражается соответствующею первоначальною функциею. Известно, что если данная в уравнении кривой функция ординаты принимается за производную функцию, то соответственная ей первоначальная функция есть выражение величины отрезанной этою ординатою и кривою плоскости, что если принимается за производную функцию известное определение касательной, то первоначальная функция выражает величину соответствующей этому определению дуги и т. д.; но что эти отношения – одно первоначальной функции к производной, и другое величин двух частей или атрибутов математического предмета – образуют пропорцию, узнать и доказать этого не считает нужным тот метод, который пользуется бесконечно малыми и механическими действиями над ними. Является уже своеобразною заслугою остроумия нахождение вне уже известных результатов того, что некоторые и именно такие-то стороны математического предмета находятся в отношении первоначальной и производной функции.

Из этих обеих функций производная или, как она была определена, функция возвышения в степень, есть в интегральном исчислении данная; а первоначальная должна быть выведена из нее путем интегрирования. Но первая дана не непосредственно, равно как не дано для себя, какую часть математического предмета следует считать за производную функцию, дабы через приведение ее к первоначальной найти другую часть или определение требуемой задачею величины. Обычный – метод, который, как сказано, сейчас же представляет известные части предмета, как бесконечно малые, в форме производной функции, находимой через дифференцирование первоначально данного уравнения предмета (напр., при выпрямлении кривой бесконечно малые абсциссы и ординаты), но зато принимает такие части, которые можно привести в связь с предметом задачи (в примере дуги), представляемом так же, как бесконечно малый, установленную элементарною математикою, вследствие чего, если эти части известны, то определяется и та часть, величина которой есть искомое; так, для выпрямления кривой пользуются вышеуказанными тремя бесконечно малыми, соединяемыми в уравнение прямоугольного треугольника, для ее квадратуры – ординатою, соединяемою с бесконечно малыми абсциссою в произведение, причем поверхность совершенно арифметически считается произведением линий. Переход от таких так называемых элементов поверхности, дуги и т. п. к величине самих поверхностей, дуги и т. п., считается затем лишь восхождением от бесконечного выражения к конечному или суммою бесконечно многих элементов, из которых должна состоять искомая величина.

Можно поэтому сказать лишь поверхностно, что интегральное исчисление есть только обратная, но вообще более трудная проблема дифференциального исчисления; реальный же интерес интегрального исчисления направляется напротив исключительно на взаимное отношение первоначальной и производной функции в конкретных предметах.

Лагранж и в этой части исчисления приложил столь же мало старания к разрешению трудности проблемы простым способом, основанным на этих прямых предположениях. Для разъяснения сущности дела полезно привести небольшое число примеров с целью ближайшего ознакомления с его приемом. Он ставит себе задачею доказать для себя, что между частными определениями некоторого математического целого, напр., кривой линии, существует отношение первоначальной к производной функции. Но этого нельзя достигнуть в рассматриваемой области прямым путем, основанным на природе самого отношения, которое в математическом предмете приводит в связь кривые линии с прямыми, линейные протяжения и их функции с поверхностными протяжениями и их функциями и т. д., т. е. качественно различное: поэтому определение можно понимать, лишь как средину между бóльшим и меньшим. Тем самым мы вновь возвращаемся к форме приращения с + и —, и бодрое: développons вступает в свою силу; но уже ранее было указано, что приращения имеют здесь лишь арифметическое, конечное значение. Из соображения того условия, что искомая величина более, чем один легко находимый предел, и менее, чем другой, выводится, например, что функция ординаты есть первая производная функция функции плоскости.

Выпрямление прямых по способу Лагранжа, исходящего при этом от принципа Архимеда, представляет тот интерес, что оно обнаруживает нам перевод архимедова метода на язык нового анализа, что позволяет бросить взгляд на внутренний и истинный смысл механически производимого другим путем действия. Этот способ по необходимости аналогичен вышеуказанному способу; архимедов принцип, по которому дуга кривой более, чем соответствующая ей хорда, и менее, чем сумма двух касательных, проведенных к конечным точкам дуги, поскольку она заключена между этими двумя точками и точкою пересечения касательных, не дает прямого уравнения. Переводом этого архимедова основного определения в новую аналитическую форму служит изобретение такого выражения, которое должно быть для себя простым основным уравнением, так как эта форма ставит лишь требование движения в бесконечность между бóльшим и меньшим, постоянно сохраняющими определенную величину, каковой переход постоянно дает лишь новые большее и меньшее, хотя во все более тесных пределах. При помощи формализма бесконечно малых сейчас же получается уравнение dz2=dx2+dy2. Изложение Лагранжа, исходящее от вышеуказанного основоположения, обнаруживает напротив, что величина дуги есть первоначальная функция некоторой производной функции, характеризующий которую член сам есть функция отношения производной функции к первоначальной функции ординаты.

Так как в способе Архимеда так же, как впоследствии в кеплеровом исследовании предметов стереометрии, выступает представление бесконечно малых, то это часто служило авторитетом для такого употребления этого представления, какое делается в дифференциальном исчислении, без принятия в соображение имеющих тут место своеобразия и различия. Бесконечно малое означает прежде всего отрицание определенного количества, как такового, т. е. так называемого конечного значения, законченной определенности, присущей определенному количеству, как таковому.

Также и в последующих знаменитых методах Валериуса, Кавальери и др., основанных на рассмотрении отношений геометрических предметов, то основное определение, по которому определенное пространство, как таковое, поставлено для этой цели в ряд с определениями, рассматриваемыми ближайшим образом, лишь как отношения, и они должны быть поэтому признаваемы за неимеющие величины (nicht-grosses). Ho тем самым не признается и не выдвигается то утвердительное, которое находится за просто отрицательным определением, и которое ранее оказалось, говоря отвлеченно, качественною определенностью величины, состоящею более определенным образом в степенном отношении; отчасти же, поскольку это отношение само опять-таки включает в себе множество ближе определенных отношений, как, например, степени и функции ее развития, то они вновь должны быть обоснованы на общем и отрицательном определении того же бесконечно малого и выведены из него. В вышеприведенном изложении Лагранжа найдено то определенное утвердительное, которое свойственно архимедову способу изложения задачи, а тем самым приведен в свои надлежащие пределы прием, коему было присуще движение в бесконечность. Величие нового изобретения для себя и его способность разрешать до того времени неразрешимые задачи, а ранее разрешимые разрешать более простым способом, должны быть приписаны исключительно открытию отношения первоначальной к производной функции и тех частей математического целого, которые состоят в таком отношении.

Приведенных соображений достаточно для того, чтобы выяснить то своеобразие в отношении величин, которое составляет предмет рассматриваемого ныне особого вида исчисления. Эти соображения можно было ограничить простыми задачами и способами их решения; и не соответствовало бы ни цели определения понятия, которое имелось здесь единственно в виду, ни силам автора обозреть весь объем т. наз. приложения дифференциального и интегрального исчисления и распространить индукцию, лежащую в основе указанного ею принципа, на все задачи и их решения. Но изложенное достаточно показало, что как каждому особому способу исчисления свойственна особая определенность или особое отношение величины к его предмету, и что как этот особый способ составляет сложение, умножение, возвышение в степень и извлечение корня, исчисление логарифмов и рядов и т. п., так то же справедливо о дифференциальном и интегральном исчислении; для того, что относится к этому исчислению, всего уместнее было бы название отношения степенной функции и функции ее развития или возвышения в степень, так как оно всего ближе к пониманию природы дела. Но как действие по другим отношениям величины, напр., сложение и т. п., также вообще употребляется при этом исчислении, так к нему применяются и логарифмы, отношения окружности и ряды в особенности для того, чтобы сделать удобнее выражение при потребных действиях вывода первоначальных из производных функций.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | Следующая
  • 0 Оценок: 0

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации