Электронная библиотека » Сергей Мусский » » онлайн чтение - страница 36


  • Текст добавлен: 3 октября 2013, 17:48


Автор книги: Сергей Мусский


Жанр: Биографии и Мемуары, Публицистика


сообщить о неприемлемом содержимом

Текущая страница: 36 (всего у книги 46 страниц)

Шрифт:
- 100% +
ЭМИЛЬ ФИШЕР
(1852—1919)

Известный химик Рихард Вильшеттер считал Фишера «не имеющим равных классиком, мастером органической химии, как в области анализа, так и в области синтеза, а в личностном отношении прекраснейшим человеком». В его честь Германское химическое общество учредило медаль Эмиля Фишера. Немецкий ученый создал крупную научную школу. Среди его учеников – О. Дильс, А. Виндаус, Ф. Прегль, О. Варбург.

Немецкий химик-органик Герман Эмиль Фишер родился 9 октября 1852 года в Ойскирхене, маленьком городке вблизи Кельна, в семье Лоренца Фишера, преуспевающего коммерсанта, и Юлии Фишер (в девичестве Пенсген). До поступления в государственную школу Вецлара и гимназию Бонна он в течение трех лет занимался с частным преподавателем. Весной 1869 года он с отличием окончил боннскую гимназию.

Хотя Эмиль надеялся на академическую карьеру, он согласился в течение двух лет работать в отцовской фирме, но проявил к делу так мало интереса, что весной 1871 года отец направил его в Боннский университет. Здесь он посещал лекции известного химика Кекуле, физика А. Кундта и минералога П. Грота. В значительной степени под влиянием Кекуле, уделявшего мало внимания лабораторным занятиям, интерес к химии у Фишера стал ослабевать, и он потянулся к физике.

В 1872 году по совету своего кузена, химика Отто Фишера, он перешел в Страсбургский университет. В Страсбурге под влиянием одного из профессоров, молодого химика-органика Адольфа Байера, у Фишера вновь возник интерес к химии. Вскоре Фишер окунулся в химические исследования и был замечен после открытия фенилгидразина (маслянистой жидкости, используемой для определения декстрозы), вещества, которое было им использовано позднее для классификации и синтеза сахаров. После получения докторской степени в 1874 году он занял должность преподавателя в Страсбургском университете.

Когда в следующем году Байер получил пост в Мюнхенском университете, Фишер дал согласие стать его ассистентом. Финансово независимый и освобожденный от административных и педагогических обязанностей, Фишер смог сконцентрировать все свое внимание на лабораторных исследованиях. В сотрудничестве со своим кузеном Отто он применил фенилгидразин для изучения веществ, используемых в производстве органических красителей, получаемых из угля. До проведения исследований Фишером химическая структура этих веществ определена не была.

Открытие, синтез и применение фенилгидразина Фишер позднее описал в своей докторской диссертации. Несмотря на то что Фишер в течение двенадцати лет страдал от последствий токсического действия фенилгидразина, он назвал его своей «первой и самой продолжительной химической привязанностью».

В 1878 году Эмилю Фишеру было присвоено ученое звание доцента. На следующий год он уже заведовал аналитическим отделением в Мюнхенском университете. Тогда же Эмиль и Отто Фишер установили строение розанилина и парарозанилина и доказали их связь с трифенилметаном, для получения которого предложили новый способ – диазотирование паралейканилина.

С 1882 года Эмиль провел систематическое исследование соединений пуриновой группы. При обработке органических кислот пятихлористым фосфором были получены соответствующие хлориды, которые обладали повышенной реакционной способностью и могли легко превращаться в производные органических кислот. Так, Фишер сумел получить из мочевой кислоты трихлорпурин, а при последующей его обработке едким кали и йодистым водородом – ксантин. При метилировании ксантина Фишер получил кофеин – бесцветное, горькое на вкус кристаллическое вещество, которое содержится в зернах кофе и листьях чая. Синтезированное вещество было полностью идентично природному кофеину, оно оказывало такое же возбуждающее действие, как и природный продукт.

Успехи Фишера постепенно стали известны и получили признание за пределами Германии. В 1883 году ему предложили возглавить исследовательскую лабораторию в компании «Баденские анилиновые и содовые фабрики» с фантастическим годовым жалованием в 100000 марок. Однако Фишер отклонил это предложение, так как для него «…была привлекательнее… академическая деятельность, предоставляющая полную свободу для научной работы».

Эмиль принял предложение занять должность профессора в Эрлангене. На пути в этот город он разговорился с профессором Якобом фон Герлах и его дочерью Агнес. Фишер тогда и подумать не мог, что в конце февраля 1888 года Агнес станет его женой. В конце того же года у Фишеров родился сын. По немецкому обычаю ему дали несколько имен – Герман-Отто-Лоренц.

В 1885 году Фишер стал профессором Вюрцбургского университета. Несмотря на перемены, которые внесли в жизнь Фишера женитьба и рождение ребенка, интенсивная исследовательская деятельность его не прекращалась. Разработав и усовершенствовав ряд методов синтеза и анализа органических соединений, великий мастер эксперимента сумел добиться больших успехов.

Исследование сахаров Фишер с учениками начал в 1884 году и продолжал до 1899-го. Путем конденсации глицеринового альдегида Фишер и Тафель получили смесь сахарообразных веществ, из которой в 1890 году с помощью фенилгидразина выделили альфа– и бета-акрозу.

После синтеза акрозы, сотрудники Фишера начали осуществлять сложные и многоступенчатые синтезы природных сахаров – маннозы, фруктозы и глюкозы. Эти успехи принесли Фишеру и международное признание. В 1890 году Английское химическое общество наградило его медалью Дэви, а научное общество в Упсале избрало своим членом-корреспондентом. В том же году Немецкое химическое общество пригласило ученого выступить в Берлине с докладом об успехах в области синтеза и изучения сахаров.

Как указывается в книге «Биографии великих химиков»: «Исследования природы сахаров позволили выяснить строение моносахаридов. Фишер и другие химики показали, что моносахариды можно представить как продукты окисления многоосновных спиртов. Исходя из этого, можно разделить моносахариды на альдозы и кетозы. Фишер открыл взаимодействие моносахаридов с фенилгидразином и впервые ввел эту одну из важнейших реакций в химию сахаров. Это позволило Фишеру объяснить пространственное строение моносахаридов и тем самым продолжить разработку систематики углеводов, углубляя в то же время стереохимические представления. Циангидрин (оксинитрил) ученый использовал также для своих замечательных синтезов сахаров».

Продолжая работать с соединениями пуриновой группы, Фишер исследовал такие соединения, как кофеин, теобромин (алкалоид) и компоненты экскрементов животных, в частности, мочевую кислоту и гуанин, который, как он обнаружил, получается из бесцветного кристаллического вещества, названного им пурином. К 1899 году Фишер синтезировал большое число производных пуринового ряда, включая и сам пурин (1898). Пурин – важное соединение в органическом синтезе, так как оно, как было открыто позднее, является необходимым компонентом клеточных ядер и нуклеиновых кислот.

В 1892 году Фишер стал директором Химического института Берлинского университета и занимал этот пост до самой смерти. Научные успехи окрыляли Фишера, но все больше и больше удручали семейные невзгоды. Мальчики часто болели, а вскоре после рождения третьего сына в 1895 году жена умерла от менингита.

Но горе не сломило ученого. Поручив заботу о сыновьях преданной экономке и опытным учителям, Фишер с головой ушел в работу. Расширив область исследования от сахаров до ферментов, он открыл, что ферменты реагируют только с веществами, с которыми они имеют химическое родство. Проводя исследования с белками, он установил число аминокислот, из которых состоит большинство белков, а также взаимосвязь между различными аминокислотами.

В 1902 году Фишеру была вручена Нобелевская премия по химии «в качестве признания его особых заслуг, связанных с экспериментами по синтезу веществ с сахаридными и пуриновыми группами». Открытие Фишером гидразиновых производных, как оказалось, явилось блестящим решением проблемы получения сахаров и других соединений искусственным путем. Более того, его метод синтеза гликозидов внес определенный вклад в развитие физиологии растений. Говоря об исследованиях сахаров, Фишер в нобелевской лекции заявил, что «постепенно завеса, с помощью которой природа скрывала свои секреты, была приоткрыта в вопросах, касающихся углеводов. Несмотря на это, химическая загадка жизни не может быть решена до тех пор, пока органическая химия не изучит другой, более сложный предмет – белки».

Продолжая изучение строения белковых тел, Фишер синтезировал пептиды (комбинации аминокислот) и классифицировал более сорока типов белков, основываясь на количестве и типах аминокислот, образовавшихся при гидролизе (химическом процессе разрушения, включающем расщепление химической связи и присоединение элементов воды). В 1907 году ученый получил синтетически октадекапептид, построенный из восемнадцати молекул различных аминокислот.

В последние годы жизни кроме белков Фишер изучал дубящие вещества и депсиды – эфирообразные соединения двух молекул ароматических оксикарбоновых кислот.

Свои открытия ученый оформил в нескольких монографиях: «Исследования аминокислот» (1906), «Введение в изготовление органических препаратов» (1906), «Исследование углеводов и ферментов» (1909—1919), «Полипептиды и белки» (1919).

В 1912 году Немецкое химическое общество учредило медаль Эмиля Фишера, которой раз в два года награждаются ученые за выдающиеся исследования по органической химии. В том же году для исследовательской работы Фишера в Берлин-Далеме была построена самая большая в мире химическая лаборатория. В 1914 году он получил оборудование для создания Института исследований угля кайзера Вильгельма в Мюльгейме.

С началом Первой мировой войны для Фишера наступили тяжелые дни: из трех сыновей остался в живых лишь один – старший сын Герман, ставший профессором биохимии Калифорнийского университета в Беркли.

К личным переживаниям присоединились трудности с исследовательской деятельностью: работа в лаборатории была приостановлена из-за того, что не хватало химикатов. Тяжелая, неизлечимая болезнь все чаще давала о себе знать и отнимала последние силы. После длительных контактов в лаборатории с фенилгидразином у Фишера образовались хроническая экзема и желудочно-кишечные нарушения. Фишер отчетливо осознавал, что его ждет, но он не страшился смерти. Он спокойно привел в порядок все свои дела, закончил работу над рукописями, успел завершить и свою автобиографию, хотя и не дождался ее выхода в свет. Эмиль Фишер скончался 15 июля 1919 года.

СВАНТЕ АРРЕНИУС
(1859—1927)

История возникновения теории электролитической диссоциации связана с именем шведского физико-химика Аррениуса. Он был разносторонним ученым: его перу принадлежит более двухсот научных работ в области химии, физики, геофизики, метеорологии, биологии, физиологии.

Сванте Август Аррениус родился 19 февраля 1859 года в имении Вейк, расположенном близ Упсалы, на берегу озера Малар. Его отец служил управляющим имения и одновременно работал казначеем Упсальского университета. Уже в три года мальчик научился читать! Сначала он обучался в кафедральном училище, а затем, по просьбе Сванте, отец перевел его в реальную гимназию. Значительно опережавший в развитии сверстников, мальчик скучал на уроках.

Наконец, окончив гимназию, Сванте поступил в Упсальский университет. Основной его специализацией стала физика, а дополнительной – математика. Аррениус очень много занимался самостоятельно и вскоре создал собственный стиль работы, который значительно выделял его среди других физиков Упсальского университета того времени. Он не сработался с Талоном, выдающимся физиком-экспериментатором. В результате этих разногласий Аррениус покинул Упсалу и направился в 1881 году к Э. Эдлунду в Стокгольмскую Академию наук.

Эдлунд быстро оценил способности молодого ученого и назначил его своим первым помощником. Дебютная ученая работа Аррениуса была посвящена шаровой молнии. Затем он занялся изучением электропроводности сильно разбавленных водных растворов. В мае 1883 года после длительной экспериментальной проверки Аррениус пришел к выводу, что причиной увеличения электропроводности растворов при разбавлении является вода.

Как рассказывает Ю.И. Соловьев: «Данные, полученные при измерении электропроводности водных растворов электролитов различной концентрации, позволили С. Аррениусу сделать смелый вывод: молекулы электролита диссоциируют на ионы без воздействия тока, причем степень диссоциации растет с разбавлением. Как сейчас нам представляется, это был, казалось бы, очевидный и простой вывод из экспериментальных данных. Но совершенно не простым он был для С. Аррениуса, ибо этот вывод разрушал твердые, «как гранит», традиционные представления о состоянии молекул солей, кислот и оснований в растворе».

Аррениус не мог не понимать, что он, молодой химик, поднимает руку на химические «устои». Но это не смутило его. В своей докторской диссертации (1883) он сделал исключительный по своему значению вывод:

«Коэффициент активности электролита указывает на фактически имеющееся в растворе число ионов, отнесенное к тому числу ионов, которое было бы в растворе в случае, если электролит полностью расщеплен на простые электролитические молекулы…

Соль расщепляется полностью, когда количество воды в растворе бесконечно велико».

Однако отзывы профессоров Клеве и Талона о качестве диссертационной работы были отрицательными – оба не являлись поклонниками таланта Аррениуса. Совет поддержал мнение профессоров, но все-таки оценил защиту диссертации по третьему классу.

Будучи уверенным в своей правоте, Сванте послал по одному экземпляру своих статей известнейшим европейским ученым, которые занимались изучением растворов: Р. Клаузиусу, Л. Мейеру, В. Оствальду и Вант-Гоффу. В своих ответах все четверо положительно отзывались о результатах исследований и выводах молодого ученого.

Приезд Оствальда, поддержка, которую Аррениус получил у профессора Петтерсона, и мнение широкой общественности заставили университет повторить процедуру защиты диссертации. Она состоялась в конце 1884 года и прошла успешно. Сразу же после защиты Аррениус был назначен приват-доцентом физической химии. Однако профессор Клеве и его сторонники оставались противниками Аррениуса, и тот решает вернуться к профессору Эдлунду в Стокгольм.

В 1886 году он приехал в Ригу, в лабораторию своего единомышленника Оствальда, где продолжал свои исследования. Весной 1887 года Аррениус работал в Вюрцбурге у Ф. Кольрауша. «Незадолго до того, как я покинул Вюрцбург (март 1887 года), – вспоминал Аррениус, – я получил напечатанную Шведской Академией наук работу Вант-Гоффа. Я просмотрел ее в один вечер, закончив ежедневную работу в институте. Мне сразу стало ясно, что отклонение электролитов в водном растворе от законов Вант-Гоффа—Рауля о понижении точки замерзания является самым веским доказательством их распада на ионы. Теперь передо мной было два пути для вычисления степени диссоциации: с одной стороны, посредством понижения точки замерзания, с другой – их проводимости. Оба они в подавляющем большинстве случаев дали один и тот же результат, и я мог открыто говорить о диссоциации электролитов».

В письме к Вант-Гоффу в марте 1887 года шведский ученый писал: «Обе теории находятся еще в самом начале своего развития, и я надеюсь живейшим образом, что в ближайшем будущем между обеими областями будет перекинут не один, а несколько мостов». Так и случилось.

В 1887 году появилась знаменитая статья Аррениуса «О диссоциации растворенных в воде веществ». Она вызвала восторг у одних и негодование у других. Здесь ученый с уверенностью заявляет, что молекулы электролитов (соли, кислоты, основания) распадаются в растворе на электрически заряженные ионы. Аррениус нашел формулу для определения степени электролитической диссоциации. Тем самым он превратил чисто качественную гипотезу в количественную теорию, которая могла быть проверена экспериментально.

После того как были созданы основные положения этой теории, Аррениус показал ее применимость в различных областях естествознания.

В 1891 году по рекомендации Оствальда Аррениус получил приглашение занять место профессора физической химии в Гессенском университете. Только теперь ученого оценили на его родине.

В 1895 году Аррениус стал профессором физики Стокгольмского университета. Многочислен и разнообразен был круг интересов Аррениуса: электрокапиллярные явления, катодная поляризация, коррозия металлов в кислотах… Материал этих исследований Аррениус обобщил в «Учебнике электрохимии».

Среди его ассистентов особенно выделялась Софья фон Рудбек. Она была не только великолепным помощником, но и интересным собеседником. Аррениус часто и подолгу беседовал с ней. В 1894 году молодые люди обвенчались, а на следующий год у них родился сын Олаф. Однако семейная жизнь не сложилась, и поэтому вскоре после рождения сына они решили расстаться. Сванте сильно мучила разлука с сыном.

Но 1895 год принес Аррениусу и радости: Немецкое электрохимическое общество избрало его своим почетным членом. В 1896 году он стал ректором Стокгольмского университета и оставался на этом посту до 1902 года.

В 1903 году Аррениус был удостоен Нобелевской премии «в признание особого значения теория электролитической диссоциации для развития химии».

Аррениус стал первым шведским ученым, удостоенным такого высокого отличия! Это был триумф не только самого ученого, но и всей страны. Во всех университетах и научных обществах читались лекции о научных достижениях Аррениуса, его портреты висели на самых видных местах. Швеция гордилась своим великим сыном.

Когда 1 октября 1905 года начал работу первый Нобелевский физико-химический институт, то его возглавил Аррениус. Теперь он мог больше заниматься научными проблемами, хотя у него появились и новые обязанности. К примеру, много времени отнимало участие в работе комиссии по присуждению Нобелевских премий.

Английский химик Д. Уоркер вспоминал: «С момента его работы в Нобелевском институте жизнь его протекала очень спокойно. Из розовощекого парня он превратился в Швеции в научного оратора, известного и уважаемого всеми классами народа. В Аррениусе не было ничего академического. Сам он был крепко сложенным, светловолосым, голубоглазым и румяным, настоящим сыном шведской сельской местности. По характеру он был открытым, великодушным и экспансивным человеком. В нем было много здоровой энергии, первобытной силы. У него были сильные симпатии и антипатии, и под его врожденным добродушием и юмором таилась спящая драчливость, легко просыпавшаяся, когда затрагивались истина и свобода».

В доме на Бергогатане, 18, ученый не только работал, но и жил. Бывая в доме профессора Иенса Иоганссона, Аррениус познакомился с его сестрой Майей. Та чувствовала себя легко и непринужденно с известным ученым. Сванте также не скрывал симпатии к девушке. Осенью 1905 года отпраздновали свадьбу, и молодая семья поселилась в трехкомнатной квартире прямо под помещениями Нобелевского института. Вскоре в семье случилось прибавление – родился мальчик Сван.

Аррениус в это время увлекся проблемами токсикологии. Он занялся подробным физико-химическим рассмотрением теории токсинов и антитоксинов. В результате стало возможным выяснить, определяются ли противоположные действия токсинов и антитоксинов их химической природой или они имеют физическое происхождение. Основные результаты этих работ Аррениус изложил в двух книгах: «Иммунохимия» (1907) и «Количественные законы в биологической химии» (1915).

«С помощью формул, которые могут быть эмпирическими, или рациональными, прогресс науки станет более быстрым, чем без использования аналитических выражений, – писал Аррениус, – по мере накопления опытного материала эмпирические формулы легли в основу учений об отношениях между поведением светил и событиями на Земле. Эти учения послужили в свое время основой для возникновения таких лженаук, как алхимия и астрология».

Аррениус также вел изыскания и в области космогонии, посвятив этому двухтомный «Учебник космической физики», а также книги «Будущее мира», «Жизнь планет», «Земля и Вселенная».

Нобелевский институт Аррениус оставил летом 1927 года по состоянию здоровья. В том же году 2 октября он скончался.

АДОЛЬФ ФОН БАЙЕР
(1835—1917)

Немецкий химик Иоганн Фридрих Вильгельм Адольф фон Байер родился в Берлине 31 октября 1835 года. Он был старшим из пяти детей Иоганна Якоба Байера и Евгении (Хитциг) Байер. Отец Байера был офицером прусской армии, автором опубликованных работ по геодезии и преломлению света в атмосфере, а мать – дочерью известного юриста и историка Юлиуса Эдуарда Хитцига. Счастливые дни детства Адольфа Байера были омрачены большим несчастьем – во время родов умерла мать. Старший из детей Адольф сильнее других чувствовал тяжелую утрату.

Отец, специалист по геодезии, большую часть года проводил в путешествиях. По возвращении он некоторое время жил дома, а потом вместе с Адольфом отправлялся в Мюльгейм. Каждый раз отец привозил деду книги, и Адольф запомнил одну из них, потому что именно с нее начался его интерес к химии.

В гимназии учитель Шельбах, отличный математик и физик, преподававший также и химию, активно поддерживал интерес Адольфа к физике и химии. Мальчик учился с исключительным усердием, поэтому Шельбах сделал его своим помощником в химической лаборатории. Адольф с удовольствием проводил демонстрации опытов в аудитории, но еще важнее для его становления как химика имели опыты, которые он проводил в своей домашней лаборатории. Прочитав руководство по органической химии Велера, Байер еще больше увлекся интересной, загадочной и малоизученной областью науки. В двенадцатилетнем возрасте он сделал свое первое химическое открытие. Это была новая двойная соль – карбонат меди и натрия.

Окончив гимназию Фридриха-Вильгельма, Байер в 1853 году поступил в Берлинский университет, где в течение двух последующих лет занимался изучением математики и физики.

После окончания третьего семестра Байер был призван в армию. Целый год юноша проходил службу в восьмом берлинском полку. Для него это было тяжелое время – ведь за год ему не удалось даже открыть книгу. Но, наконец, отслужив положенный срок, Байер вернулся домой и встал перед необходимостью решать, чем заниматься дальше.

В конце концов, он поступил в Гейдельбергский университет и начал работу в лаборатории профессора Бунзена. Обучение в университете не ограничивалось чтением лекций, уже с начала учебного года студенты готовились к исследовательской работе. В Гейдельберге Байер сосредоточил свое внимание на физической химии. Но после опубликования в 1857 году статьи о хлорметане он так увлекся органической химией, что начиная со следующего года стал работать у занимавшегося структурной химией Фридриха Августа Кекуле в его лаборатории в Гейдельберге.

Лаборатория была тесной и скудно оборудованной. Однако Байер нашел в лице Кекуле превосходного учителя, который отлично владел методикой экспериментальной работы по органической химии, а еще лучше – теорией. Под руководством Кекуле исследования пошли быстро и весьма успешно. Взяв в качестве исходного вещества какодиловую кислоту, Байер за короткое время синтезировал новые, неизвестные до того времени соединения – метилированные хлориды мышьяка, за которую ему позднее была присуждена докторская степень.

С 1858 года в течение двух лет он вместе с Кекуле работал в Гентском университете в Бельгии. В Генте у Байера не было самостоятельного заработка, он жил на деньги, которые ежемесячно получал от отца. Известный ученый-геодезист, теперь уже генерал Байер, мог позволить себе содержать сына, но отец все настойчивее советовал Адольфу самому подумать о своем будущем.

В начале 1860 года Байер приехал в Берлин. Экзамен на приват-доцента он выдержал блестяще и начал подготовку к предстоящим лекциям. Для экспериментальной работы в берлинских лабораториях не было никаких условий. Оборудовать собственную лабораторию у Байера не было средств. Оставалось только одно – теоретические проблемы.

После смерти деда в доме Байеров, как и прежде, собирались известные ученые, писатели, искусствоведы. На этих вечерах нередко бывал и друг старого Байера, тайный советник Бендеманн, который почти всегда приходил со своей дочерью Адельгейдой (Лидией). Она подружилась с сестрами Адольфа. А когда Адольф приехал в Берлин, красивая, образованная подруга сестер сразу же привлекла его внимание. Однако живущий на средства отца Байер не мог и помышлять о браке. Нужно было как можно скорее найти работу с постоянным заработком. И счастье улыбнулось ему. В 1860 году в ремесленном училище, будущем Высшем техническом училище, была введена новая дисциплина – органическая химия. Байер согласился на должность преподавателя органической химии, хотя жалованье ему полагалось небольшое и половину его нужно было отдавать ассистенту, который совсем ничего не получал.

Под влиянием увлеченности Кекуле Байер начал сначала исследовать мочевую кислоту, а начиная с 1865 года – структурный состав индиго, высоко ценимого в промышленности синего красителя, названного именем растения, из которого его получают. Еще в 1841 году французский химик Огюст Лоран в ходе исследований сложного строения этого вещества выделил изатин – растворимое в воде кристаллическое соединение. Продолжая опыты, начатые Лораном, Байер в 1866 году получил изатин, использовав новую технологию восстановления индиго путем нагревания его с измельченным цинком. Примененный Байером способ позволил проводить более глубокий структурный анализ, чем процесс окисления, осуществленный Лораном.

Престиж его лаборатории чрезвычайно возрос. Молодым ученым заинтересовались не только исследователи, но и промышленники. Доходы Байера значительно увеличились. Теперь можно было подумать о семейной жизни.

8 августа 1868 года состоялась свадьба Адельгейды Бондеманн и Адольфа Байера. У них родились дочь и три сына, один из которых – Франц умер в 1881 году. Известная своей деликатностью, тактом и изящными манерами, госпожа Байер пользовалась всеобщей любовью и уважением. Кроме молодых практикантов ее мужа, госпожа Байер обычно приглашала и маститых ученых, писателей, художников, музыкантов. Молодая жена не только умело взяла на себя заботы о хозяйстве, но и помогала мужу вести переписку. (Байер не любил писать. Даже научные статьи, в которых он подводил итоги своих исследований, Байер писал с большой неохотой.)

Анализируя обратный процесс – получение индиго путем окисления изатина, Байер в 1870 году впервые сумел синтезировать индиго, сделав, таким образом, возможным его промышленное производство. После того как в 1872 году Байер переехал в Страсбург и занял место профессора химии в Страсбургском университете, он приступил к изучению процессов конденсации. В ходе процессов конденсации таких соединений, как альдегиды и фенолы, ему и его коллегам удалось выделить несколько имеющих важное значение красящих веществ, в частности, пигменты эозина, которые он впоследствии синтезировал.

У Байера появилось много друзей. Иногда после работы сотрудники лаборатории собирались на квартире ученого, благо дом, в котором жил Байер, находился рядом с лабораторией. За большим и шумным столом рассказывались веселые истории, шутки, пелись песни. Адельгейда любила эти веселые компании и умела оживлять их своим искусством отличной хозяйки. Эти молодые, влюбленные в науку люди сплотились в одну большую семью, в центре которой был профессор Байер.

Три года прожил ученый в Страсбурге. В 1875 году, после смерти Юстуса фон Либиха, Байер стал преемником этого известного химика-органика, заняв должность профессора химии в Мюнхенском университете. Здесь в течение более чем четырех десятилетий он был центром притяжения множества одаренных студентов. Более пятидесяти из них стали впоследствии университетскими преподавателями.

Вернувшись к изучению точной химической структуры индиго, Байер в 1883 году объявил о результатах своих исследований. Это соединение, по его словам, состоит из двух связанных «стержневых» молекул (их он назвал индолом). В течение сорока лет созданная Байером модель оставалась неизменной. Она была пересмотрена только с появлением более совершенной технологии.

Изучение красителей привело Байера к исследованию бензола – углеводорода, в молекуле которого 6 атомов углерода образуют кольцо. Относительно природы связей между атомами углерода и расположения атомов водорода внутри молекулярного кольца существовало много соперничавших между собой теорий. Байер, который по своему складу был скорее химиком-экспериментатором, нежели теоретиком, не принял ни одну из существовавших в то время теорий, а выдвинул свою собственную – теорию «напряжения». В ней ученый утверждал, что из-за присутствия других атомов в молекуле связи между атомами углерода находятся под напряжением и что это напряжение определяет не только форму молекулы, но также и ее стабильность. И хотя эта теория получила сегодня несколько осовремененную трактовку, ее суть, верно схваченная Байером, осталась неизменной. Исследования бензола привели Байера также к пониманию того, что структура молекул бензольной группы ароматических соединений, называемых гидроароматическими, представляет собой нечто среднее между кольцевым образованием и структурой молекулы алифатических углеводородов (без кольца). Это сделанное им открытие не только указывало на взаимосвязь между данными тремя типами молекул, но и открывало новые возможности для их изучения.

В 1885 году, в день пятидесятилетия, в знак признания заслуг перед Германией ученому был пожалован наследственный титул, давший право ставить частицу «фон» перед фамилией.

…Годы шли незаметно. Старшая дочь Евгения давно вышла замуж за профессора Оскара Пилоти. Сыновья, Ганс и Отто, тоже нашли свою дорогу в жизни. Появились внуки…

Шел 1905 год. На чествование семидесятилетия выдающегося ученого в Мюнхен съехались десятки учеников Байера, теперь уже известных ученых. Торжественная церемония, обед в большом зале. Со всех концов мира приходили поздравления. В дни празднования было получено сообщение о том, что за заслуги в области органической химии Байеру присуждена Нобелевская премия по химии «за заслуги в развитии органической химии и химической промышленности благодаря работам по органическим красителям и гидроароматическим соединениям».

Поскольку в это время ученый был болен и не мог лично присутствовать на церемонии вручения премии, его представлял германский посол. Байер не произнес нобелевской лекции. Но еще в 1900 году в статье, посвященной истории синтеза индиго, он сказал: «Наконец-то у меня в руках основное вещество для синтеза индиго, и я испытываю такую же радость, какую, вероятно, испытывал Эмиль Фишер, когда он после пятнадцати лет работы синтезировал пурин – исходное вещество для получения мочевой кислоты».


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 | Следующая
  • 0 Оценок: 0

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации