Электронная библиотека » Вадим Голубев » » онлайн чтение - страница 4


  • Текст добавлен: 27 октября 2015, 06:04


Автор книги: Вадим Голубев


Жанр: Учебная литература, Детские книги


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 4 (всего у книги 35 страниц) [доступный отрывок для чтения: 12 страниц]

Шрифт:
- 100% +
Глава 2. Природа георитма

Космогенная составляющая эндогенного пульса Земли выказывается актуальной (повседневной) геодинамикой. Геодинамика как понятие сужена в геологии до синонима тектоники плит, но означает физические процессы (силы), определяющие энергетику и эволюцию Земли. Геодинамика выступает движущей силой геотектоники как инструмента преобразований литосферы. Геотектоника действует в геологическом масштабе времени, но работает ежесуточно в виде прикладной геотектоники. Она проявляется сейсмической и вулканической активностью и эвстатическими колебаниями уровня Мирового океана и характеризует интенсивность возрастной эволюции Земли.

Динамика Земли подчиняется небесной механике, которая проявлена галактическим движением Солнечной системы и ее тел, в частности Луны и Земли относительно Солнца. Ритм взаимного движения тел претворяется в коротких и суточных, месячных и годичных, многолетних, вековых, тысячелетних и более крупных геодинамических ритмах. Георитм есть новое понятие, и базируется на ультракоротких колебаниях ядра Земли. Пульс Земли модулируется по амплитуде, частоте и фазе всеми ритмами полевой космической среды, вплоть до геологически длительных геодинамических циклов и мегациклов [Голубев, 1992 а, б; 1994 а, е; 1996 а, б; 2000 а, б, в].

Тонко дрожащее земное ядро генерирует гравитомагнитное геодинамическое поле, которое претворяется в производных от него гравитационном и электромагнитном полях. Энергоинформационное геополе каскадно регулирует жизнь всех сфер Земли, которая таким образом размечается экстрем-точками (экстремумами) георитмов и геоциклов. Геополе органично связано с динамическими полями Солнечной системы и Галактики.

Ультракороткий пульс Земли заложен ритмом космической среды во время ее зарождения. Космогенно-эндогенная динамика Земли поддерживается смещением ядер планет и Солнца в результате резонансных взаимодействий центров их масс при образовании системы. Резонансное вращение и обращение эксцентрических планет по эллиптическим орбитам сопровождается микроподвижками их ядер и обеспечивает их неповторимую, но системно связанную ритмику, как и своеобразие полициклических взаимодействий центров масс. Трудно переоценить значение смещений ядер Солнца и планет, символизирующих маховики небесной механики и вселенской эволюции.

Георитм и динамика Солнца

Главное влияние на Землю оказывает Солнце, определяющее динамику планетной системы, которая вращается вместе с ним справа налево (рис. 9-I). Система содержит четыре каменные планеты земной группы (внутренние): Меркурий, Венеру, Землю, Марс диаметром 4870, 12100, 12756 и 6670 км и четыре газовые планеты-гиганты (внешние) Юпитер, Сатурн, Уран, Нептун диаметром 143760, 120420, 51300 и 49500 км.


Рис. 9-I. Строение Солнечной системы (парад планет)


К планетам до 2006 года относился Плутон (диаметр 2320 км), но он меньше Луны и похож на глыбу льда. Плутон стал крупнейшей карликовой планетой занептунового пояса Койпера, образованного сотнями малых тел, состоящих изо льда метана, аммиака и воды. У планет кроме Меркурия и Венеры имеются спутники: у Юпитера (67), Сатурна (62), Урана (27) и Нептуна (14), в том числе мелкие. Гигантские спутники есть у Земли – Луна (3474 км), Юпитера – Ио (3643 км), Европа (3122 км), Ганимед (5262 км) и Каллисто (4821 км), Сатурна – Титан (5152 км) и Нептуна – Тритон (2707 км) (рис. 9-II).


Рис. 9-II. Крупнейшие спутники Юпитера: Ганимед, Каллисто, Ио и Европа (NASA)


Свыше 98 % массы Солнечной системы содержится в желтой звезде-карлике диаметром 1392 тыс. км. Солнце является плазменным шаром и мощным источником электромагнитного излучения в диапазоне от гамма-излучения до радиоволн с пиком мощности в видимом и инфракрасном диапазонах (81 и 18 % энергии). Солнечный ветер демонстрирует истечение из солнечной короны гелиево-водородной плазмы, в основном электронов, протонов и ядер гелия (альфа-частиц) со скоростью около миллиона тонн в секунду (рис. 10-I). Поток корпускулярного излучения значимо пульсирует по причине переменной активности Солнца, хотя оно и относится к слабопеременным звездам.


Рис. 10-I. Солнечный ветер и магнитосфера Земли


Солнце состоит из водорода, отчасти превращенного в гелий (около 70 и 29 %), и термоядерные реакции сделали его раскаленным шаром плотностью 1,41 г/см3, разогретым в центре свыше 10 млн K. Внутренняя энергия переносится излучением и конвекцией плазмы к поверхности, разогретой до 6 тыс. K. Атмосфера в виде желтой фотосферы и красной хромосферы толщиной 200–300 км и 7–8 тыс. км придает Солнцу оранжевый облик. Атмосферу увенчивает пульсирующая солнечная корона: внутренняя, восходящая на 300–500 тыс. км в виде светящихся ионизированных газов, и внешняя, отходящая на 80 млн км в виде отблеска светила на микрочастицах пыли (рис. 10-II).

Корона олицетворяет переменную активность Солнца, выражаемую высыпаниями центров активности. Центры представлены в фотосфере факелами и пятнами, в хромосфере – флоккулами и вспышками, а в короне – протуберанцами высотой до 12 тыс. км, корональными лучами и дырами. Активность обычно объясняется эндогенной магнитогидродинамикой, но за ней кроется генеральная динамика Солнца, а именно микроколебания скорости вращения. Его дифференциальное вращение и контролирует скопление центров активности на активных широтах. Ротационные напряжения заметны и в сотовой структуре фотосферы, состоящей из гранул конвекционного происхождения размером 150–1500 км (чаще 200–700) и при этом смутно расчерченной на ромбоиды.


А.


B.

Рис. 10-II. Солнце

А. Строение; Б. Активность


Всё говорит о сходной ротационной динамике Солнца и Земли. Сотовая структура фотосферы напоминает ячейки сети трещиноватости земной коры, к тому же тоже располосованной критическими широтами и долготами. Принципиальное сходство имеют и центры активности, которые представлены на Земле эпицентрами мощных землетрясений и вулканами, тоже выказывающими разгрузку ротационных напряжений.

Ротационные силы также опознаются в полярном сжатии и Земли, и Солнца, сплюснутого на 35 км (0,0005). Степень полярного сжатия Солнца колеблется вместе со скоростью вращения, что подтверждается короной, которая сплющивается к году минимума 11-летнего цикла активности и расправляется до почти сферической к году максимума. Одновременно колеблется диаметр Солнца, увеличившийся с минимума до максимума активности в 1986 и 1991 годах почти на 0,04 %, или на 250 км.

Солнечные пятна чаще появляются на активных долготах: 20°, 60°, 100°, 140°, 180°, 220°, 260°, 300° и 340°, составляющих почти антиподальные пары. Активнее долготы с интервалом 120°: 20°, 140° и 260°, причем в Южном полушарии эти долготы сдвинуты относительно Северного на 40° по ходу вращения Солнца. Так же сдвинуты активные долготы Земли, что может одинаково объясняться инерционным сдвигом полушарий вследствие эволюционного замедления вращения и эксцентричности ядер.

Небольшим отклонением ядра Солнца также объясняется осевая асимметрия его короны и наклон его экватора к плоскости эклиптики 7,25°. Диаметральные линии смещения асимметричного ядра Солнца проявляются его активными долготами, которые характеризуются сравнительно частым прохождением по ним векторов соединений и противостояний планет, отмечающих резонансные взаимодействия центров масс планет.

Солнечные пятна появляются в начале 11-летнего цикла солнечной активности на широтах ±30°, а к окончанию цикла смещаются к экватору на широты ±8°. Такие же широты известны на Земле как критические из-за смены типа ротационных напряжений при микроколебаниях скорости ее вращения. Также примечательно, что широтная зона ±8° соответствует наклону Солнца (7,25°) вкупе с наклонением Юпитера (1,30°), а с широтной зоной ±30° соотносится наклон Солнца вкупе с наклонением Плутона (17,16°).

Смещение пятен отражает совокупное обращение планет (точнее, их эксцентричных ядер) вокруг Солнца с цикличностью небесной механики и колебательным движением общего барицентра внутри Солнца. Даже обращение короткопериодических комет с периодами от 3 до 10 лет и наклонением орбит в среднем 45° аналогичным образом соотносится с редкими солнечными пятнами в высоких широтах (до ±52°).

Солнечные пятна отмечают вектора взаимодействий центров масс Солнца и планет и поэтому собираются на активных долготах и широтах. Взаимодействия усиливаются как за счет резонансного движения планет по эллиптическим орбитам (на разном удалении от Солнца и между собой), так и за счет резонансов в движении их спутников.

Фактически на все резонансные события в планетной системе Солнце реагирует вспышками и сериями вспышек разной силы, переходящими или не переходящими в пятна. В 2013 году астрономы из университета Дьюка в США по данным с 1976 года установили, что поток солнечного излучения на Землю возрастает при пересечении ею линии Солнце – Юпитер с периодом в 1,09 года. Это при том, что масса Юпитера в тысячу раз меньше массы Солнца, а расстояние между ними более 750 млн км.

Полициклические взаимодействия масс планет и Солнца с микроколебаниями скорости вращения несколько подвигают его ядро, стимулируя конвекцию. Конвекция же претворяется в неоднородности Солнца и нелинейной магнитогидродинамике. Эндогенная гелиодинамика в принципе обусловлена вращением эксцентрического ядра и связанных с ним активных гелиодолгот, что сказывается в секторной смене полярности гелиомагнитного поля, а оно как межпланетное поле регулирует динамику всей системы.

Неразрывность гравитационного (планетного) и магнитного (внутреннего) факторов активности Солнца подразумевает наличие у него динамического поля, базисного для гравитационного и магнитного полей. Гравитомагнитное энергоинформационное поле генерируется тонко пульсирующим ядром Солнца, которое стимулируется резонансными гравитомагнитными воздействиями планет. Колебания возникли при образовании Солнца, переняв галактический ритм, и модулируют по амплитуде, частоте и фазе ультракороткие пульсации субатомного происхождения, проявляемые излучением Солнца. Короткие колебания его ядра проявлены пульсациями яркости фотосферы в ритме 5 и 160 минут, причем в ритме 160 минут Солнце пульсирует с амплитудой 5 км.

Вместе с тем 11-летний цикл солнечной активности соразмерен с периодом в 11,08 года ускорения – замедления орбитального движения Солнца, что дает указание на межзвездные резонансные взаимодействия, тоже гравитомагнитные. Межзвездные взаимодействия и кроются за крупнейшими вспышками и выбросами солнечной плазмы. Именно схождение на прямой линии и резонансное взаимодействие центров масс многих звезд определило образование и эксцентрическое строение Солнца и планет.

Эксцентричность обусловила резонансное движение планет, означающее обращение центра масс Солнечной системы. Циклические подвижки барицентра и ядра Солнца преломляются в его кинематике и динамике, в том числе в магнитогидродинамической конвекции, непосредственно формирующей на поверхности центры активности. Облик возбужденного Солнца олицетворяет планетные и звездные динамические воздействия, которые представляют собой гравитомагнитные волны и энергоинформационные импульсы, связующие динамические поля космических тел и систем Вселенной.

Цикличность активности Солнца установлена по числам Вольфа – относительному количеству регистрируемых солнечных пятен. Пятна представляют собой темные вихревые образования в фотосфере поперечником 7–40 тыс. км с пониженной на 1500–2000 °C температурой и повышенной в десятки и сотни раз напряженностью магнитного поля (в 10 тыс. раз большей, чем у Земли). Период базового цикла солнечной активности – «цикла Швабе-Вольфа» – составляет в среднем 11,1 года (от 9,0 до 13,6 лет между минимумами активности и от 7,3 до 17,1 года между максимумами), причем рост и спад активности длится в среднем по 4 и 7 лет (рис. 11).

Циклы разделяются по минимумам активности, когда магнитная полярность головных и хвостовых пятен в каждом из полушарий изменяет свой знак. Нечетный цикл, как правило, длительнее предыдущего четного цикла. Оба цикла составляют в среднем 22-летний цикл («цикл Хейла»), означающий однонаправленную инверсию полярности поля около первого максимума активности. Переполюсовка имеет сходство с обращениями магнитного поля Земли, но они происходят с интервалом в тысячи и миллионы лет.

Пятна на Солнце известны еще по древнекитайским хроникам, но инструментально зафиксированы в 1611 году, а регистрируются с 1700 года. Первым 11-летним солнечной активности считается цикл, начавшийся в 1755 году. По колебаниям максимума 11-летнего цикла выделяются вековые (80–90-летние) циклы, притом, как видно, сдвоенные в 170–180-летние циклы. Они разделяются длительными минимумами солнечной активности: Маундера (1645–1715 годы), Шпёрера (1450–1540 годы) и Вольфа (1280–1340 годы). По содержанию углерода-14 в годичных кольцах реликтовых сосен с возрастом до 5 тыс. лет и по частоте полярных сияний в 1550–1750 годах намечаются изменения активности Солнца с периодом около 600, 1000 и 2000 лет.


Рис. 11. Цикличность активности Солнца


Уменьшение синодического периода вращения Солнца с 27 до 26 суток в эпоху минимума солнечной активности Маундера указывает на обратную зависимость активности Солнца от скорости вращения, которая вследствие его плазменного состояния дифференцирована по широте. Современная скорость вращения (оборота) снижается от 26 суток на экваторе до 34 суток на полюсах, причем 27,28-суточный оборот низкоширотной зоны ±16°, с повторным появлением солнечных пятен, выражен в излучении Солнца и принят как месячный цикл активности. На его фоне отмечаются колебания активности с периодичностью 3–5 и 15 синодических оборотов и около 2 лет.

За базовым 27,28-суточным циклом активности кроется оборот активных долгот эксцентрического Солнца. Многомесячные колебания активности тоже обусловлены его эксцентричностью, но в сочетании с дифференциальным вращением. А именно со схождением начальных экстрем-точек полярного и экваториального циклов (34 и 26 суток) с экстрем-точкой базового цикла. Те же самые участки полярных и экваториальной зон всё лучше сходятся по долготе через 3–5, 15 и 26 базовых циклов (81,8–136,4; 409,2 и 709,3 суток), отмечая тем самым резонансное завершение 4 и 3, 16 и 12, 26 и 21 оборотов этих широт. Базовый солнечный цикл проявляется в геомагнитной активности и учащении землетрясений через (13,65 ± 0,02) суток, полупериод цикла.

Многолетняя цикличность изменения скорости вращения Солнца и появления пятен определенно связана с резонансными воздействиями центров масс планет. О влиянии планет на активность Солнца в контексте ее 11-летнего цикла говорил еще в XIX веке Р. Вольф (рис. 12). Это подчеркивается парадами планет в 1941, 1962, 1982 и 2000 годах, то есть они повторялись примерно с интервалом 22-летнего солнечного цикла.

В нестабильности 22-летнего солнечного цикла сказывается нестабильность 11-летнего цикла, а она находит объяснение в неполной кратности периодов обращения ближних планет и колебании точки резонанса относительно средней величины цикла. Так, период обращения Юпитера составляет 11,86 года, Марса – 1,88 года (6 оборотов за 11,29 года), Венеры – 0,62 года (18 оборотов за 11,07 года) и Меркурия – 0,24 года (46–47 оборотов за 11 лет). Массивный Юпитер (1/1050 массы Солнца) с периодом 11,86 года определенно стабилизирует периодичность 11-летнего солнечного цикла.

Многолетние солнечные циклы складываются в вековые циклы, продолжительность которых тоже несколько колеблется из-за неполной кратности им периодов обращения дальних планет и колебания точки резонанса. Так, период обращения Урана составляет 84,01 года, Сатурна – 29,46 года (3 оборота за 88,37 года) и Юпитера – 11,86 года (7 оборотов за 83,04 года). Вековые циклы переходят в многовековые циклы через период обращения Нептуна 164,79 года (1/2 оборота за 82,4 года) и даже Плутона – 248,4 года (1/3 оборота за 82,8 года). Период вращения барицентра Солнечной системы (с учетом влияния Меркурия, Венеры, Земли, Марса и Юпитера) составляет около 180 лет, что говорит о реальности двойного векового цикла солнечной активности.


Рис. 12. Цикличность схождения (0) Юпитера, Земли, Венеры и Меркурия (наверху) и 11-летняя активность Солнца (по А. Л. Чижевскому, 1936)


Периоды обращения крупнейших планет – Юпитера, Урана, Нептуна – сказываются в многолетних и вековых циклах активности Солнца. Другие планеты вносят вклад в его активность в виде малых гармоник. Более общие и точные резонансы в движении всех планет сказываются в тысячелетних и гораздо больших циклах активности Солнца. Геологически длительные циклы его активности до сотен миллионов и миллиардов лет означают движение Солнечной системы вокруг ядра Галактики и звездные резонансы.

Вестником близкого окончания двойного векового цикла активности Солнца стал май 1982 года, когда все планеты, кроме Венеры, сошлись в секторе шириной 60–65°. Большой парад планет кульминировал в 1989–1991 годах, когда Сатурн, Уран, Нептун и Плутон вошли в соединение, а Юпитер вошел в противостояние, причем даже Плутон подошел к Солнцу на минимальное расстояние. Годы соединения внешних планет (1989 год) и противостояния Юпитера с Сатурном и Ураном (1990 год) и с Ураном и Нептуном (1991 год) разметили двугорбый максимум солнечной активности 1989–1991 годов. Небывало быстрым за всё время инструментальных наблюдений ростом активности и мощными вспышками (март и октябрь 1989, май 1990 и июнь 1991) отличился 22-й цикл.

Рост активности Солнца регистрируется усилением электромагнитного излучения и солнечного ветра, причем при вспышках мощность радиоизлучения на волне 10,7 см возрастает в 10–1000 раз, рентгеновского излучения – в 7–600 раз, а корпускулярного потока – в 100 раз и более. Электромагнитные волны (свет) достигают Земли за 8,3 минуты, а корпускулы – за 15–30 часов, вызывая полярные сияния и магнитные бури.

Возмущения геомагнитного поля повторяются с 27,28-суточным периодом обращения центров активности Солнца, а в целом контролируются его 11– и 22-летними циклами. В противофазе с 22-летним циклом и в связи с изменением напряженности геомагнитного экрана колеблется интенсивность доходящего до Земли корпускулярного потока галактического происхождения. В историческом интервале изменения напряженности поля выделяются 60-, 110-, 200-, 300-, 500-, 800-, 1000-, 1600-, 2100-, 3200-, 7800-летние гармоники, из которых 8000-, 1600– и 500-летние сравнительно амплитудные. Все вариации геомагнитного поля характеризуют колебания активности Солнца.

Динамика Луны и короткий георитм

По-своему не менее значима для Земли Луна, которая в 400 раз ближе и в 2,2 раза сильнее по гравитации, чем Солнце. Луна по величине пятая среди спутников (диаметр 3474 км), но она больше Плутона и только в 1,5 раза меньше Меркурия. Магнитного поля у Луны нет, но в горных породах установлена остаточная намагниченность до 300 нТл.

Луна уникальна, ибо в отношении к массе Земли (1/81,3) в 700 раз превосходит пропорции масс спутников и их планет и притом повторяет пропорцию масс планетной системы и Солнца. Земля и Луна, в сущности, образуют двойную планету. Луна по строению и динамическому полю гораздо проще Земли, но она играет роль посредника и усилителя в резонансных взаимодействиях Земли, Солнца и планет (рис. 13).


А.


B.

Рис. 13. Луна

А. Строение; Б. Полное солнечное затмение (1.08.2008)


Влияние Луны на Землю видно по приливам и отливам, которым подвержены не только океан, но и поверхность земной коры, неприметно колеблющаяся с размахом до 0,5 м. На лунный фактор геотектоники давно обращалось внимание, однако действие Луны фактически признается только в отношении океанских вод, то есть остается поверхностным. Это следствие привычной модели центральной симметрии Земли.

Между тем при образовании квазидвойной планеты Земля-Луна их ядра несколько сместились навстречу, обеспечив чуткое реагирование Земли и на обращение Луны, и на движение эксцентрических планет, и на вращение эксцентрического Солнца. Хотя сила тяготения Солнца в 200 раз больше тяготения Луны, но приливные силы Луны вследствие ее неоднородности почти в 2 раза превосходят приливные силы Солнца.

Схема приливного влияния Луны несложна. Сила ее притяжения действует на земное ядро в направлении подлунной стороны Земли, и в этой точке, а также в точке на противоположной стороне образуются приливные выступы. В промежуточных точках земной поверхности, касательных к вектору лунного притяжения, образуются отливные впадины. Выступы и впадины перемещаются по мере поворота Земли и колеблются по амплитуде по мере приближения и удаления Луны при орбитальном движении, которое притом подвержено множеству периодических возмущений. Начиная с солнечного притяжения, что сказывается в суммарных лунно-солнечных приливах, максимальных при циклическом сочетании однонаправленных лунных и солнечных воздействий.

Океанские приливы описываются системами стоячих волн, содержащими свыше 500 гармоник, сгруппированных около главных лунных и солнечных приливов. Из-за трения вод прилив запаздывает относительно вектора воздействия примерно на 6 часов, смещаясь от него по широте на четверть окружности Земли. Амплитуда полусуточного прилива в океане составляет 0,1–0,9 м, но на шельфе возрастает до 1–5 и даже 13–18 м за счет резонанса, возникающего при соразмерности ширины мелководья с периодом приливной волны. Особенности рельефа дна сказываются в местном времени прилива.

Эффект резонансного усиления приливных волн иллюстрируется волнами прибоя, которые даже при безветрии и водной глади спонтанно возникают и всплескиваются, но также скоро спадают и пропадают. Физический резонанс присущ всем природным процессам и его эффект качественно возрастает вместе с числом сходящихся по времени и месту ритмов. Переменная высота океанского прилива олицетворяет многокомпонентное движение Луны, выражаемое в двух десятках гармоник прилива.

Первый ритмический компонент прилива представлен лунными сутками, периодом обращения Луны, восходящей через (24,84 ± 0,65) часа. Ежесуточное запаздывание ее восхода и захода от 12 минут до 1,5 часа обусловлено движением Луны по небесной сфере с запада на восток со звездным периодом 27,32 суток, то есть за сутки поворот Земли отстает от положения Луны на сфере в среднем на 13°. Лунные сутки, поступательно сдвигающиеся относительно солнечных суток, представлены двойным главным 12,42-часовым приливом и лунно-суточными вариациями геомагнитного поля. Вариации продолжительности суток вследствие неравномерного движения и изменения склонения Луны выражены 12,66– и 25,82-часовой гармониками суточного прилива.

Максимумы (экстремумы) приливов перемещаются по Земле в 24-часовом ритме солнечных суток, среднего периода ее обращения вокруг Солнца. Суткам соответствуют двойной 12-часовой, а также 24,07-часовой приливы и солнечно-суточный период вариаций геомагнитного поля. На 4 минуты короче солнечных суток и попятно сдвигаются от них звездные сутки продолжительностью 23,93 часа. Они означают период обращения Земли относительно пояса зодиакальных созвездий, расположенных вдоль эклиптики, видимого кругового пути движения Солнца в течение года. Звездные сутки опознаются в суточной нутации оси вращения Земли и 23,93-часовом приливе.

Основные периоды приливов характеризуют спектр околосуточных георитмов, которые сдвигаются по солнечным суткам или поступательно, или попятно. Значимее лунные сутки, о чем свидетельствуют землетрясения магнитудой 7,9 и выше в первой половине XX века, происходившие, по данным Г. П. Тамразяна, при крайних положениях Луны на небосводе. При нахождении Луны у горизонта землетрясения чаще случались в континентальном полушарии, а при нахождении у зенита или надира тяготели к океаническому полушарию. Это объяснялось доминированием горизонтальной или вертикальной составляющей приливных сил в зависимости от высоты стояния Луны.

Суточные георитмы модулируют по амплитуде (выразительности) короткие георитмы, известные под названием собственных колебаний Земли. Собственные колебания присущи всякой колебательной системе, испытавшей первичный толчок, а в данном случае означают крутильные и сфероидальные колебания земного ядра. Сейсмографы регистрируют тысячу тонов и обертонов колебаний в диапазоне от нескольких минут до часа, причем количество колебаний в течение года соизмеримо с количеством самых слабых землетрясений, которые могут регистрироваться, в среднем около 100 тысяч.

Типовой диапазон собственных колебаний Земли расширяется за счет колебаний с периодами 62, 73, 83, 98 и 123 минуты, причем во время землетрясений также проступают периоды 111, 134, 149, 165, 196 и 228 минут. Самый выразительный период 123 минуты (полупериод 62 минуты) соответствует среднему времени прохождения Луной одного из двенадцати секторов зодиакального круга, чем подразумевается поочередное схождение на прямой линии центров масс Земли, Луны и созвездий.

Колебания Земли имеют лунно-солнечный контекст, а их спектр более широк, на что указывают микроколебания скорости вращения Земли (продолжительности суток) с периодами 144, 160, 179, 205, 287 и 718 минут, выделенными Г. П. Пильником. Самый выразительный период 159,56 минут соразмерен с периодом пульсаций Солнца и с 1/9 частью звездных суток, но и другие периоды кратны звездным суткам в ряду отношений от 1/9 до 1/1. Всё это говорит о существовании 90–110-минутного георитма, сочетающего полупериод пульсаций Солнца (80 минут) и лунный период колебания земного ядра (123 минуты). Короткий георитм содержит в виде гармоник все колебания ядра и пульсирует под влиянием в первую очередь полусуточного и суточного лунных приливов.

Короткие георитмы модулируют ультракороткие георитмы, которые характеризуют динамическое возбуждение ядра Земли. Георитмы проявляются автоколебательными микросейсмами с периодами от 1,5 до 520 секунд и сейсмоэмиссионными колебаниями частотой от единиц до сотен герц, которые присущи пластическим деформациям земной коры и штормовым возмущениям океана. Сходный спектр у вариаций геомагнитного поля, подразделяемых на регулярные (Pc1–5) и нерегулярные (Pi1–3) с периодом от 0,2 до 600 секунд. С ними соразмерны резонансы Шумана, стоячие электромагнитные волны между поверхностью Земли и ионосферой с частотой 8, 14, 20, 26, 32 Гц.

Трудно не заметить системную связь ультракоротких георитмов с тонкими пульсациями Солнца и межпланетного магнитного поля. Мало того, подобный спектр частот (от сотых долей до сотен секунд) также свойственен излучению радиопульсаров, быстро вращающихся нейтронных звезд радиусом порядка 10 км, но по массе превосходящих Солнце. Пульс Земли и Вселенной в первооснове един и неразрывен.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации