Текст книги "Управление электрохозяйством предприятий"
Автор книги: Валентин Красник
Жанр: Техническая литература, Наука и Образование
сообщить о неприемлемом содержимом
Текущая страница: 7 (всего у книги 10 страниц)
9.5. Заключение Договора энергоснабжения
Полнота перечисленного комплекта проектно-технической документации, осуществление допуска электроустановки в эксплуатацию и наличие разрешения на ее подключение дают основания для заключения с энергоснабжающей организацией договора энергоснабжения и открытия лицевых счетов на расчетные приборы учета электроэнергии.
В настоящее время в связи с ростом электропотребления в промышленности и в жилом секторе и увеличением тарифов на электроэнергию стали внедряться двухтарифные системы учета потребления электрической энергии. В перспективе планируется переход на многотарифные системы учета. Такие системы будут предусматривать льготные тарифы в период минимальных нагрузок (в ночное время, в выходные и праздничные дни). С этой целью электротехнической промышленностью осваиваются принципиально новые многотарифные счетчики электронного типа, которые энергоснабжающие организации настоятельно рекомендуют к установке взамен существующих электросчетчиков индукционного типа при оформлении и заключении договоров энергоснабжения.
Представляют интерес электронные многотарифные счетчики электрической энергии однофазные и трехфазные типов СЭТ4, «А 1000», «Дельта» и др., серийно выпускаемые государственным заводом, Мытищинским электротехническим заводом, АВВ ВЭИ Метроника (г. Москва) и др.
Электросчетчики данного типа, например СЭТ1-4, имеют встроенные часы, питающиеся от батареи, энергозависимую память для запоминания потребляемой электроэнергии и других программируемых переменных счетчика, а также жидкокристаллический индикатор для отображения всех неизменных электросчетчика.
Электронные счетчики типов СЭТ способны к полной взаимозаменяемости устаревших индукционных счетчиков благодаря аналогичным схемам подключения и установочно-габаритным размерам.
Техническое обслуживание, ремонт и госповерка электросчетчиков, обеспечение их технически исправного состояния и своевременная замена осуществляются потребителями электроэнергии [2]. В [2] отмечено, что при нарушении схемы расчетного учета, повреждении или хищении ее элементов замена и госповерка расчетных приборов учета и контроля производятся за счет виновной стороны.
Для окончательного заключения договора энергоснабжения в договорной отдел Энергосбыта (например, в ОАО «Мосэнерго») необходимо представить следующий комплект документов:
заверенные копии Устава предприятия (организации), свидетельства о его регистрации, о постановке на учет в налоговом органе, о праве собственности или договор аренды и приказ о назначении руководителя предприятия (организации), а также справку из банка об открытии расчетного счета;
заполненную по установленной форме анкету потребителя, форма которой приведена в прил. 6;
заверенную копию информационного письма из Мосгоркомитета;
разрешение на присоединение мощности;
акт разграничения балансовой принадлежности и эксплуатационной ответственности;
проект (однолинейную расчетную схему) электроснабжения, согласованный (согласованную) с Энергосбытом в части организации учета электрической энергии;
договорные значения потребления электрической энергии;
заявку на отпуск и потребление электроэнергии;
журнал учета электрической энергии, который должен быть пронумерован, прошнурован, скреплен печатью и подписан ответственным за электрохозяйство (ответственным за безопасную эксплуатацию электроустановок).
Отсутствие того или иного документа в указанном перечне может вызвать нежелательные последствия при заключении договора энергоснабжения вплоть до судебного разбирательства в Арбитражном суде. Например, энергоснабжающая организация вправе отказаться от заключения договора энергоснабжения, если в нем отсутствует условие о количестве ежемесячно и ежеквартально поставляемой энергии.
Такой случай имел место в практике разрешения споров в Арбитражном суде, связанных с договором энергоснабжения, когда в суд обратилось акционерное общество с иском к муниципальному предприятию жилищно-коммунального хозяйства о взыскании предусмотренного сторонами в договоре штрафа за неподачу тепловой (аналогично – электрической) энергии. Ответчик возражал против исковых требований, ссылаясь на то, что причиной неподачи энергии явилось уклонение акционерного общества при заключении договора от согласования количества ежемесячной и ежеквартальной поставки энергии. Арбитражный суд исковые требования удовлетворил. Кассационная инстанция решение суда первой инстанции отменила, в иске акционерному обществу отказала по следующим основаниям.
В соответствии с п. 1 ст. 432 ГК РФ договор считается заключенным, если между сторонами достигнуто соглашение по всем существенным его условиям.
По договору купли-продажи, отдельным видом которого в силу п. 5 ст. 454 ГК РФ является договор энергоснабжения, условие о товаре считается согласованным, если договор позволяет определить наименование и количество товара (п. 3 ст. 455 ГК РФ).
Согласно ст. 541 ГК РФ энергоснабжающая организация обязана подавать абоненту энергию через присоединенную сеть в количестве, предусмотренном договором энергоснабжения. Если договор не позволяет определить количество подлежащего передаче товара, договор не считается заключенным (п. 2 ст. 465 ГК РФ).
Поскольку договор, на основании которого производился отпуск энергии, сведений о количестве ежемесячно и ежеквартально поставляемой энергии не содержал, он признается незаключенным. Следовательно, у суда не было оснований для удовлетворения иска о взыскании штрафа.
Рассмотренная процедура оформления и заключения договоров энергоснабжения на примере энергоснабжающей организации ОАО «Мосэнерго» может несколько отличаться от подобной процедуры в других энергосистемах страны; по некоторым позициям процесс оформления и заключения договоров энергоснабжения может быть несколько упрощен или усложнен, скорректирован и т. д.
Однако общие принципы этого процесса, особенно в части выполнения требований норм и правил Ростехнадзора, остаются неизменными и создают все предпосылки по обеспечению надежной, экономичной и безопасной эксплуатации электроустановок при условии выполнения договорных обязательств обеими сторонами -участниками договора энергоснабжения.
ГЛАВА 10
СИСТЕМА ТЕРМИНОВ И ОПРЕДЕЛЕНИЙ В ЭЛЕКТРОЭНЕРГЕТИКЕ
Разработка и гармонизация стандартов в любой отрасли начинается с терминологии.
Под гармонизированными понимаются такие стандарты, которые приняты различными занимающимися стандартами органами, распространяются на один и тот же объект стандартизации и обеспечивают взаимозаменяемость продукции, процессов или услуг и взаимное понимание результатов испытаний или информации, представляемой в соответствии с этими стандартами [21].
Решение этой задачи осуществляется в строгом соответствии с ГОСТ 1.1-2002, который устанавливает термины и определения в области стандартизации.
Знание терминологии и определений в электроэнергетике играет исключительно важную роль для руководителей и специалистов энергослужб предприятий (организаций); позволяет более правильно определить целевое назначение и конкретную суть того или иного объекта, сетей, устройств защитного заземления и другого электротехнического оборудования; помогает различить по характерным стандартизированным признакам близкие по своему звучанию и функциональному назначению электроэнергетические понятия, такие, например, как:
падение напряжения и потеря напряжения;
разделяющий трансформатор и разделительный трансформатор;
уравнивание потенциалов и выравнивание потенциалов;
нулевой защитный проводник и нулевой рабочий проводник и т. д.
Знание и умение пользоваться терминологией и определениями в электроэнергетике является одним из условий рационального и безопасного обслуживания электроустановок; безошибочного выбора коммутационной, защитной и контрольно-измерительной аппаратуры и приборов, средств автоматики и телемеханики; надлежащего выбора способа выполнения заземления в электроустановках, целевого использования средств защиты и т. д.
Проблема в данной области усугубляется тем, что среди большого числа ведомственных норм и правил работы в электроустановках (МПБЭЭ, ПУЭ, ПТЭЭП, ИПИСЗ и др.) имеют место разночтения в терминах и определениях и, в ряде случаев, расхождения с таковыми, указанными в государственных стандартах [22].
В данном случае специалисты-электроэнергетики столкнулись с некоторым несоответствием стандартизированной терминологии, не зная, какому ведомству отдать предпочтение в выборе терминов и определений.
С одной стороны, государственные стандарты считаются более приоритетными по сравнению с ведомственными нормами и правилами и являются обязательными для применения во всех видах документации. С другой – в ведомственных органах находятся узкопрофильные профессионалы, как, например, в органах Ростехнадзора, которые в своей области являются специалистами-профессионалами более высокого уровня по сравнению с широкопрофильными специалистами из Госстандарта России. Поэтому терминология, разработанная в ведомственных нормах и правилах, является более четкой, конкретной и грамотной, что позволяет персоналу энергослужб предприятий (организаций) осмысленней и полнее определить функциональное назначение того или иного объекта, устройства, системы и т. д.
Данный вывод подтверждается еще и тем, что иногда в ГОСТ приводятся разноречивые определения и термины или, наоборот, один и тот же термин имеет несколько разных определений, что усложняет усвоение терминологии и вносит определенную путаницу в этих вопросах. Например, в табл. 4 приведены термины, которые имеют различные определения в том или ином ГОСТ.
Таблица 4
Разноречивые определения одного и того же термина
Поэтому при разработке норм и правил работы в электроустановках возникают определенные трудности в выборе того или иного термина и определения к нему.
Недаром в Энергетической стратегии России на период до 2020 г., утвержденной Правительством РФ 28 августа 2003 г., подчеркнуто, что одним из принципов ее осуществления является «единство стандартов безопасности, технических норм и правил, действующих в электроэнергетической отрасли».
Во многих технических публикациях, справочной и производственной литературе, в рекомендациях и методических пособиях авторы начинают излагать материал, как правило, с терминов и определений, которые зачастую отражают субъективный взгляд автора по данной тематике, в результате чего возникают дополнительные разночтения в терминологии.
Решение данной проблемы требует тщательного подхода к выбору того или иного термина и определения и пользованию ими, особенно в области электроэнергетики.
Существующую систему терминов и определений в электроэнергетике целесообразно разделить на три группы:
I группа – термины стандартизированные, которые необходимо применять строго в соответствии с государственными (ГОСТ) и международными (например, СТ МЭК) стандартами;
II группа – термины и определения нестандартизированные, которые не применяются в действующих нормах и правилах работы в электроустановках. Данные термины и определения действуют на основе законодательных, правовых и нормативных документов (Федеральных законов, Указов Президента, постановлений Правительства Российской Федерации), строительных и санитарных норм и правил. К ним относятся термины и определения, применяемые в ПУЭ, ПТЭЭП, МПБЭЭ, ИПИСЗ и др., такие, например, как: верхолазные работы, бригада, допуск к работам, инструктаж, наряд-допуск, ответственный за электрохозяйство, персонал оперативный и многие другие термины [23];
III группа – термины и определения, отражающие экономические понятия, применяемые в электроэнергетике.
Технико-экономические расчеты в энергетике имеют важное значение в оценке деятельности энергослужб как промышленных потребителей энергии, так и энергоснабжающих организаций. В настоящее время в условиях коммерческих взаимоотношений между обеими сторонами значительно возросла потребность в экономических знаниях для оценки деятельности энергослужб, связанных с вопросами энергосбережения, лимитирования электроэнергии и мощности, со штрафными надбавками, с денежными компенсациями за неполный отпуск электроэнергии и др. Нередко разногласия по этим экономическим вопросам выносятся в Арбитражный суд потребителями или поставщиками электроэнергии.
Поэтому руководителям и специалистам электроэнергетических служб предприятий (организации) необходимо знать и грамотно использовать терминологию в прикладной экономике по роду своей деятельности.
Термины и определения в области экономики, как правило, не стандартизированы, а действуют на базе законодательных и правовых актов и нормативов, федеральных законов, постановлений Правительства Российской Федерации. К таким терминам можно отнести акцепт, применяемый при взаиморасчетах по договору энергоснабжения, при которых имеет место безакцептное взимание денежных средств за потребленную электроэнергию, а также амортизационные отчисления, возмещение убытков, затраты, расходы и издержки, лимит, тариф и др.
Особое место в системе стандартизации занимает система стандартов безопасности труда (ССБТ), которая насчитывает более 320 государственных стандартов, в том числе около 30 – непосредственно по вопросам электробезопасности.
Все стандарты, начинающиеся с двух первых цифр «12», образуют единую структуру ССБТ, содержащую шесть взаимосвязанных квалификационных групп, в том числе:
0 (12.0. …) – основополагающие стандарты, которые охватывают фундаментальные вопросы самой системы стандартизации и предназначены для устранения различия в определениях и оценках в области безопасности труда;
1 (12.1. …) – стандарты общих требований и норм по видам опасных и вредных производственных факторов, которые систематизируют и формализуют все виды опасности и характер их воздействия;
2 (12.2. …) – стандарты общих требований безопасности к производственному оборудованию;
3 (12.3. … ) – стандарты общих требований к производственным процессам;
4 (12.4. …) – стандарты требований к средствам защиты;
5 (12.5. …) – стандарты требований к зданиям и сооружениям. Например, часто применяемый в электроэнергетике стандарт
12.1.009-76 «Электробезопасность. Термины и определения» (переиздан в 1999 г.) расшифровывается следующим образом: 12 – код стандарта ССБТ;
1 – код классификационной группы, которая показывает, что данный стандарт относится к стандартам общих требований и норм по видам опасных и вредных производственных факторов;
009 – порядковый номер стандарта этой группы;
76 – год регистрации стандарта.
Созданная в стране единая система ССБТ является первой и уникальной в практике мировой стандартизации, которая объединила разрозненные нормативные документы по охране труда и технике безопасности. Данная система обязывает неукоснительно выполнять требования безопасности на всех стадиях, начиная от проектирования, изготовления, монтажа, наладки и испытаний и кончая эксплуатацией и ремонтом.
К внедрению и выполнению требований ССБТ на предприятиях (организациях) подключены практически все структурные подразделения, в том числе и энергослужбы предприятия (организации).
В вопросах организации и управления электрохозяйством предприятия должно уделяться особое внимание улучшению условий охраны труда в электроустановках и проблеме электробезопасности на основе существующей стандартизированной системы ССБТ.
ГЛАВА 11
РАСЧЕТНАЯ МОДЕЛЬ УЩЕРБА ПРИ ОТКАЗАХ ЭЛЕКТРОДВИГАТЕЛЕЙ
В гл. 8 был оценен экономический ущерб от повышенного потребления реактивной мощности асинхронными двигателями (АД), составляющие которого приведены на рис. 5.
Чтобы получить более полное представление о возможных экономических убытках в электрохозяйстве предприятий, необходимо уметь определить количественные показатели ущерба при отказах АД. Это тем более важно, что АД являются самым массовым видом приводных электродвигателей на многих промышленных предприятиях и уровень их безотказной работы во многом определяет показатели электрохозяйства в целом.
Суммарный экономический ущерб
, руб./г. при отказах электродвигателей состоит из ущерба от простоя оборудования, обусловленного недовыпуском продукции Упр и затрат на ремонт отказавших электродвигателей Ур или приобретение новых электродвигателей У , т. е.
Если принять меры к обеспечению безотказности работы электродвигателей за счет использования специальных защит, то общий ущерб при отказах электродвигателей снизится за счет снижения или полного отсутствия второго слагаемого (Ур или Ун) в формуле (11). Первое слагаемое в формуле полностью исключить практически невозможно, поскольку может наблюдаться простой оборудования из-за отключения защиты электродвигателей от сети при возникновении ряда причин, которые при отсутствии защиты привели бы к повреждению электрической машины, а именно: выпадению одной из фаз питающей сети, технологическим перегрузкам, чрезмерному колебанию напряжения сети и др.
С учетом затрат на спецзащиту общий экономический ущерб можно выразить следующим образом, руб./г.:
где V1, V2, V3 -коэффициенты эффективности применения спецзащит (при V1 = 1 отсутствует ущерб от простоя оборудования; V2 = 1 – отсутствует ущерб, связанный с затратами на приобретение новых электродвигателей; V3 = 1 -отсутствует ущерб на ремонт поврежденных электродвигателей);
Tok – срок окупаемости затрат на разработку и применение спецзащит;
ti – текущий i-й момент времени эксплуатации электро-двигателей.
При расчетах экономической эффективности принимается, что
0 ≤ ti ≤ Tok.
Из формулы (12) видно, что при Tok = t затраты на защиту полностью окупаются.
В соответствии с существующей много лет Методикой определения экономической эффективности использования новой техники, изобретений и рационализаторских предложений нормативный срок окупаемости дополнительных капитальных вложений на электротехническое оборудование принят 6,7 г.
Расчетный срок окупаемости дополнительных затрат на спецзащиту можно определить, как отношение затрат Ус к эффекту, вызванному этими затратами, т. е.
Упрощенный подсчет годового ущерба, руб., от простоя технологического оборудования при отказах электродвигателей производится по следующей формуле:
где У – удельный ущерб от недовыпуска изготовляемой продукции, руб./(кВт-ч);
Pi – номинальная мощность электродвигателя /-го типоразмера, кВт;
ni – число отказавших электродвигателей i-го типоразмера, шт.;
ti – время простоя оборудования из-за демонтажа поврежденного и монтажа резервного электродвигателя, ч. Удельный ущерб, руб./(кВт-ч), от недовыпуска продукции можно найти из следующей формулы:
где С – стоимость годового выпуска продукции (фабрики, цеха и т. п.), руб.;
PΣуст – суммарная установленная мощность электродвигателей оборудования на данном производстве, кВт;
To – годовой фонд односменной работы оборудования, ч;
k1 – средний коэффициент сменности в году;
k2 – коэффициент использования оборудования в году с учетом потерь времени на ремонт оборудования, болезни рабочего персонала и т. д.
Для более точной оценки ущерба от недовыпуска продукции из-за отказов электродвигателей формулу (15) необходимо скорректировать. Корректировка будет заключаться в том, что в числитель формулы (15) следует добавить ущерб на выплату зарплаты работникам Уз в период простоя, а в знаменателе формулы суммарную установленную мощность электродвигателей необходимо заменить потребляемой мощностью этих электродвигателей PΣпотр .
В соответствии с корректировкой формула (15) примет следующий вид:
Ущерб, руб., из-за выплаты зарплаты работникам оборудования в период простоя можно определить по формуле:
где 0,5 – 50%-ная выплата работникам в период простоя;
Зрч – почасовая заработная плата работников, руб./ч;
a – число машин, обслуживаемых одним работником;
k – коэффициент, учитывающий дополнительную зарплату и начисления;
m – число возникающих неисправностей (отказов);
tпр – продолжительность простоя, ч.
Расчеты показали, что значения удельного ущерба, подсчитанные по формулам (15) и (16), в большинстве случаев отличаются друг от друга незначительно. Это следует из того, что некоторое увеличение числителя в формуле (16) за счет дополнительного слагаемого Уз компенсируется в этой формуле увеличением знаменателя PΣпотр > PΣуст .
Ущерб (руб.) из-за капитального ремонта поврежденных электродвигателей определяется по следующей формуле:
где Сpi – стоимость капитального ремонта одного электродвигателя і-го типоразмера, руб.;
l – число поврежденных электродвигателей, подлежащих капремонту.
Основным критерием экономической оценки безотказности работы электродвигателей должно явиться условие минимума двух первых слагаемых ущерба в формуле (12), т. е.
(1 – ν1)Упр + (1 – ν3) Ур = min. (19)
Такое условие достигается за счет возрастания коэффициентов эффективностей, т. е. при прочих равных условиях:
(1 -ν1) + (1 -ν3) = min
ν1 + ν3 = max. (20)
Возрастание коэффициентов эффективности связано с повышением доли 4-го слагаемого в формуле (12), т. е.
Однако значение этого слагаемого с течением времени t снижается и при t = Ток становится равным нулю.
Если расчетный срок окупаемости Ток превысит нормативный срок Тн, то дополнительные приращения затрат по обеспечению безотказной работы электродвигателей следует признать экономически неоправданными, и наоборот.
Однако следует принять во внимание, что применение спецзащит электродвигателей от аварийных режимов работы должно быть исключительной мерой, так как связано со значительными затратами. Кроме того, при этом нарушается бесперебойность технологического процесса, что вызывает справедливые нарекания со стороны технологической службы предприятия.
Например, обрыв фазы у электродвигателя или его перегрузка могут иметь скрытые причины возникновения, например, из-за износа и старения изоляции обмотки. Поэтому вместо того, чтобы устанавливать в этих случаях соответствующие спецзащиты, целесообразней осуществлять контроль за скоростью старения изоляции обмотки электродвигателей. Износ и старение изоляции являются одной из наиболее «коварных» причин выхода электродвигателей из строя из-за того, что отсутствуют внешние признаки их выявления.
Процесс старения и износа изоляции обмоток электродвигателей представляет собой совокупность ряда причин: срока службы изоляции, влияния параметров окружающей среды, степени нагрузки на валу электродвигателей и др. При неблагоприятном стечении этих факторов возникает форсированное старение изоляции с резким ухудшением ее электрических свойств.
На основании многочисленных опытов немецким ученым Монтзингером было установлено общее правило по определению срока службы изоляционных материалов с распространенным классом нагревостойкости А (из хлопчатобумажных, шелковых тканей, пряжи, бумаги и картона). Было установлено, что старение изоляции материалов этого класса подчиняется так называемому 8-градусному правилу в соответствии со следующей формулой:
где Tотн – скорость старения изоляции;
τн – нормативная предельная температура нагрева для изоляции класса А, °С;
τ – фактическое превышение температуры, °С.
Согласно 8-градусному правилу из формулы (21) следует, что для обмоток с изоляцией класса А на каждые 8 °С перегрева срок службы изоляции уменьшается, а ее старение ускоряется в 2 раза. Например, в соответствии с ГОСТ 183-74 «Машины электрические вращающиеся. Общие технические условия», превышение температуры для изоляции класса А составляет 65 °С, а температура окружающей среды принята равной +40 °С. Следовательно, предельная температура для изоляции с нагревостойкостью класса А составляет 65 + 40 = 105 °С. Температура, оказывающая влияние на старение изоляции обмоток, складывается из превышения температуры для изоляции данного класса обмотки и температуры окружающей среды, т. е. для изоляции класса А скорость старения будет
На основании опыта эксплуатации и наблюдений за сроком службы изоляции класса А при нормативной предельной температуре, равной 105 °С, средний срок службы изоляции обмоток составляет примерно 7 лет, т. е.
Если, например, фактическое превышение температуры будет 121 °С, то из формулы (22) видно, что срок службы изоляции сократится в 4 раза, так как
А по формуле (23) можно определить абсолютный срок службы такой изоляции, т. е.
Следовательно, если при нормативной температуре изоляции класса А обмотка электродвигателя проработает 7 лет (т. е. при температуре 105 °С), то при ее превышении на 16 °С срок службы изоляции сократится в 4 раза – до 1,75 г., и т. д.
Восьмиградусное правило имеет практическую ценность, поскольку оно позволяет установить эффективный контроль за степенью старения и износа изоляции материалов с наиболее широко распространенным классом А нагревостойкости.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.