Текст книги "Электричество дома и на даче"
Автор книги: Виктор Барановский
Жанр: Хобби и Ремесла, Дом и Семья
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 7 (всего у книги 19 страниц)
Электроустановочными устройствами называются выключатели и переключатели (кроме пакетных), штепсельные розетки, патроны, предохранители и колодки с зажимами.
Схемы соединения и включения в сеть выключателей и переключателей представлены на рис. 21.
Контактные зажимы для присоединения проводов к электроустановочным устройствам, эксплуатируемым в стационарных установках, выполняют так, что к ним можно подсоединять как медные, так и алюминиевые жилы проводов. Зажимы обеспечивают постоянство контактного нажатия и предотвращают выдавливание жилы из-под зажима.
Рис. 21. Схемы соединения и включения в сеть выключателей и переключателей:
а– выключатель однополюсный; б – выключатель двухполюсный; в – выключатель сдвоенный; е – переключатель; д – выключатель для управления с двух мест
Различают зажимы винтовые и штыревые. Винтовые имеют контактный винт с цилиндрической головкой, пружинящее устройство и устройство, предотвращающее выдавливание жилы (предохранительную шайбу). Штыревые зажимы состоят из шпильки с резьбой, ограничительной шайбы, двух обыкновенных шайб и трех гаек.
К винтовым и штыревым зажимам присоединяют однопроволочные и многопроволочные жилы.
По способу установки выключатели и переключатели разделяют на изделия для открытой, скрытой и полускрытой установки, подвесные, проходные, встраиваемые в прибор и подпотолочные.
По роду привода – на одно– и двухклавишные, перекидные, поворотные, ползунковые, одно– и двухкнопочные и со шнурком.
По способу защиты от влияния внешней среды – на защищенные и брызгозащищенные.
Одно– и двухклавишные брызгозащищенные выключатели и переключатели открытой установки эксплуатируют в сухих и влажных помещениях, остальные выключатели и переключатели – только в сухих.
К основанию одноклавишного выключателя для скрытой установки (рис. 22) винтами прикреплены монтажная скоба и распорные лапки, предназначенные для закрепления основания в монтажной коробке или нише. Отверстия в распорных лапках выполнены продолговатыми, и в зависимости от того, насколько ввинчены винты лапок, расстояние между их концами изменяется в пределах 10 мм. На основании установлены также зажимы для проводов, один из которых соединен с неподвижным контактом, а второй – с подвижным, взаимодействующим с клавишей выключателя, размещенной на оси. Крышка выключателя крепится к основанию винтами.
Рис. 22. Выключатель с клавишным приводом для скрытой установки:
а– принцип действия; б – общий вид; в?д – устройство; 1 – клавиша; 2 и 3 – подвижный и неподвижный контакты; 4 – пружина; 5 – толкатель; 6 —рычажок; 7, 9, 14 – винты; 3 – крышка; 10, 11 – зажимы для проводов; 12 – скоба; 13 – распорные лапки; O1 и О2 – оси
Выключатели для открытой установки не имеют монтажной скобы и распорных лапок. Для их крепления в основании выключателя есть отверстия.
Клавиши выключателей могут быть покрыты люминофором, благодаря чему они хорошо видны в темноте.
Выключатели, совмещенные со светорегуляторами (регуляторами тока) – бесконтактными приборами, дают возможность плавно регулировать освещенность лампами мощностью 60-100 Вт от нескольких процентов до практически полной с минимальными потерями мощности.
Типы выключателей, совмещенные со светорегуляторами: 1 – для регулирования освещенности рукоятку нужно вращать, а для включения-отключения – нажимать (рис. 23 а); 2 – сенсорный (чувствительный) привод (рис. 23 б). В корпусе 2 этого регулятора собрана электронная схема, которая срабатывает при прикосновении к металлической пластине 4 – при этом лампа включается. При следующем прикосновении электронная схема возвращается в исходное положение, и лампа гаснет. Освещенность регулируют вращением обоймы 3.
Рис. 23. Выключатели, совмещенные со светорегуляторами (регуляторами тока):
а, б– типы выключателей; 1 – регулировочная рукоятка; 2 – корпус; 3 – регулировочная обойма; 4 – металлическая пластина; 5 – распорные лапки
Выключатель-светорегулятор устанавливают в коробку для скрытой проводки. Для его крепления в коробке выключатель имеет распорные лапки.
Штепсельные розетки для стационарной скрытой (рис. 24) и открытой установки могут быть одноместными и двухместными; защищенными, брызгозащищенными, герметическими, пыленепроницаемыми; с защитным (заземляющим или зануляющим) контактом (рис. 25) или без него (в зависимости от того, требует ли зануления (заземления) корпус присоединяемого прибора).
Рис. 24. Штепсельная розетка для скрытой установки:
1 – декоративная крышка; 2 – винт крепления крышки; 3 – отверстия; 4 – направляющие выступы; 5 – корпус; 6 – монтажная скоба; 7 – монтажная коробка; 8 – распорные лапки; 9 – винты; 10 – контактные узлы; 11 – отверстия корпуса; 12 – сквозное отверстие для винта 2; 13 – контактный винт; 14 – скоба; 15 – пластина; 16 – упор; 17 – пружина, препятствующая выдавливанию провода; 18 – провод; 19 – винт; 20 – шайба
Рис. 25. Штепсельная розетка с защитным (заземляющим, зануляющим) контактом:
1 – отверстия для штифтов вилки; 2 – отверстия для защитного штифта; 3 – гнезда штифтов питающих проводов; 4 – гнездо заземляющего штифта
Переносные штепсельные розетки применяются в удлинителях, разветвителях, а также для присоединения бытовых приборов.
Штепсельная розетка для скрытой установки крепится распорными лапками. Конструктивные особенности: достаточное нажатие на штифты вилки обеспечивается пружиной, один конец которой упирается в корпус, а другой – в упор; узел присоединения проводов предотвращает их выдавливание, а постоянство нажатия поддерживает пружинная шайба.
Штепсельная розетка для открытой установки отличается от розетки для скрытой установки узлом крепления и формой крышки.
Штепсельные розетки с зануляющим контактом предназначены для питания электроплит и бытовых электроприборов, требующих зануления (бытовых кондиционеров и т. п.). Два отверстия, выполненные в крышке розетки, служат для рабочих штифтов вилки, к которым присоединены питающие провода, а одно отверстие – для защитного (зануляющего) штифта. Защитный штифт длиннее рабочих, благодаря чему при введении вилки сначало зануляется корпус прибора, а затем только происходит его включение. При выдвижении вилки сначала отключается прибор, и только после этого снимается зануление корпуса.
Электроустановочные блоки выключателей с розеткой получили большое распространение (рис. 26) благодаря удобству в эксплуатации.
Рис. 26. Схема присоединения блока выключателя с розеткой:
5 – контактные зажимы розетки; 6 – контактные зажимы выключателей
Конструктивно блоки выключателей с розеткой представляют собой металлическую или пластмассовую коробку, в которой смонтированы два или три выключателя и штепсельная розетка; электроустановочные блоки часто устанавливают в прихожей или коридоре, используют для управления освещением ванной и туалета. Габариты коробки блока БВР-2 (БВР-3), встраиваемой в стену, – 81х147х28 мм, коробки блока БСУЗ – 190х88х44 мм.
Корпус резьбового патрона обычно выполняют из керамики или пластмассы (карболита). В корпусе размещены резьбовая гильза и вкладыш. На вкладыше закреплены боковые и центральный контакты. К гильзе, если она находится под напряжением, нельзя прикоснуться, благодаря чему патроны безопасны. Выпускаются патроны подвесные, потолочные, для установки на стене.
Электротехнические материалыПодключение для получения электроэнергии невозможно без применения различных электротехнических материалов и изделий – проводов, кабелей, электроизоляционных материалов, установочных и крепежных изделий, мастик и лаков, припоев и т. д.
Провода и кабели служат для передачи электрической энергии, а также для соединения различных элементов электроустановки.
ПроводаПроводом называют металлический проводник электрического тока, состоящий из одной или нескольких токопроводящих жил. Токопроводящая жила состоит из одной (однопроволочная) или нескольких проволок (многопроволочная), скрученных вместе. Провода с многопроволочными токопроводящими жилами обладают большей гибкостью, чем провода с однопроволочными жилами.
Жилы проводов применяемые в электроустановках изготавливают из алюминия и меди. По соображениям экономии применяют преимущественно провода с алюминиевыми жилами.
Стандартные сечения токопроводящих медных жил проводов: 0,5; 1; 1,5; 2,5; 4; 6; 10; 16; 25; 35; 50; 70; 95; 120; 150; 185; 240; 300; 400; 500; 800 мм2. Алюминиевые жилы проводов изготавливают по этой же шкале сечений начиная с 2,5 мм2.
Медные жилы сечением до 10 мм2 и алюминиевые до 25 мм2 бывают однопроволочными и многопроволочными, жилы больших сечений – только многопроволочными.
Рис. 27. Конструкции проводов:
а– ПВ, АПВ; б – ППВС, АППВС, ПППС, АПППС; в – ППВ, АППВ, ППП, АППП, АППР; г – ПР, АПР; д – ПРД, ПРВД; е – ПУНП; ж – ПРФ, ПРФл, АПРФ; 1 – токопроводящая жила; 2 – изоляция жилы; 3 – разделительное основание; 4 – оплетка из хлопчатобумажной ткани; 5 – оплетка для ПРД из хлопчатобумажной пряжи, для ПРВД из ПВХ пластиката; 6 – оболочка из ПВХ – пластиката; 7 – обмотка хлопчатобумажной пряжей; 8 – скрутка жил и обмотка бумажной пряжей; 9 – металлическая оболочка с фальцованным швом из сплава АМЦ или латуни
Провода бывают голые (без изоляции) и изолированные. У изолированного провода токопроводящая жила заключена в оболочку из резины, поливинилхлорида или винипласта. Для предохранения от механических повреждений и воздействий внешней среды изоляция некоторых марок проводов покрыта хлопчатобумажной оплеткой, пропитанной противогнилостным составом. Изоляция проводов, проложенных на вибрирующих механизмах или в местах, где есть риск повреждения, защищается дополнительно оплеткой из стальной оцинкованной проволоки.
Марки и характеристики некоторых проводов:
А – голый, алюминиевый, многопроволочный, диапазон сечений жил, мм – 16-625;
АС – голый, алюминиевый, многопроволочный, со стальным сердечником из оцинкованной проволоки, 16-400;
АСУ – то же, 120?400;
М – провод голый, медный, сечением 4,6 и 10 мм2, однопроволочный; 16 мм2 и выше, многопроволочный – 4-400;
ПРГ – провод с медной гибкой жилой и резиновой изоляцией, в оплетке из пряжи х/б, 0,75-400;
ДПРГ – провод гибкий, двужильный, с резиновой изоляцией в общей оплетке из хлопчатобумажной ткани, 0,5-10.
ПРФ, АПРФ – ПРФ медный и АПРФ алюминиевый с одной, двумя или тремя изолированными резиной жилами, обмотанными прорезиненной тканью и покрытыми металлической оболочкой, 1–4;
ПРШП – медный, с резиновой изоляцией, обмотанный прорезиненной тканью, с количеством жил 1–3, 4-10, 5-30 сечения соответственно 1-95, 1-10, 1–2,5;
ПРТО – медный, с резиновой изоляцией, с пропитанной оплеткой из пряжи х/б, 1-120;
АПРТО – то же, но алюминиевый, 2,5-400;
ПВ – провод с одной медной жилой, с поливинилхлоридной изоляцией, 0,75–95;
ППВ – провод плоский, медный, негибкий, из 2?3 параллельных жил, изолированных и разделенных поливинилхлоридным пластикатом, 0,75-2,5;
ППГВ – то же, с медными жилами, гибкий, 0,75-2,5;
АППВ – то же, с алюминиевыми жилами, 2,5–6;
АПВ – алюминиевый с поливинилхлоридной изоляцией, 2,5-120.
Применение и способы прокладки голых и изолированных проводов:
провода марок М, А, АС, АСУ применяют для прокладки воздушных линий напряжением до 1000 В и выше; способ прокладки – на изоляторах, укрепленных на опорах;
ПР, АПР – осветительные и силовые сети внутри помещений и вне зданий, в пожароопасных помещениях и во вторичных цепях – в изоляционных трубках, на изоляторах, по бетонным и металлическим поверхностям с прокладкой под провода изолирующих материалов;
ПРГ – присоединение электрических машин, аппаратов и приборов внутри и вне зданий, прокладка по станкам – в металлических рукавах;
ПВ, АПВ – осветительные и силовые сети внутри помещений (сухих, сырых, особо сырых, с парами минеральных кислот и щелочей) при температуре окружающей среды не выше +40 °C, осветительные щиты, пусковые ящики, закрытые шкафы для вторичных цепей – в трубках, на изоляторах, по металлическим и бетонным поверхностям с прокладкой под проводами изолирующих материалов;
ПГВ – осветительные и силовые сети, вторичные цепи, проводки по станкам и механизмам при наличии масел и эмульсий – в трубках и металлических рукавах;
ПРТО, АПРТО – осветительные и силовые сети во взрывобезопасных помещениях по вибрирующим поверхностям машин, агрегатов и кранов и в случаях, когда вскрытие трубопроводов представляет большие трудности, а также во вторичных цепях – в стальных трубках и металлических рукавах;
ПРП, ПРШП – осветительные и силовые сети, вторичные цепи, электропроводки станков и механизмов при наличии механических воздействий на провод и отсутствии воздействия на провод масел и эмульсий – открыто с закреплением скобами;
ПРФ, АПРФ – осветительные и силовые сети в сухих помещениях при наличии угрозы легких механических воздействий на провод, а также в тех случаях, когда открытая проводка должна быть выполнена по архитектурным соображениям незаметной – открыто с закреплением скобами;
АР, АРД – зарядка осветительных арматур в сухих помещениях при напряжении до 220 В между жилами в том случае, если от проводов не требуется гибкости – внутри и поверх осветительных арматур;
ДПРГ – зарядка осветительных арматур вне зданий и в сырых помещениях при напряжении до 220 В в том случае, если провода должны обладать гибкостью – внутри осветительных арматур;
ППВ, АППВ – осветительные проводки внутри сухих и сырых помещений по стенам и потолкам в сетях с номинальным напряжением до 500 В – открыто с закреплением гвоздями или скобами;
АППВС – проводки в сухих и сырых помещениях в сетях напряжением до 660 В – скрытая прокладка под штукатуркой.
Определение сечения жил проводовДля точного определения сечения жил проводов, выбора выключателей, розеток, аппаратов защиты и учета электроэнергии необходимо знать протекающие по ним токи, величина которых зависит от схемы проводки и мощности потребителей.
В качестве примера расчета токов воспользуемся расчетной электрической схемой (рис. 28).
Рис. 28. Расчетная электрическая схема жилого дома
Токи потребителей электроэнергии можно взять из паспортов и инструкций. Если этих данных нет, их можно вычислить, разделив мощность электрического прибора в ваттах на номинальное напряжение питания (обычно 220 В). При определении тока однофазного электродвигателя полученную величину следует умножить на 2, чтобы учесть коэффициент полезного действия и реальные токи, потребляемые из сети.
Расчет ведут против потока энергии – от дальнего потребителя к щитку (в нашем случае расчет надо вести от настенный светильник к щитку). По проводам розетки Х51 до ответвления Х52 протекает только ток лампы настенного светильника, равный 0,1 А. Далее к нему добавляются токи телевизора (1 А), люстры (0,81 А). Значит, по проводам, введенным в комнату, протекает суммарный ток 1,91 А. Если вести расчет дальше, выяснится, что наибольшей нагрузкой в линии является электроплита с током 7,2 А, а по проводам ответвления к розеткам Х53 и Х54 течет суммарный ток плиты и холодильника 9,2 А. Наиболее нагружены провода на участке от места ответвления к розеткам Х53 и Х54 до щитка. По ним и по плавкой вставке предохранителя FU1течет суммарный ток всех нагрузок линии, равный примерно 12 А.
Расчет второй линии дает величину тока, протекающего по проводам ее головного участка и плавкой вставке предохранителя FU2 (6, 45 А). А через счетчик проходит суммарный ток обеих линий – около 19 А.
Токи в фазном и нулевом проводах по величине одинаковы. Направления токов на участках проводки, показанные около фазных проводов, взяты произвольно.
При составлении схемы учитывалось следующее.
Электрические нагрузки значительной мощности размещены поближе к вводному щитку, чтобы провода к их розеткам не имели соединений и были максимально короткими. При значительном удалении мощной нагрузки от щитка ее ток вызовет падение напряжения в протяженных проводах линии. Напряжение на других потребителях будет меняться при включении и выключении мощной нагрузки, что проявится в мигании ламп освещения, изменении яркости экрана телевизора и т. д. А при короткой линии к мощному потребителю, выполненной проводами с большим сечением жил, такие эффекты будут минимальными.
Из токов двух потребителей, подключаемых к розетке Х55 – стиральная машина и утюг, – в расчет взят, создающий большие нагрузки для проводки.
Корпуса большинства электроплит, жарочных шкафов должны быть занулены. Для их подключения нужна розетка с защитным зануляющим контактом, которую устанавливают в кухне.
Подсчет токов потребителей показывает, что через предохранители FU1 и FU2 потекут токи 11, 76 и 6,45 А. Эти показатели важны при выборе номинальных токов плавких вставок предохранителей.
Надо иметь в виду, что реальные токи через предохранители и счетчик будут меньше, так как в доме редко включаются все потребители одновременно, однако выбор проводов, аппаратов защиты и учета электроэнергии надо вести применительно к такому случаю.
А теперь стоит рассмотреть выбор сечения жил проводов.
Провода проводки при протекании по ним тока имеют температуру, большую температуры окружающей среды. Она не действует отрицательно на металл проводов, но разрушает изоляцию на них, которая при нагреве стареет, становится хрупкой, трескается и осыпается.
На нагрев жил проводов влияют способ прокладки проводов, их число, размещение рядом, материал изоляции. Эти факторы должны учитываться при выборе сечения жил, которое позволило бы обеспечить питание потребителей без перегрева проводов.
Из двух величин сечения жил проводов, выбранных по условиям нагрева длительно протекающим током и механической прочности, для монтажа выбирается наибольшая.
П р и м е р в ы б о р а с е ч е н и я ж и л п р о в о д о в. Исходные данные (токи на участках проводки по нашей расчетной схеме): провод – АПРФ с 2 или 3 алюминиевыми жилами в резиновой изоляции в фальцованной оболочке из алюминия; способ прокладки – по поверхности стен и потолков.
Выбор по условиям нагрева. Сечение жил проводов ввода от изолятора на наружной стороне стены дома до счетчика – 2,5 мм2 (длительно допустимый ток – 21 А, расчетный – 18, 21 А). Сечение жил проводов от щитка до розеток Х53, Х54 – 2,5 мм2 (длительно допустимый ток – 21 А, расчетный 11,76 А). Провод АПРФ выпускается с жилами не менее 2,5 мм2, поэтому он применим и на всех других участках, где токи меньше, чем токи в головных участках первой линии.
Выбор по условию механической прочности. Наименьшее допустимое сечение алюминиевых жил защищенных проводов, присоединяемых к винтовым зажимам, – 2 мм2, минимальное допустимое сечение алюминиевых жил проводов ввода – 4 мм2.
Сечение жил проводов ввода в здание выбирается по условию механической прочности – 4 мм2. Сечение жил проводов от щитка до розеток Х53, Х54 – 4 мм2. Это решение выглядит нерациональным, так как провода с сечением жил 2,5 мм2 допускают длительное протекание тока до 21 А без перегрева, а расчетный ток не превышает 12 А. Но раз придется приобретать провод сечением 4 мм2 для ввода в дом, то есть смысл и самый нагруженный участок проводки от щитка до розетки электроплитки выполнить проводами большего сечения, что снизит их нагрев и уменьшит колебания напряжения в сети. Для всех остальных участков проводки можно использовать провод с сечением жил 2,5 мм2.
КабелиКабелем называют одну или несколько изолированных и скрученных между собой жил, заключенных в герметичную оболочку, поверх которой могут быть наложены различные защитные покровы.
По назначению кабели подразделяют на силовые и контрольные.
Силовые предназначены для передачи и распределения электрической энергии к различным токоприемникам и РУ, контрольные – для присоединения к электрическим приборам, аппаратам и сборкам зажимов (в сетях управления, сигнализации и автоматизации).
По виду изоляции и оболочки кабели подразделяют на следующие группы:
1) с пропитанной бумажной изоляцией в металлической оболочке;
2) с бумажной изоляцией, пропитанной нестекающим составом, в металлической оболочке;
3) с пластмассовой изоляцией в пластмассовой или металлической оболочке;
4) с резиновой изоляцией в пластмассовой, резиновой или металлической оболочке.
В каждой группе кабели подразделяют по номинальному напряжению, сечению, числу и материалу жил и типу защитного покрова.
Кабели изготовляют в соответствии с действующими государственными (ГОСТ) и отраслевыми стандартами (ОСТ) и техническими условиями (ТУ) на номинальное напряжение 0,66; 1; 3; 6; 10; 20 и 35 кВ и сечениями токопроводящих жил 1; 1,5; 2,5; 4; 6; 10; 16; 25; 35; 50; 70; 95; 120; 150; 185; 240; 300; 400; 500; 625; 800 и 1000 мм2. (Кабели высокого напряжения на 110 кВ будут рассмотрены ниже.)
Токопроводящие жилы кабелей изготовляют из медной проволоки марок ММ (мягкая) и МТ (твердая) и алюминиевой марок AM (мягкая), АПТ (полутвердая), AT (твердая) и АТП (повышенной твердости). Проволоки скручивают в стренгу (часть гибкой многопроволочной жилы, скрученной из нескольких проволок) или в жилу. При правильной скрутке проволока в жиле, в стренге, а также стренги в жиле должны прилегать друг к другу, при этом не должно быть перекрещиваний проволок или стренг, расположенных в одном повиве.
В зависимости от гибкости жилы кабелей делят на шесть классов.
Для неподвижной прокладки кабелей применяют жилы I, II и III классов, для подвижной – более гибкие жилы – IV, V и VI классов.
Для силовых кабелей стационарной прокладки изготовляют жилы круглой, фасонной или комбинированной формы.
Применение секторных и сегментных жил вместо круглых позволяет уменьшать диаметр кабеля на 20-25 % и соответственно сокращать расход других материалов (на изоляцию, оболочку и защитные покровы).
В зависимости от условий прокладки кабелей применяют алюминиевые или медные жилы.
Медные однопроволочные жилы изготовляют круглыми для сечений 1?50 мм2 и фасонными для сечений 25-50 мм2; многопроволочные жилы – круглыми для сечений 16-1000 мм2 и фасонными для сечений 25-300 мм2.
Алюминиевые однопроволочные жилы изготовляют круглыми для сечений 2,5-240 мм2, фасонными для сечений 25?240 мм2, многопроволочные жилы – круглыми для сечений 70-1000 мм2, фасонными для сечений 70-240 мм2.
Применение однопроволочных алюминиевых жил сечением до 240 мм2 уменьшает стоимость кабелей (исключается скручивание отдельных проволок), но увеличивает их общую жесткость, что создает определенные трудности при прокладке.
В обозначение кабелей с однопроволочными жилами после цифры, указывающей сечение, добавляют буквы «ож».
Для изготовления токопроводящих жил применяют в основном алюминий. Сопротивление алюминиевого провода при одинаковом сечении в 1,65 раза больше медного, поэтому для передачи по кабелю одинаковой мощности при одном и том же напряжении сечение токопроводящей алюминиевой жилы следует брать больше медной. Кроме того, у алюминиевых токопроводящих жил более низкий предел текучести и большая теплоемкость по сравнению с медными.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.