Электронная библиотека » Виорель Ломов » » онлайн чтение - страница 20


  • Текст добавлен: 27 марта 2014, 03:48


Автор книги: Виорель Ломов


Жанр: Биографии и Мемуары, Публицистика


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 20 (всего у книги 34 страниц)

Шрифт:
- 100% +
Солнечные труды Чижевского

Физик, биолог, биофизик, гелиобиолог, археолог, медик, эпидемиолог, историк, социальный психолог, инженер, изобретатель, художник-пейзажист, философ-космист, поэт; профессор Московского археологического института; действительный и почетный член 30 академий, университетов и научных обществ разных стран мира, почетный президент Первого Международного конгресса по биологической физике и космической биологии; директор Центральной лаборатории по ионификации Наркомзема СССР, директор Института биофизики; лауреат премий Совнаркома и Наркомзема СССР; участник Первой мировой войны, Георгиевский кавалер; автор 500 научных трудов и десятка монографий, Александр Леонидович Чижевский (1897–1964) является одним из основателей биофизики, основоположником гелио– и космобиологии, космической эпидемиологии, создателем математической теории электродинамики крови. Всемирную известность приобрел его электроэффлювиальный аэроионизатор, или «люстра Чижевского».



А.Л. Чижевский


В очерке речь пойдет не об единичном научном достижении А.Л. Чижевского, а о его совокупном вкладе в развитие русской науки. Как у Ломоносова или Менделеева трудно по одной, даже гениальной теории составить мнение о масштабе их научных деяний, так и у Чижевского нелегко назвать главное его открытие. Его научные труды касались трех взаимосвязанных направлений: гелиобиологии, ионизации и эритроцитов. И поскольку ученого называют основоположником этих областей науки, расскажем обо всех трех.

Но прежде о широте интересов Чижевского, о его невероятной научной продуктивности. В 1917–1918 гг., например, Чижевский защитил три (!) диссертации: «Русская поэзия ХVIII века», «Эволюция физико-математических наук в Древнем мире» и «Исследование периодичности всемирно-исторического процесса». «Между делом» он напечатал еще и книгу «Академия поэзии». Так плотно и плодотворно Александр Леонидович работал всю свою жизнь.

1939 г. стал годом мирового триумфа советского ученого. В США был организован Первый Международный конгресс по биологической физике и космической биологии, куда был приглашен и Чижевский. Выехать за рубеж Александр Леонидович не смог, и его заочно утвердили почетным президентом конгресса.

Группа ученых от имени конгресса направила в Нобелевский комитет меморандум о научных трудах русского ученого, но «Чижевский отказался от выдвижения на Нобелевскую премию “по этическим мотивам”». В том меморандуме, в частности, говорилось: «Гениальные по новизне идей, по ширине охвата, по смелости синтеза и глубине анализа труды поставили профессора Чижевского во главе биофизиков мира и сделали его истинным Гражданином мира, ибо труды его – достояние Человечества… Проф. Чижевский смело перебрасывает мосты между явлениями природы и вскрывает закономерности, мимо которых проходили тысячи естествоиспытателей… [Он] является также выдающимся художником и утонченным поэтом – философом, олицетворяя для нас, живущих в ХХ веке, монументальную личность да Винчи».

Примером умения Чижевского погружаться в проблему, невзирая на внешние обстоятельства, служит созданная им в Карлаге и Караганде, куда он попал в 1942 г. в результате околонаучных склок и интриг, процветавших в среде ученых, математическая теория электродинамики крови. (Александр Леонидович был там единственным, кто не носил нашитого номера – не потому, что находился в привилегированном положении, а потому, что его не смогли заставить сделать это.)

В клинической лаборатории при лагерном госпитале профессор, изучая структуру крови и механизм ее движения по сосудам, установил «системную организацию движущейся крови, наличие в ней радиально-кольцевых структур, обусловленных электрическим взаимодействием ее элементов».

Отбыв свой срок заключения, ученый добровольно остался на месяц, чтобы завершить свою работу по электрогемодинамике – по форме и агрегации эритроцитов своей и донорской крови! По этой теме были опубликованы в 1959 г. две брошюры («Электрические и магнитные свойства эритроцитов», «Структурный анализ движущейся крови») и монография «Биофизические механизмы реакции оседания эритроцитов» (1964).

Следующим выдающимся научным достижением Чижевского стала основанная им гелиобиология – раздел биофизики, изучающий влияние изменений активности Солнца на земные организмы.

Проанализировав исторические события за последние 2300 лет в 70 странах, Чижевский установил, что циклические (11-летние) колебания солнечного излучения отражаются не только на возникновении стихийных бедствий, изменении климата, жизнедеятельности земных организмов, но и на возникновении эпидемий, эпизоотий, обострении нервных и психических заболеваний. При этом ученый обратил внимание на 2—3-летние промежутки максимальной солнечной активности, на которые приходятся начала войн, революций, восстаний, политико-экономических кризисов. Биофизик впервые ввел в научный лексикон понятие «космическая погода». В первый раз на эту тему Чижевский высказался в докладе «Влияние пертурбаций в электрическом режиме Солнца на биологические явления» (1915), вызвавшем бурную дискуссию, а затем в работах «Физические факторы исторического процесса» (1924), «Эпидемические катастрофы и периодическая деятельность Солнца» (1930) и в «В ритме Солнца» (опубликована посмертно, 1969). Сегодня прогнозы резких колебаний солнечной активности учитывают (хотя недостаточно) в космической биологии, медицине, практике здравоохранения, в сельском хозяйстве и других отраслях науки и народного хозяйства. Открытие Чижевского еще ждет своего применения в медицине; в профилактике нервных, нервно-психических, сердечно-сосудистых и других заболеваний, в эпидемиологии (известно, что вирулентность микроорганизмов прямо зависит от некоторых электрических излучений на Солнце).

В результате многолетних экспериментов в области аэроионизации (третьей составляющей научного вклада ученого) Чижевский впервые в мировой науке установил, что отрицательно заряженные ионы воздуха благотворно влияют на животных и растения, в том числе на организм человека, а положительно заряженные угнетают их, вызывая т. н. аэроионное голодание с тяжелыми физиологическими последствиями. На электроэффлювиальный аэроионизатор для получения легких аэроионов в лечебных целях («люстру Чижевского») – самое известное изобретение Александра Леонидовича – было выдано авторское свидетельство.

Обосновав лечебные и профилактические мероприятия с использованием ионизации воздуха, ученый тем самым заложил основы инженерно-строительного направления – аэроионофикации. Предложив использовать направленный поток аэроионов для осаждения пыли и микроорганизмов из воздуха, Чижевский открыл способ очистки воздуха помещений от вредных загрязнений, а также пути борьбы с загрязнением атмосферы промышленных городов.

Попутно Чижевский «открыл простой способ получения высокодисперсных и ионизированных паров воды, лекарственных растворов и тонкой пыли твердых веществ, заложив основы, с одной стороны, электроаэрозольтерапии, а с другой – электронно-ионной технологии (в частности, электроокраски, электронанесения антикоррозионных покрытий и т. д.)». Основные труды по этому направлению – «Аэроионификация в народном хозяйстве» (1960) и «Руководство по применению ионизированного воздуха в промышленности, сельском хозяйстве и в медицине» (1959). Говорят, при аресте у Чижевского была изъята его 700-страничная монография «Аэроионы» («Электрическая медицина»), над которой он работал 25 лет. Судьба рукописи неизвестна.

В 1931 г. Наркомздрав и в 1959 г. Минздрав СССР рекомендовали использовать метод аэроионотерапии для широкого внедрения. В США, Франции, Германии, Италии, Бельгии, Японии аэроионотерапию стали применять еще до Второй мировой войны.

Ионизированный воздух «по Чижевскому» применяют ныне при лечении бронхиальной астмы, острых и хронических катаров верхних и нижних дыхательных путей, при гипертонической и гипотонической болезнях, ожогах и ранах, неврозах, коклюше у детей, радикулите, мигрени, начальной стадии туберкулеза, бессонницы…

В птицеводстве и животноводстве аэроионофикация позволяет получить дополнительный привес 10–15 %, уменьшить заболеваемость и падеж.

Аэроионизаторы применяются для обеспыливания цехов заводов; для борьбы с пневмокониозами и силикозом; для борьбы с загрязнением воздуха путем аэроионофикации заводских труб; для очищения воздуха от радиоактивной пыли на атомных станциях и атомных силовых установках; для лечебных учреждений; в быту и в помещениях с большим скоплением народа…

Философию Чижевского, относящуюся к космизму К.Э. Циолковского и В.И. Вернадского, мы здесь не рассматриваем. Но из поэтического наследия ученого приведем – в качестве лирического отступления – стихотворение «Летний дождик».

 
Нависли тучки над листвою;
Повсюду сладкий аромат;
Как душно мне перед грозою!
Как молчаливо дремлет сад!
 
 
Здесь все так томно, так уютно!
Цветки склонились головой
И ждут, пока их дождь минутный
Овеет влагой золотой.
 
 
А вот уж в дальней роще, там,
Где посреди берез и сосен
Весь день не молкнет птичий гам,
Что так шумлив, многоголосен, —
 
 
Вдруг зашуршало по листве…
И ближе, ближе и скорее
Закапал дождик по аллее,
По непокрытой голове…
 

Телеграф, радио, телевидение

Телеграф Шиллинга

Ученый-электротехник, изобретатель; этнограф, филолог, криптограф, востоковед, знаток восточных языков; член-корреспондент Петербургской АН, а также национальной корпорации французских востоковедов, член Британского общества азиатской литературы; собиратель коллекции (6600 томов) редких тибетских, монгольских, китайских и японских сочинений; переводчик и губернский секретарь в русском посольстве в Мюнхене; участник похода русской армии на Париж (1813–1814); основатель первой гражданской литографии при российском МИДе; руководитель научной экспедиции в Забайкалье и Монголию; кавалер боевого ордена Святого Владимира с бантом, обладатель именной сабли «За храбрость», барон Павел Львович Шиллинг (настоящее имя Пауль фон Шиллинг-Канштадт, 1786–1837) является создателем первого в мире электромагнитного телеграфа и первых телеграфных кодов и кабелей связи.


П.Л. Шиллинг электротехникой и изобретательством занимался между ориенталистикой и филологией, а востоковедением и древними тибетскими рукописями между минами и криптографией. Павел Львович был настолько разносторонен в своих научных пристрастиях и всесторонне талантлив, что с поразительной легкостью и с неизменным успехом мог заниматься всем на свете. Барон был легок на подъем и в общении с учеными и поэтами, с драгунами и с настоятелями тибетских храмов и монастырей. О нем знали все – от армейских саперов до российского императора.

Свое первое замечательное изобретение Шиллинг сделал в 1812 г. Ученый жил в пору триумфа «электрической мысли» и зарождения электротехники. В 1790–1810 гг. европейские и русские физики и химики совершили настоящий прорыв в этой области. Л. Гальвани открыл «животное электричество», А. Вольта изобрел источник гальванического тока – вольтов столб, В.В. Петров получил электрическую дугу.

В 1809 г. С.Т. Земмеринг построил электролитический телеграф. Шиллинг участвовал в опытах немецкого анатома в качестве любителя. Через 15 лет барон вернулся к «телеграфному» вопросу, но тогда занятия «электрогальванизмом» и химическими источниками тока подтолкнули его и к собственным исследованиям.

Не удовлетворенный допотопным способом подрыва мин длинными холщовыми рукавами, начиненными порохом, изобретатель два года искал метод, отвечающий тогдашнему уровню развития науки и техники. Ученый впервые предложил применять для дистанционного взрывания мин электрический ток, получаемый от вольтова столба. Источник тока связывался с запалом подземным или подводным кабелем длиной до 500 м. Кабель представлял собой две медные жилы, покрытые шелковой изоляцией, пропитанной раствором каучука в льняном масле – тоже изобретением барона.

Шиллинг успешно продемонстрировал свои мины на Неве в Петербурге, взорвав их под водой. Мины поступили на вооружение русской армии, однако Александр I из гуманных целей запретил их использование в начавшейся войне с французами.

Электрический запал, прославивший ученого, стал вообще запалом к его научной и изобретательской деятельности. К тому же кабель Шиллинг использовал и в главном своем изобретении – электромагнитном телеграфе.



П.Л. Шиллинг


Будучи в курсе всех научных новинок, Павел Львович не мог не обратить внимание на работы Х.К. Эрстеда и А.М. Ампера в области электромагнетизма. Эрстед нашел связь между электрическими и магнитными явлениями и продемонстрировал отклонение магнитной стрелки под действием электрического тока. Ампер предложил стрелочную индикацию магнитного поля. Идея передачи определенных знаков (букв алфавита) от одной станции (источника тока) по проводам к другой станции, оснащенной магнитными стрелками, витала в воздухе.

Шиллинг блестяще воплотил эту идею, отказавшись от нескольких десятков пар проводов, несущих информацию о каждой букве алфавита, и ограничившись всего шестью.

Электромагнитный телеграф состоял из передатчика и приемника. Передатчик напоминал игрушечный клавесин – клавишный манипулятор – восемь пар белых и черных клавиш, из которых шесть пар были соединены проводами с приборами на приемной станции, усиливающими отклонение стрелки, – мультипликаторами (умножителями). Седьмая пара соединялась с вызывным устройством, восьмая служила переключателем полярности гальванической батареи. Порядок расположения клавиш в передающем приборе и мультипликаторов в приемном был один и тот же.

При нажатии на передатчике на черную клавишу магнитная стрелка в приемнике поворачивались в одном направлении; при нажатии на белую клавишу – в другом. Вслед за магнитной стрелкой поворачивался в ту или иную сторону подвешенный черно-белый кружок. При выключении тока ребро кружка фиксировалось как черточка.

Сочетание черно-белых кружков и черточек дало первую условную азбуку – первый в мире бинарный код. Каждой букве был присвоен определенный набор белых, черных кружков и черточек. Скажем, буква А обозначалась как –, буква Б – как ●–, Р – как –●●– и т. п.

«Каждый из шести индикаторов мог принимать одно из двух рабочих положений; сочетание этих положений позволяло передать 26 кодовых единиц, то есть 64 единицы, что с избытком хватало для обозначения всех букв алфавита, цифр и специальных знаков».

Первый телеграф был готов и испытан в 1828 г., но публично свое детище после доработок Шиллинг впервые продемонстрировал 21 октября 1832 г. у себя дома. Передающий и принимающий аппараты разнесли в разные концы здания. Первую русскую телеграмму (на французском языке) составил и передал лично Николай I: «Я очень рад был посетить господина Шиллинга». Затем в течение нескольких месяцев барон радовал публику сеансами телеграфии.

Изобретение получило высокую оценку естествоиспытателей и правительства. Первая линия телеграфной связи по распоряжению императора соединила Зимний дворец и Министерство путей сообщения. Вторая линия длиною в пять верст соединила Зимний с Адмиралтейством.

История шиллинговского изобретения вполне типична – аппарат украли. Не буквально, конечно.

В 1835 г. ученый продемонстрировал телеграф в Бонне, на собрании естествоиспытателей, но не стал связываться с патентом. Незапатентованная идея привлекла многих охотников поживиться за чужой счет. Больше других в этом преуспели представители туманного Альбиона – студент У.Ф. Кук и физик Ч. Уитсон. Кук достал копии с чертежей аппарата, а Уитсон внес в конструкцию кое-какие детали. В 1837 г. Англия стала «родиной» аппарата Шиллинга. Изобретение тут же было использовано на английских железных дорогах.

Академик Б.С. Якоби, отстаивавший приоритет Шиллинга, писал, что «следит за прогрессом телеграфии для того только, чтобы предъявить права на первенство моего покойного друга». Это, увы, не помогло.

Аппарат и код изобретателя С. Морзе, занимавшегося телеграфом самостоятельно, появились на свет уже после смерти Шиллинга в 1837 г.

К сожалению, Павел Львович, занимавшийся проблемой графической регистрации сигналов, в чем преуспел американец, не успел довести это дело до конца. Хотя о чем жалеть? Все равно практическая телеграфия началась не с «кода Морзе», а с «азбуки Шиллинга», поскольку именно в ней были реализованы основные принципы, использованные Морзе.

В последующих конструкциях телеграфных аппаратов ученые шли в направлении уменьшения числа индикаторов, а значит, и проводов, но их путь был не оригинален. В одной из своих конструкций (не продемонстрированной публично) русский изобретатель разработал систему с одной парой линейных проводов.

Шиллинг намеревался также соединить телеграфом Петергоф и Кронштадт, находил в том поддержку правительства, впервые предложил линии с воздушной прокладкой неизолированных проводов, крепящихся к шестам на специальные изоляторы, но, увы-увы…

Гиперболоид инженера Шухова (Шуховская башня)

Инженер-механик, гидротехник, технолог, теплотехник, мостостроитель, архитектор, член-корреспондент и почетный член АН СССР, заслуженный деятель науки и техники РСФСР, член ВЦИК, Герой труда, Владимир Григорьевич Шухов (1853–1939) сделал столько проектов и изобретений, что о нем говорили как о «человеке-фабрике». Среди множества равновеликих достижений «первого инженера России» одним из главных можно назвать создание Шуховым «гиперболоидных башен», самой известной из которых стала радиобашня в Москве на Шаболовке (1922).


Башня на Шаболовке признана международными экспертами одним из высших достижений инженерного искусства. В 1940-х – 1960-х гг. (до Останкино) она была брендом телевидения. При нашем уважении к ТВ надо сказать, что роль этой башни не только телевизионная. Разместив в себе в 1922 г. радиостанцию имени Коминтерна, радиобашня стала не только символом радио и величия инженерной мысли, но и символом молодого государства – СССР. Автором этого сооружения является 68-летний Владимир Григорьевич Шухов, к тому времени признанный во всем мире инженер величины Л. да Винчи и Н. Теслы…

На рубеже XIX–ХХ вв. о нашей стране судили по работам Шухова. Творческий диапазон Владимира Григорьевича не знал границ. Свой след инженер оставил во многих областях техники, равно как в строительстве и архитектуре. Большей частью это были не «малые» изобретения, решавшие частные проблемы, а грандиозные технологии и конструкции, которые и по сей день служат людям и поражают воображение специалистов.

В нефтепереработке, теплотехнике, гидравлике, судостроении, военном деле, реставрационной науке Шухов прославился изобретением крекинг-процессам перегонки нефти, нефтеналивными баржами, магистральными трубопроводами, паровыми водотрубными котлами, газгольдерами, доменными и мартеновскими печами, маяками, пакгаузами, воздушно-канатными дорогами, платформами для тяжелых орудий, мостовыми кранами, минами, авиационными ангарами, трамвайными депо… Как строитель, Шухов создавал заводские цеха и первые российские нефтепроводы, проектировал крупные системы водоснабжения Москвы, Киева, Воронежа и других городов, восстанавливал разрушенные в Гражданскую войну объекты, участвовал во всех крупных стройках первых пятилеток – Магнитки, Кузнецкстроя, Челябинского тракторного, завода «Динамо».



Шуховская башня в Москве


Плодотворнейшей сферой деятельности инженера стало создание им новаторских, изящных и долговечных пространственных систем покрытий (т. н. стальных сетчатых оболочек, полюбившихся всем архитекторам XX и XXI вв.) и высотных сооружений из металла. «Можно смело утверждать: после Шухова в этой области не было сделано принципиально новых изобретений и не было создано конструкций, столь совершенных эстетически» (Е.М. Шухова). Висячие сетчатые покрытия гигантских площадей в несколько тысяч кв. метров, сетчатые своды и своды двоякой кривизны с пролетами до 40 м в XX в. стали одними из самых привычных архитектурных форм. Изобретением легких металлических арочных покрытий (перекрытие дебаркадера Киевского вокзала в Москве, стеклянные своды над ГУМом в Москве и Петровским пассажем в Санкт-Петербурге) «завершился долгий поиск инженерами всего мира наиболее рационального типа стропильной фермы. Дальнейшее ее усовершенствование стало уже невозможным. Это строго научно было доказано В.Г. Шуховым в книге “Стропила” (1897) и там же указан единственно верный путь – переход к пространственным системам, в которых все элементы конструкции при восприятии нагрузки работают как единый слаженный организм». Вес шуховских «крыш без стропил» был в 2–3 раза ниже, а прочность значительно выше, чем у традиционных типов покрытий. Они были намного проще в сборке и монтаже.

Индустриальная архитектура стала коньком Шухова, который «вывез» его в число «величайших инженеров мира» и одновременно выдающихся «художников в конструкциях», сооружения которого называют произведениями.

«Шедевр мастера» на Шаболовке принадлежит к классу т. н. гиперболоидных конструкций, введенных Шуховым в архитектуру еще в 1880-х гг. Точнее, эта форма называется однополостным гиперболоидом вращения. Грандиозный вид этой башни и ее эстетическое великолепие подвигли А.Н. Толстого к написанию «Гиперболоида инженера Гарина».

По воспоминания правнучки изобретателя Е.М. Шуховой, Владимир Григорьевич пришел к форме башни, увидев плетеную ивовую корзинку для бумаг, перевернутую вверх дном, а на ней тяжелый горшок с фикусом.

Шухов скрупулезно рассчитал конструкцию башни, способ ее монтажа и в январе 1896 г. подал заявку на привилегию «Ажурная башня». Способ устройства заключался в следующем: «Сетчатая поверхность, образующая башню, состоит из прямых деревянных брусьев, брусков, железных труб, швеллеров или уголков, опирающихся на два кольца: одно вверху, другое внизу башни; в местах пересечения брусья, трубы и уголки скрепляются между собой. Составленная таким образом сетка образует гиперболоид вращения, по поверхности которого проходит ряд горизонтальных колец. Устроенная вышеописанным способом башня представляет собой прочную конструкцию, противодействующую внешним усилиям при значительно меньшей затрате материала». Изобретателю был выдан патент Российской империи № 1896 от 12 марта 1899 г.

Первым сооружением этого типа стала 25-метровая водонапорная башня, продемонстрированная на Всероссийской промышленной и художественной выставке в Н. Новгороде (1896) и произведшая фурор. В распространенной тогда «железной архитектуре», типичным образцом которой считается Эйфелева башня, конструкция Шухова выглядела диссонансом, но куда более гармоничным, чем образцы старой школы. Рассчитанная на самый сильный ураган, с более чем двукратным коэффициентом запаса устойчивости, башня своей ажурной формой и воздушностью покорила и обывателей, и специалистов.

Гиперболоидным башням была открыта зеленая улица. За 30 последующих лет возвели сотни этих сооружений: водонапорных башен, гиперболоидных маяков, антенн, опор под резервуары, корабельных мачт на броненосцах. США вообще установили такие мачты на большинстве своих кораблей ВМФ. В конце 1920-х гг. по той же системе были сооружены опоры ЛЭП НИГРЭС.

Радиобашня на Шаболовке стала самой высокой из шуховских башен (160 м с двумя траверзами и флагштоком). Первый проект 9-секционной башни был разработан Шуховым в 1919 г. с расчетной высотой 350 м. На ее сооружение требовалось металла в 3 раза меньше, чем на 300-метровую Эйфелеву башню. Металла тогда в разоренной стране не было, и чудо, что за этот проект вообще взялись. Правда, его пришлось переделать на 6 секций общей высотой 148,3 м. «Железо» выдали по личному указанию В.И. Ленина из запасов Военного ведомства.

Строительство велось по изобретенному Шуховым «телескопическому» методу монтажа конструкций. Не было лесов и подъемных кранов. Секции по очереди монтировались на земле, внутри первой секции, после чего при помощи блоков и лебедок поднимались по принципу выдвижной подзорной трубы.

К строительству приступили 14 марта 1920 г. Руководил возведением башни сам Шухов. Из-за отсутствия материалов и квалифицированных рабочих, которым часто зарплаты не хватало на еду, работа неоднократно прерывалась, а однажды при подъеме 4-й секции произошла авария, смялись нижние секции. Авторитетная комиссия пришла к выводу, что «проект безупречен» и авария произошла из-за усталости металла. Тем не менее Шухова приговорили к «условному расстрелу» с отсрочкой исполнения приговора до завершения строительства. В ту пору Владимиру Григорьевичу и без того было тяжко: погиб его младший сын, умерла мать…

19 марта 1922 г. башня была сдана в эксплуатацию. На ней установили необходимую аппаратуру, а через полгода состоялась и первая радиопередача: концерт русской музыки с участием Н. Обуховой. Тогда же были отменены обвинения инженера во «вредительстве» и «условный расстрел».

В 1937 г. при энергичном участии 84-летнего Шухова башню переоборудовали для трансляции передач коротковолнового катодного телевидения. Через два года с передатчиков стали идти регулярные телевизионные трансляции.

Тогда же башня выдержала серьезное испытание на прочность. За трос, соединяющий гиперболоид с соседней мачтой, зацепился почтовый самолет. Аэроплан рухнул, а башня устояла.

Мода на гиперболоидные шуховские башни пришла на Запад в 1930-х гг. и не утихла до сих пор. Воспользовались идеями Шухова в своем творчестве и великие зодчие Ле Корбюзье и О. Нимейер. Отдают должное им и на Востоке. Так, в 2005–2009 гг. в Гуанчжоу (Китай) была построена подобная башня высотой 610 м.

На выставке «Инженерное искусство» в Центре Помпиду в Париже (1997) изображение Шуховской башни использовалось как логотип. На выставке «Лучшие конструкции и сооружения в архитектуре XX века» в Мюнхене (2003) был установлен позолоченный 6-метровый макет Шуховской башни.

Башня на Шаболовке объявлена памятником архитектуры и инженерной мысли, охраняется государством.

За 90 лет башня ни разу не реставрировалась и изрядно проржавела, хотя, по мнению специалистов, простоит еще не менее 50 лет. В настоящее время обсуждается вопрос о реставрации сооружения в его первозданном виде. По словам В. Шухова, правнука изобретателя, конструкция изначально напоминала куклу-неваляшку: «если на башню налагались дополнительные нагрузки, то она за счет веса и центра тяжести внизу сама себя выравнивала. В 1950-х годах нашелся умный архитектор, который все это “некрепко и ненадежно” предложил залить бетоном».

Шухов отверг множество лестных предложений уехать на Запад. Все права на свои изобретения и все гонорары он передал государству. «Мы должны работать независимо от политики. Башни, котлы, стропила нужны, и мы будем нужны».


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | Следующая
  • 0 Оценок: 0

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации