Текст книги "100 великих научных достижений России"
Автор книги: Виорель Ломов
Жанр: Биографии и Мемуары, Публицистика
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 27 (всего у книги 34 страниц)
Стволы и кристаллы Гадолина
Механик, инженер, минеролог, ученый-артиллерист, генерал от артиллерии; участник Крымской кампании; профессор физики Михайловской артиллерийской академии и Петербургского артиллерийского училища; доктор минералогии Петербургского университета; почетный профессор Московского университета; почетный академик Артиллерийской академии; академик Петербургской АН; почетный член многих русских и иностранных обществ; инспектор русских арсеналов; заведующий техническим артиллерийским училищем, постоянный член Артиллерийского комитета и различных комиссий по перевооружению армии, по воздухоплаванию и др.; кавалер ордена Александра Невского, Святого Георгия 4-й степени и других русских орденов, Командорского креста Почетного легиона, шведского ордена Короны 1-й степени; лауреат Ломоносовской премии АН, Премии им. А.В. Дядина, Большой Михайловской премии, Аксель Вильгельмович Гадолин (1828–1892) является автором теории проектирования орудий, разработчиком вопросов технологии металлов, формовки и металлообработки, а также одним из основоположников теории симметрии и антисимметрии кристаллов.
В истории русской науки имя А.В. Гадолина неразрывно связано с выдающимися достижениями ученого в теории артиллерийских орудий и в минералогии. Не станем разрывать эти достижения, тем более что труды физика – генерала от артиллерии разделить нереально, как невозможно разорвать стальные стволы спроектированных им пушек и нарушить природную гармонию открытых им кристаллов. К тому же без законов кристаллографии не обойтись при стальном литье. Недаром Гадолин «для основательного изучения физики и химии в артиллерийском училище, а также для подготовки артиллерийских приемщиков, которым необходимо было знать курс горных наук, ввел в преподавание кристаллографию».
Как ученый-артиллерист, Гадолин оставил свой след практически во всех вопросах проектирования и технологии изготовления артиллерийских орудий, от теоретических основ пороходелания до решения проблемы влияния ветра при артиллерийской стрельбе. Главным «артиллерийским» трудом Гадолина стала созданная им теория сопротивления стен орудий (теория скрепления), сыгравшая исключительно важную роль в последующем развитии артиллерии в мире.
Как физик, Аксель Вильгельмович прославился своим учебным «Курсом кристаллографии» (1873) и фундаментальным научным трудом «Вывод всех кристаллографических систем и их подразделений из одного общего начала» (1869). Эта монография по теоретической кристаллографии, поначалу отмеченная только специалистами, через шесть лет послужила основанием для награждения ученого Ломоносовской премией и его избрания действительным членом Петербургской АН, а также почетным членом многих русских и иностранных обществ. Сочинение Гадолина получило широкое признание у минералогов мира, и было включено в серию «Классики точных наук Оствальда» (Ostwald's Klassiker der exakten Wissenschaften, № 75, 1897), состоявшую из нескольких сотен классических работ по математике, физике и химии. По единодушному признанию специалистов эта работа составила эпоху в развитии кристаллографии и минералогии.
Теория скрепления орудий, состоящих из нескольких слоев, изложена Гадолиным в работах «О сопротивлении стен орудий давлению пороховых газов при выстреле» (1858) и «Теория орудий, скрепленных обручами» (1861). Этими сочинениями ученый положил начало современной теории слоистых стен орудий, ставшей азбукой проектирования артиллерийских стволов.
Теория возникла не сама по себе, а как ответ на запрос бога войны увеличить мощность артиллерийских орудий, что можно было сделать только за счет отыскания новых способов изготовления стволов, представлявших собой однослойные стальные трубы, выдерживавшие давление пороховых газов не выше 2000 атм.
А.В. Гадолин
Воспользовавшись выводами из теории упругости французского математика Г. Ламе, показавшего, что в стенке трубы, нагруженной изнутри равномерным давлением, слои металла испытывают неодинаковые напряжения – внутренние до предела, а наружные незначительно, Гадолин сразу же отказался от дальнейшего утолщения сплошных стенок и впервые предложил теорию орудий, скрепленных обручами.
Теоретические исследования привели ученого к принципиально новой конструкции ствола. Определив для орудий, составленных из нескольких концентрических слоев металла, зависимость сопротивления разрыву от числа слоев, их размера, степени обжатия, артиллерист предложил бандажный способ усиления ствола. Последовательно надевая на внутренний цилиндр раскаленный внешний, обжимающий после охлаждения внутренний, можно было получить т. н. «скрепленные» стволы, выдерживавшие огромные давления пороховых газов в тысячи атм. Новый метод (его называют еще «натягом») позволял значительно повысить живучесть, мощность и дальнобойность орудий без увеличения их веса.
Эта работа, отмеченная большою Михайловской премией, тут же была внедрена в производство. С 1865 г. Обуховский завод стал изготавливать стальные орудия, скрепленные кольцами. Впервые новая система орудий была принята на вооружение русской армии в 1867 г., а затем и в армиях зарубежных стран. Особенно важную роль теория Гадолина сыграла в проектировании крупнокалиберной корабельной и береговой артиллерии в последней четверти XIX в.
Переходя ко второй части научных достижений Гадолина, необходимо отметить, что ученый не был профессиональным кристаллографом. К решению сложнейших вопросов теоретической кристаллографии, математическую обработку которых он представил в своем «Выводе…», ученого привели его любительские занятия описательной минералогией. Данной проблемой он занимался автономно, независимо от предшественников и от современников.
Плененный геометрически правильной формой кристаллов, их симметрией при любом перемещении в пространстве, ученый попытался математически точно описать все возможные фигуры, отличающиеся числом, величиной, формой граней и углами между ними. При этом минералога прежде всего интересовали оси, плоскости и другие элементы симметрии кристаллов.
Следующим шагом исследователя стало выяснение законов геометрических фигур вообще. Основной посыл ученого состоял в том, что кристаллографическая форма есть, в сущности, такое же физическое свойство кристалла, как и все прочие его физические свойства. Ограничение было одно: рассматривались не произвольные геометрические конечные фигуры, а лишь многогранники, возможные в кристаллографии. Заметив, что в разных симметричных фигурах элементы симметрии могут сочетаться разным образом, Гадолин сводил все формы кристаллов, имеющие одинаковые элементы симметрии, в отдельный класс. Получив 32 класса макросимметрии кристаллов, ученый разбил их на 7 систем.
Полученная классификация позволила в дальнейшем по признакам симметрии заранее предсказывать свойства кристаллов (некий аналог таблицы Менделеева), поскольку внешняя симметрия кристаллов является всего лишь отражением симметрии внутренней – их физической структуры.
Проиллюстрировав свои абстрактные выводы примерами из минералогии, Гадолин полностью подтвердил свою теорию. Труд ученого был тут же востребован при решении практических задач по классификации кристаллических многогранников и лег в основу всех дальнейших изысканий в области кристаллографии.
Продолжением и развитием идеи Гадолина стали многочисленные работы кристаллографа Е.С. Федорова, получившего в 1880–1890 гг. 229 различных кристаллических строений, по отношению к которым 32 класса Гадолина являются общими отделами.
Электродвигатели Якоби и Доливо-Добровольского
Физик, инженер, электротехник, архитектор, метролог, мостостроитель, изобретатель, педагог; профессор Дерптского университета; академик императорской Санкт-Петербургской АН; лауреат Демидовской премии, обладатель Золотой медали Парижской выставки и других наград, Борис Семенович Якоби (Мориц Герман фон Якоби; 1801–1874) прославился как изобретатель гальванопластики и гальвано-ударных морских мин, создатель первых электродвигателей и магнитоэлектрических двигателей, первого электрического телеграфа и первого буквопечатающего аппарата. Электротехник, инженер, изобретатель, предприниматель; директор фирмы AEG (Allgemeine Elektricitats-Geselschaft), Михаил Осипович Доливо-Добровольский (1861–1919) является создателем фазометра, стрелочного частотомера, техники трехфазного переменного тока, трехфазного трансформатора, трехфазного асинхронного электродвигателя, первым осуществил передачу электроэнергии на большие расстояния.
Одну из самых ярких страниц в историю электротехники (так назвал в 1879 г. новую область физики один из ее создателей Э.В. Сименс) вписали в XVIII–XIX вв. наши ученые: М.В. Ломоносов, Т.В. Рихман, В.В. Петров, П.Л. Шиллинг, Э.Х. Ленц, А.Н. Лодыгин, П.Н. Яблочков, А.Г. Столетов и др.
Достойное место в этом ряду занимают Б.С. Якоби и М.О. Доливо-Добровольский. Их научные и инженерные труды обозначили в мире начало и завершение более чем полувекового периода создания современного электродвигателя, а Россию сделали его родиной. Электродвигатели русских изобретателей – на постоянном токе с непосредственным вращением якоря (Якоби) и трехфазный асинхронный электродвигатель с короткозамкнутым ротором (Доливо-Добровольский) – стали самыми совершенными электротехническими устройствами первой и второй половины XIX в. соответственно.
Началом электродвигательной истории стали работы М. Фарадея по созданию физических приборов для демонстрации преобразования электрической энергии в механическую. В 1821 г. английский ученый открыл явление вращения проводника с током вокруг полюса постоянного магнита, а в 1831 г. – явление электромагнитной индукции (появление индукционного тока в замкнутом контуре при изменении магнитного потока), чем, собственно, и зародил идею электрического двигателя.
Первые электродвигатели копировали паровые машины с возвратно-поступательным (или качательным) движением поршня с прикрепленным к нему электромагнитом. Удачной модели создано не было, поскольку вращательный момент на валу двигателей был резко пульсирующим.
Отказавшись от поршневого принципа, Якоби стал исследовать непосредственное вращение подвижной части двигателя. В 1834 г. ученый сконструировал электромеханическое устройство, основанное на принципе притяжения и отталкивания между электромагнитами. Одна группа электромагнитов располагалась на неподвижной раме (станине), а другая – на вращающемся диске (явно-полюсном якоре). Запитан двигатель был от батареи гальванических элементов. Новшеством устройства стал коммутатор, периодически разрывавший электрическую цепь и менявший полярность электромагнитов якоря. Первый электродвигатель отличался устойчивой работой и развивал мощность до 15 Вт.
Б.С. Якоби
Сообщение об эпохальном изобретении Якоби было прочитано на заседании Парижской АН, и вскоре корпус инженеров и физиков занялся исследованиями по созданию промышленного образца электродвигателя. На этом поприще определенных успехов добился американский техник Т. Девенпорт, построивший компактный двигатель (1837). Якоби приспособил свое детище для электропривода судна (лодки, вмещавшей десять пассажиров). В 1938 г. на Неве электродвигатель Якоби был успешно испытан, скорость бота составляла 2–4,5 км/ч.
Последующие годы были посвящены испытаниям различных конструкций машин, их оптимизации, уменьшению габаритов, увеличению мощности и КПД, созданию экономичного генератора взамен гальванических элементов. Однако принципиальных усовершенствований в электродвигателях на постоянном токе создано не было, хотя они и стали находить практическое применение.
В последней четверти XIX в. развитие промышленности и концентрация производства потребовали создания высокоэффективного двигателя. Тогда же новым направлением поисков стала разработка электродвигателей на переменном токе, получаемом вращением рамки в магнитном поле – этот принцип действия основан на явлении электромагнитной индукции. Переменный ток низкого напряжения затем можно было повышать до любой величины в трансформаторе и с наименьшими потерями (при передаче постоянного тока потери были колоссальны) передавать к промышленным объектам на любые расстояния. Эти две взаимосвязанные задачи с блеском решил Доливо-Добровольский.
До него многие физики и инженеры (Бейли, М. Депре, Бредли, Венстром и др.) пытались создать электродвигатель переменного тока, но ни один из них не удовлетворил промышленность. Из ряда громоздких и неэкономичных либо сложных и ненадежных машин выгодно отличался двухфазный электродвигатель Н. Теслы, построенный американским ученым на принципе вращающегося магнитного поля, и двухфазный генератор к нему, а также демонстрационная трехваттная установка итальянского физика Г. Феррариса. Эти не во всем совершенные машины стали предтечей изобретения трехфазных двигателей, которыми была поставлена точка в их дальнейшем принципиальном совершенствовании.
В 1888 г. к конструированию машины приступил Доливо-Добровольский, яснее других осознавший преимущества трехфазного тока перед двухфазным и сразу же придавший своим работам практический характер.
Сделав в обмотке машины постоянного тока ответвления от трех равноотстоящих точек якоря, применив коллектор как одноякорный преобразователь, а также новую конструкцию ротора с обмоткой – «беличью клетку», выполненного в виде стального цилиндра с просверленными в нем каналами для медных стержней, ученый получил трехфазный ток с разностью фаз 120°. Вращающееся магнитное поле возникало как раз благодаря этому сдвигу фаз.
В результате многочисленных экспериментов изобретатель разработал в 1889 г. трехфазную электрическую систему и первый асинхронный электродвигатель мощностью 100 Вт, запитанный от трехфазного одноякорного преобразователя. Двигатель, имевший фактически современный вид, мало изменившийся с тех пор, прошел успешные испытания. Благодаря своим превосходным показателям новые двигатели очень быстро получили широкое распространение.
В 1891 г. во время Международного конгресса электротехников русский ученый впервые осуществил передачу трехфазного тока на расстояние 170 км с невиданно высоким КПД 75 %.
Тогда же на Международной электротехнической выставке во Франкфурте-на-Майне перед входом на выставку был построен искусственный водопад и установлен мощный асинхронный двигатель Доливо-Добровольского на 100 л. с., который приводил в движение насос, подававший воду к водопаду.
С двигателя Доливо-Добровольского и с демонстрации электропередачи началась электрификация всех стран.
Подводная лодка Джевецкого
Кораблестроитель, инженер, конструктор, изобретатель, предприниматель, путешественник, коллекционер; участник Русско-турецкой войны 1877–1878 гг.; товарищ председателя воздухоплавательного отдела Русского технического общества; член Парижского воздухоплавательного общества; член Морского технического комитета; обладатель первой премии Международного конкурса в Париже в 1898 г. за проект подводной лодки; кавалер солдатского Георгиевского креста, Степан Карлович Джевецкий, настоящее имя Стефан Казимирович Држевецкий (1843–1938), прославился своими трудами в области судостроения, авиации и морской техники. Джевецкий является создателем первых боевых подводных лодок, оборудования и вооружения для них.
С.К. Джевецкий с одинаковым успехом занимался вопросами воздухоплавания и кораблестроения. И хотя большая часть научных работ ученого посвящена аэропланам, конструкциям воздушных винтов и теории полета, за которые он получил титул «дедушки современных самолетов» (академик А.Н. Крылов), 11 модификаций подводных лодок Джевецкого стали первыми боевыми субмаринами.
Тяга Джевецкого к конструированию подводных и воздушных судов вполне объяснима не только пристрастиями ученого, но и общей атмосферой общества второй половины XIX в., пронизанной идеями научно-технического прогресса. В 1869–1870 гг. Ж. Верн опубликовал роман «20 000 лье под водой». Весьма вероятно, покоренный верновским «Наутилусом», молодой инженер загорелся идеей создать собственный подводный корабль. Во всяком случае, сохранившийся экземпляр 4-й модификации ПЛ Джевецкого, хранящийся в зале Центрального военно-морского музея в Санкт-Петербурге, внешне точь-в-точь напоминает подводный корабль из жюльверновского романа.
Подводная лодка С.К. Джевецкого в Центральном военно-морском музее
Известно, что в 1876 г. Степан Карлович приступил к конструированию своей первой подлодки. Начавшаяся в 1877 г. Русско-турецкая война прервала его занятия, и ученый ушел добровольцем в Черноморский флот. В одном из боев была выбита половина корабельной команды. Рядового Джевецкого за храбрость наградили солдатским Георгием, а волонтер укрепился в своей идее создать для морского флота эффективное средство для борьбы с надводными кораблями противника. Он, кстати, был не одинок в этом стремлении. Русскими изобретателями были предложены несколько вариантов ПЛ, приводимых в движение электродвигателем, но Морской технический комитет отклонил их, поскольку не было самого электродвигателя.
Демобилизовавшись, инженер за полгода доработал свою конструкцию и предложил командованию проект одноместной подводной лодки, движимой силой ног человека. Лодка была построена на Одесском заводе Г. Бланшара за счет средств купца Родоконаки. (Степан Карлович всю жизнь вкладывал в свои изобретения собственные деньги либо весьма находчиво подыскивал спонсоров.)
Пятиметровая лодка обтекаемой формы из листовой стали имела баллон со сжатым воздухом для дыхания, рассчитанный на 20 минут. Сжатый воздух использовался также и для продувания водяного балласта из цистерны при всплытии лодки. Для обзора служил стеклянный колпак. Цилиндр с поршнем обеспечивал равновесие лодки в погруженном состоянии. В корпус были вмонтированы два рукава с резиновыми перчатками, что позволяло крепить мины к неприятельскому кораблю, которые затем дистанционно взрывались с помощью электрического провода.
Лодка прошла успешные испытания в 1878 г. на Одесском рейде. Перед комиссией, возглавляемой главным командиром Черноморского флота вице-адмиралом Н.А. Аркасом, Джевецкий погрузился на своей «посудине» в воду, проплыл под водой 200 м, прикрепил мину к барже и взорвал ее. Комиссия порекомендовала построить лодку больших размеров, однако вскоре окончилась Русско-турецкая война, и боевая ПЛ потеряла свою актуальность.
Изобретателя это лишь раззадорило. Через год Джевецкий предложил четырехместный вариант ПЛ (с ножным приводом), которым тут же заинтересовалось Военно-инженерное ведомство, озабоченное созданием надежной обороны приморских крепостей. Новая ПЛ имела дополнительный управляемый гребной винт в носу, служивший одновременно вертикальным рулем, благодаря чему обеспечивалось всплытие или погружение лодки на подводном ходу, два перископа и две мины.
ПЛ была продемонстрирована на Серебряном озере в Гатчине цесаревичу Александру Александровичу. Лодка произвела на будущего императора неизгладимое впечатление. Он тут же распорядился спешно построить 50 лодок, а Джевецкому за труды выплатить 100 000 рублей. За год модифицированные Джевецким лодки были построены и испытаны в Невской губе. Джевецкий лично взорвал стоящее на якоре судно. Трехместные серийные ПЛ имели водоизмещение 3,3 т, глубину погружения 12 м, скорость хода в подводном положении 4,9 км/ч.
32 лодки были отправлены в Одессу для обороны рейдов Очаковского, Севастопольского и других портов, 16 – оставлены в Кронштадте, одна передана Инженерному ведомству и еще одна – Джевецкому для дальнейших усовершенствований.
Конструктор не стал тянуть и тут же переоборудовал ее по четвертому варианту, с новым источником энергии – аккумуляторной батареей из губчатого свинца и электродвигателем, вращающим гребной винт. С этой лодки – первой в мире такого типа – началось новое направление в подводном судостроении.
В 1890-х гг. Джевецкий предложил еще ряд проектов ПЛ с механическим двигателем. За один из них (разработанный совместно с А.Н. Крыловым) – с паровыми двигателями, водоизмещением 120 т для экипажа из 12 человек – Джевецкий получил на Международном конкурсе в Париже в 1898 г. первую премию. Обтекаемая ПЛ с убирающейся рубкой могла погружаться на глубину до 20 м, имела запас хода над водой 500 миль, под водой – 300 миль и могла находиться под водой до 5 часов. Впервые подлодка была вооружена разработанными Джевецким решетчатыми торпедными аппаратами, принятыми затем на вооружение нашим, французским и итальянским флотом и применявшимися до 1940-х гг.
В 1905 г. изобретатель разработал потрясающий проект ПЛ без экипажа, управляемой дистанционно по проводам. Разумеется, построить такую лодку тогда не было никакой технической возможности, и вообще эту идею смогли воплотить лишь в XXI в.
Тогда же конструктор разработал особый тип миноносца с паровой машиной для надводного хода и электромотором для движения в почти погруженном состоянии, названный им водобронным, отклоненный, правда, Морским министерством. Другой проект – ПЛ с бензиновым двигателем как для надводного, так и для подводного хода – был утвержден. В 1909 г. первый (и последний) в мире корабль, имевший общий двигатель для подводного и надводного хода, под названием «Почтовый» вышел в море. На одном из вариантов этой ПЛ Джевецкий заменил бензиновые двигатели дизелями.
У конструктора была уйма идей: он впервые использовал водометный движитель; разработал теорию гребных винтов, нашедшую применение в вихревой теории Жуковского; сконструировал механический прибор для автоматической прокладки курса корабля на карте; предложил водолазные работы по заделке пробоин в подводной части судов…
Отдельное направление – научные труды и изобретения, связанные с авиацией. Один лишь пример. В 1912 г. Джевецкий построил и экспонировал на 4-й Международной воздухоплавательной выставке в Париже аэроплан, который был отмечен за решение вопроса устойчивости и «великолепный стиль конструктора».
Промышленный шпионаж процветал во все времена, особенно на Западе. Не обошел он стороной и Джевецкого. С ученым произошла та же самая «патентная история», что и почти со всеми русскими изобретателями. Сам конструктор, правда, придавал этому мало значения, но все же – «за державу обидно». По воспоминаниям академика А.Н. Крылова, друга Джевецкого, Степан Карлович, «хотя… и брал иногда на свои изобретения патенты, но его интересовала не столько нажива и эксплуатация патентов, сколько сам процесс изобретения, получение изящных кинематических комбинаций и преодоление встречающихся трудностей».
Половина заказа на изготовление 3-й модификации ПЛ Джевецкого была размещена на машиностроительном заводе Платто во Франции. Через 4 года изобретатель К. Губэ, имея на руках копии с чертежей русского ученого, построил и запатентовал собственную ПЛ «Губэ-1», как две капли воды похожую на оригинал, вполне устроившую морское министерство Франции.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.