Электронная библиотека » Авинаш Диксит » » онлайн чтение - страница 9


  • Текст добавлен: 27 декабря 2022, 08:20


Автор книги: Авинаш Диксит


Жанр: Личностный рост, Книги по психологии


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 9 (всего у книги 35 страниц) [доступный отрывок для чтения: 12 страниц]

Шрифт:
- 100% +
Глава 4. Прекрасное равновесие
Роль координации

Фред и Барни – охотники на кроликов, живущие в каменном веке. Однажды вечером, когда они вместе кутили, между ними завязался разговор о делах. Обменявшись мнениями, они поняли, что, объединив свои усилия, могли бы охотиться на гораздо большего зверя, такого как олень или бизон. Тот, кто охотится в одиночку, не может рассчитывать, что ему удастся завалить такого крупного зверя, как олень или бизон. Но если бы охотники объединились, каждый день охоты на оленя или бизона приносил бы в шесть раз больше мяса, чем день охоты на кроликов в одиночку. Такая кооперация дает большие преимущества: каждый охотник получит от охоты на крупного зверя в три раза больше мяса, чем от охоты на кроликов.

Фред и Барни договорились на следующий день поохотиться на крупного зверя и вернулись в свои пещеры. К сожалению, они слишком много выпили накануне и оба забыли, на какого зверя должны охотиться – на оленя или на бизона. Районы охоты на этих животных находятся в противоположных направлениях. В те времена не было мобильных телефонов, и все это происходило до того, как Фред и Барни стали соседями, поэтому они не могли быстро добраться до пещеры друг друга, чтобы выяснить, куда нужно идти. На следующее утро каждому предстояло самому принять решение.

Для того чтобы решить, куда идти, двум охотникам придется разыграть игру с одновременными ходами. Если мы обозначим количество мяса, которое получает каждый охотник за день охоты на кроликов, как одну единицу, тогда доля каждого из них в случае успешной координации усилий в охоте на оленя или на бизона составит три единицы. Следовательно, таблица выигрышей в этой игре выглядит так:



Эта игра значительно отличается от дилеммы заключенных, о которой шла речь в предыдущей главе. Проанализируем самое главное отличие. Оптимальный выбор Фреда зависит от того, что сделает Барни, и наоборот. Ни для одного из игроков не существует оптимальной стратегии вне зависимости от действий другого; в отличие от дилеммы заключенных в этой игре нет доминирующих стратегий. Следовательно, каждый игрок должен проанализировать возможный выбор другого игрока и с учетом этого искать свою оптимальную стратегию.

Фред размышляет следующим образом: «Если Барни пойдет туда, где пасутся олени, то мне достанется большая добыча, если я пойду туда же, если же я пойду на землю бизонов, то не получу ничего. Если Барни пойдет на землю бизонов, все должно быть наоборот. Вместо того чтобы рискнуть, отправиться в один из этих районов и обнаружить, что Барни пошел в другую сторону, не стоит ли мне поохотиться на кроликов самому, как я делал это всегда, пусть это и принесет мне меньше мяса? Иными словами, не следует ли мне взять одну единицу наверняка, вместо того чтобы рисковать и получить либо три единицы, либо ничего? Это зависит от того, что, по моему мнению, сделает Барни, поэтому мне нужно стать на его место и поразмышлять о том, что думает он. Но ведь он тоже гадает, что буду делать я, и пытается поставить себя на мое место! Есть ли конец у этих повторяющихся по кругу размышлений о размышлениях?»

Попытка найти квадратуру круга

Прекрасное равновесие Джона Нэша было разработано в качестве теоретического инструмента, позволяющего найти «квадратуру круга» размышлений о размышлениях по поводу выбора других игроков в стратегических играх[114]114
  Для тех читателей, которые не видели фильм A Beautiful Mind (в русском прокате «Игры разума») с участием Рассела Кроу в роли Нэша или которые не читали ставшую бестселлером биографию Джона Нэша Сильвии Назар с тем же названием, мы хотим пояснить следующее. Джон Нэш разработал фундаментальную концепцию равновесия в играх в 1950 году, после чего написал еще много работ огромной значимости для математики. После нескольких десятилетий тяжелой психической болезни Нэш выздоровел; в 1994 году он получил Нобелевскую премию по экономике. Это была первая Нобелевская премия, присужденная за исследования в сфере теории игр.


[Закрыть]
. Идея состоит в том, чтобы найти такое решение, при котором каждый участник игры выбирает стратегию, больше всего отвечающую его интересам, в ответ на стратегию другого игрока. Если в игре складывается такая ситуация, ни у одного из игроков нет причин менять свой выбор в одностороннем порядке. Следовательно, это и есть потенциально устойчивый результат игры, в которой игроки делают индивидуальный и одновременный выбор своих стратегий. Для начала проиллюстрируем эту идею на нескольких практических примерах, затем обсудим, в какой степени равновесие Нэша позволяет предсказать результаты различных игр; при этом обоснуем причины для осторожного оптимизма и для использования равновесия Нэша в качестве отправной точки анализа практически всех игр.

Проанализируем эту концепцию на примере ценовой игры между компаниями Rainbow’s End и B. B. Lean. В главе 3 у них было только два варианта цены на рубашку: 70 и 80 долларов. Каждая из компаний испытывала сильное искушение снизить эту цену. Теперь увеличим число вариантов выбора, предоставив им возможность менять цену на один доллар в более низком ценовом диапазоне, от 42 до 38 долларов[115]115
  Шаг изменения цены в 1 доллар и ограниченный диапазон цен выбраны здесь только для того, чтобы упростить первое знакомство с этой игрой. Далее описан пример, в котором каждая компания может выбирать цену из непрерывного диапазона значений.


[Закрыть]
. В предыдущем примере говорится о том, что, если обе компании назначат цену 80 долларов, каждая из них продаст 1200 рубашек. Если одна из компаний снизит цену на один доллар, а другая оставит ее неизменной, тогда компания, снизившая цену, привлечет 100 покупателей: 80 покупателей, перешедших от какой-либо другой компании, и 20 новых – это могут быть покупатели, которые решат приобрести рубашку, которую не купили бы по более высокой цене. Если обе компании снизят цену на один доллар, имеющиеся покупатели не станут менять свои привычки, но у каждой компании появится 20 новых покупателей. Следовательно, если обе компании назначат цену 42 доллара вместо 80, каждая из них получит 38 × 20 = 760 покупателей сверх первоначальных 1200. В этом случае каждая компания продаст по 1960 рубашек и получит прибыль (42–20) × 1960 = 43 120 долларов. Выполнив аналогичные расчеты для других комбинаций цен, получим следующую таблицу выигрышей для этой игры:


ЗАДАЧА ДЛЯ ТРЕНИРОВКИ МЫШЛЕНИЯ № 2

Попробуйте построить эту таблицу в Excel.

Ответ вы сможете найти в конце книги, в разделе «Решения».

Эта таблица может показаться сложной, но на самом деле построить ее очень легко с помощью Microsoft Excel или любой другой программы табличных вычислений.

Оптимальные ответные ходы

Проанализируем ход мыслей менеджеров RE, отвечающих за установление цен. (С этого момента будем для краткости говорить «ход мыслей RE» и «ход мыслей BB».) Если RE считает, что BB выберет цену 42 доллара, тогда прибыль RE в случае выбора других возможных цен отображена в левом нижнем углу каждой ячейки первого столбца прибылей в представленной таблице. Максимальное из этих пяти чисел – 43 260 долларов, что соответствует цене 41 доллар. Следовательно, это и есть оптимальный ответный ход RE в случае, если BB выберет 42 доллара. Точно так же можно определить следующие оптимальные ходы RE: 40 долларов в случае, если, по мнению RE, компания BB выберет 41, 40 или 39 долларов, и 39 долларов – если BB выберет 38 долларов. Для наглядности мы выделили эти цифры в таблице жирным шрифтом. Оптимальные ответные ходы BB на различные варианты выбора RE показаны в верхних правых углах соответствующих ячеек и тоже выделены жирным шрифтом.

Прежде чем двигаться дальше, сделаем два замечания об оптимальных ответных ходах. Во-первых, необходимо внести ясность в значение самого термина. В данном примере две компании делают свой выбор одновременно. Следовательно, в отличие от ситуации в главе 2 каждая компания не может увидеть выбор другой стороны, чтобы ответить на него своим оптимальным ходом, выбранным с учетом решения первой компании. Вместо этого обе компании формирует свою субъективную оценку (которая может основываться на размышлениях, на опыте или на обоснованных предположениях) по поводу того, каким может быть выбор другой компании, и делает ответный ход в соответствии с этой оценкой.

Во-вторых, не всегда самое лучшее решение состоит в том, чтобы продавать свою продукцию по более низкой цене, чем другая компания. Если RE считает, что BB выберет 42 доллара, RE следует выбрать более низкую цену, а именно 41 доллар. Однако если RE считает, что BB выберет 39 долларов, лучший ответный ход RE – более высокая цена, 40 долларов. Выбирая оптимальную цену, компания RE должна учесть два противоположных соображения: продажа продукции по более низкой цене, чем у BB, позволит RE увеличить объем сбыта, но маржа прибыли на единицу проданной продукции снизится. Если RE считает, что BB назначит очень низкую цену, тогда снижение маржи прибыли RE на единицу продукции из-за продажи товаров по цене ниже BB может оказаться слишком большим, поэтому для RE может быть выгоднее пойти на сокращение объема сбыта, чтобы получить более высокую маржу прибыли на каждую проданную рубашку. В самом крайнем случае, если RE считает, что BB будет продавать рубашки по себестоимости, составляющей 20 долларов, установление такой же цены не принесет RE никакой прибыли. Следовательно, RE лучше выбрать более высокую цену, сохранить при этом часть лояльных потребителей и получить от них хотя бы какую-то прибыль.

Равновесие Нэша

Вернемся к таблице и внимательно изучим оптимальные ответные ходы каждой компании. Сразу же обращает на себя внимание следующий факт: в одной из ячеек (той, в которой каждая компания выбирает цену 40 долларов) выделены жирным шрифтом обе цифры, отображающие прибыль, которую может получить каждая компания, а именно 40 тысяч долларов. Если RE считает, что BB выберет цену 40 долларов, ее оптимальная цена тоже составит 40 долларов, и наоборот. Если обе компании назначат на свои рубашки цену 40 долларов, субъективная оценка каждой из этих компаний в отношении цены другой компании будет подтверждена фактическим результатом. В таком случае у одной компании не будет причин для изменения цены, если ей станет известна информация о том, какую цену выбрала другая компания. Следовательно, эти варианты выбора образуют в данной игре устойчивую конфигурацию.

Такой результат игры, при котором каждый игрок предпринимает действия, оптимальные с точки зрения его субъективной оценки действий другого игрока, а действия всех игроков соответствуют такой субъективной оценке, и есть та самая «квадратура круга» размышлений о размышлениях. Следовательно, этот результат можно смело назвать точкой покоя в размышлениях игроков, или равновесием данной игры. Собственно говоря, это и есть определение равновесия Нэша.

Для того чтобы отметить равновесие Нэша в данном примере, мы выделили соответствующую ячейку таблицы серым цветом; то же самое будем делать и в следующих таблицах.

Описанная в главе 3 ценовая игра, в которой было только два варианта цен (80 и 70 долларов), – это пример дилеммы заключенных. Более общая игра с несколькими вариантами цен относится к той же категории игр. Если бы две компании смогли заключить достоверный осуществимый договор о согласованных действиях, это позволило бы обеим назначить на свою продукцию гораздо более высокую цену, чем 40 долларов, которую предлагает равновесие Нэша, и это обеспечило бы им обеим более высокую прибыль. Как мы определили в главе 3, если обе компании назначат на свою продукцию цену 80 долларов, они заработают по 72 тысячи долларов против 40 тысяч, полученных согласно равновесию Нэша. Это означает, что потребители могут оказаться в крайне невыгодном положении, если в какой-то отрасли сформируются монополия или картель производителей.

В приведенном примере у обеих компаний были симметричные позиции в отношении таких показателей, как себестоимость и число проданных единиц продукции по каждой комбинации цен. В общем случае не обязательно должно быть именно так: тогда будет получено равновесие Нэша с разными ценами у двух компаний. Тем из вас, кто хочет лучше овладеть всеми этими методами и концепциями, предлагаем решить следующую задачу (желающие могут посмотреть ответ в разделе «Решения»).

ЗАДАЧА ДЛЯ ТРЕНИРОВКИ МЫШЛЕНИЯ № 3

Предположим, компания Rainbow’s End нашла поставщика более дешевых рубашек, поэтому ее цена снизилась с 20 до 11,6 доллара, тогда как в B. B. Lean осталась прежняя цена – 20 долларов. Сделайте перерасчет таблицы выигрышей и найдите новое равновесие Нэша.

У ценовой игры есть много других аспектов, но они более сложны, чем тот материал, который мы рассматривали до настоящего момента. Поэтому проанализируем эти аспекты далее в данной главе. В заключение текущего раздела сделаем несколько общих комментариев по поводу равновесия Нэша.

Есть ли равновесие Нэша в каждой игре? Ответ: в большинстве случаев да, при условии, что мы обобщим концепцию действий или стратегий, разрешив смешивание ходов. Именно это условие было указано в знаменитой теореме Нэша. Мы рассмотрим концепцию смешивания ходов более подробно в следующей главе. Игры, в которых нет равновесия Нэша даже в случае смешивания ходов, настолько сложны или трудны для понимания, что их углубленное изучение под силу только специалистам по теории игр.

Можно ли считать равновесие Нэша эффективным решением в играх с параллельными ходами? Некоторые аргументы и доказательства по этому вопросу изложены в данной главе далее, и наш ответ будет сдержанно-утвердительным.

Есть ли в каждой игре единственное равновесие Нэша? Нет. Рассмотрим ряд важных примеров игр с несколькими равновесиями Нэша, а также проанализируем новые вопросы, возникающие в связи с этим.

Какое равновесие выбрать?

Давайте попробуем применить теорию Нэша к игре в охоту. Найти оптимальные ответные ходы в этой игре достаточно легко. Фреду следует просто сделать тот же выбор, который, по его мнению, сделает Барни. Вот каким будет результат:



Следовательно, в этой игре есть три равновесия Нэша[116]116
  Если разрешено смешивание ходов, есть и другие равновесия Нэша. Но они несколько необычны и представляют главным образом сугубо теоретический интерес. Мы вкратце рассмотрим их в главе 5.


[Закрыть]
. Какое из них выберут в итоге оба игрока? Или они вообще не смогут достичь равновесия в этой игре? Концепция равновесия Нэша сама по себе не дает ответов на эти вопросы. Для этого необходим дополнительный анализ, основанный на других рассуждениях.

Если бы Фред и Барни встретились на холостяцкой вечеринке[117]117
  Stag party от stag (англ.) – «олень-самец». Прим. пер.


[Закрыть]
, которую устроил их общий друг, выбор охоты на оленя оставил бы более заметный след в их памяти. Если бы согласно обычаям их общины глава семьи говорил, отправляясь на охоту: «Пока, сынок»[118]118
  Bye, son (англ.) созвучно с «бизон». Прим. пер.


[Закрыть]
, – более очевидным для них был бы выбор охоты на бизона. Но если бы в семье было принято говорить на прощание: «Береги себя», – более значимым был бы безопасный выбор, гарантирующий хотя бы какое-то количество мяса независимо от выбора другого охотника, а именно охота на кролика.

А что именно представляет собой эта «значимость»? Одна стратегия, скажем, охота на оленя, может быть значимой для Фреда, но этого недостаточно для того, чтобы он выбрал именно ее. Он должен спросить себя, является ли эта стратегия столь же значимой для Барни. А это, в свою очередь, поднимет вопрос о том, считает ли Барни эту стратегию значимой для Фреда. Выбор одного из нескольких равновесий Нэша требует решения той же задачи с размышлениями о размышлениях, что и сама концепция равновесия Нэша.

Для того чтобы такая «значимость» позволяла решить эту задачу, она должна включать в себя несколько уровней. Успешный выбор одного из равновесий Нэша в ситуации, когда оба игрока размышляют и действуют изолированно друг от друга, сводится к такой цепочке рассуждений: для Фреда должно быть очевидным, что для Барни очевидно, что для Фреда очевидно… что это правильный выбор. Если равновесие подразумевает выбор, очевидный до бесконечности в данном смысле, иными словами, если на нем сходятся ожидания игроков, мы называем это фокальной точкой. Это одна из нескольких новаторских концепций, которые ввел в теорию игр Томас Шеллинг.

Существование такой фокальной точки в игре зависит от многих условий, самое важное из которых – общий опыт игроков, который может быть историческим, культурным, лингвистическим или совершенно случайным. Вот несколько примеров, иллюстрирующих эту идею.

Начнем с одного из классических примеров Шеллинга. Предположим, вам сказали, что вы должны встретиться с кем-то в Нью-Йорке в назначенный день, но не сказали, где и когда. Вы даже не знаете, с кем именно вы должны встретиться, поэтому не можете связаться с этим человеком заранее (но вам сказали, что вы узнаете друг друга, когда встретитесь). Вам сказали также, что другой человек получил те же инструкции.

На первый взгляд ваши шансы на успех могут показаться довольно низкими: Нью-Йорк – огромный город, да и день длится долго. Но на самом деле многие люди успешно решают эту задачу. Со временем встречи все просто: полдень – это очевидная фокальная точка; ожидания сходятся на ней почти инстинктивно. С местом встречи немного сложнее, но в Нью-Йорке не так много ориентиров, на которых могут сойтись ожидания игроков. Это существенно сужает диапазон выбора и повышает вероятность успешной встречи.

Томас Шеллинг провел эксперименты с участием людей, приехавших из Бостона и Нью-Хейвена. В те времена эти люди должны были отправиться в Нью-Йорк поездом и приехать на Центральный вокзал; для них фокальной точкой были бы часы на этом вокзале. В наши дни многие люди выбрали бы в качестве места встречи Эмпайр-Стейт-билдинг – возможно, из-за фильма Sleepless in Seattle («Неспящие в Сиэтле») или An Affair to Remember («Незабываемый роман»). Для других очевидным «перекрестком миров» стала бы площадь Таймс-сквер.

Один из нас (Барри Нейлбафф) провел этот эксперимент в рамках ТВ-шоу Primetime на канале АВС, в программе под названием Life: The Game («Жизнь – игра»)[119]119
  Шоу Life: The Game («Жизнь – игра») вышло в эфир 16 марта 2006 года. Продолжение этого шоу, в котором угрозе было противопоставлено позитивное подкрепление, вышло в эфир 20 декабря 2006 года.


[Закрыть]
. Шесть пар совершенно незнакомых людей отвезли в разные районы Нью-Йорка и попросили найти другие пары, не имея никакой информации, за исключением того, что другая пара будет искать их на тех же условиях. Обсуждение плана действий проходило в каждой паре в полном соответствии с логикой Шеллинга. Каждая пара анализировала, каким может быть очевидное место встречи, а также что думают по этому поводу участники другой пары. Одна команда (скажем, команда А) пришла в своих рассуждениях к выводу о том, что другая команда (команда Б) тоже в это же время размышляла о том, что очевидно для команды А. В итоге три пары прибыли к Эмпайр-Стейт-билдинг и еще три пары – на Таймс-сквер. Все пары выбрали полдень в качестве времени встречи. Но им предстояло разобраться еще с некоторыми вопросами: в Эмпайр-Стейт-билдинг две смотровые площадки на разных уровнях, а Таймс-сквер – очень большая площадь. Однако участники эксперимента проявили находчивость (в том числе использовали таблички с надписями), благодаря чему всем шести парам удалось найти друг друга[120]120
  Участники одной пары почти час сидели возле Эмпайр-Стейт-билдинг, ожидая полудня. Было бы гораздо лучше, если бы они решили подождать в самом здании. Интересно также то, что команды, состоявшие из мужчин, бегали из одного места в другое (Автобусный терминал Портового управления, Пенсильванский вокзал, Таймс-сквер, центральный железнодорожный вокзал, Эмпайр-Стейт-билдинг) без каких-либо табличек с надписями, которые помогли бы им найти другую команду. Как и следовало ожидать, мужские команды даже встречались, но так и не узнали друг друга. Напротив, участницы женских пар сразу же сделали такие таблички. Они выбрали одно место и ждали там, когда их найдут.


[Закрыть]
.

Для успешного решения такой задачи важно не то, что место очевидно для вас или для других игроков, а то, что для каждого из вас очевидно, что для других очевидно, что… И если Эмпайр-Стейт-билдинг соответствует этому критерию, значит каждая команда должна отправиться именно туда, даже если кому-то не совсем удобно туда добираться, поскольку это единственное место, в котором каждая команда может рассчитывать найти другую. Если бы в игре участвовали только две команды, одна из них могла бы подумать, что очевидная фокальная точка – это Эмпайр-Стейт-билдинг, а другая – что Таймс-сквер столь же очевидное место встречи; в таком случае эти две команды не смогли бы встретиться.

Профессор Дэвид Крепс из Стэнфордской школы бизнеса провел на занятиях следующий эксперимент. Каждый из двух студентов должен был сделать выбор, не имея возможности обменяться информацией с другим студентом. Их задача состояла в том, чтобы разделить между собой список городов. Одному студенту достался Бостон, другому – Сан-Франциско (эта информация была открытой, так что оба знали города друг друга). Затем каждому дали список из девяти американских городов (Атланта, Чикаго, Даллас, Денвер, Хьюстон, Лос-Анджелес, Нью-Йорк, Филадельфия и Сиэтл) и предложили выбрать несколько из этих городов. Если студенты получали в результате два непересекающихся подмножества городов, каждому из них давали приз. Но если в их общем списке не хватало одного города или были повторения, они оба ничего не получали.

Сколько равновесий Нэша существует в этой игре? Если студент, за которым закреплен Бостон, выберет, скажем, Атланту и Чикаго, а студент, которому достался Сан-Франциско, – остальные города (Даллас, Денвер, Хьюстон, Лос-Анджелес, Нью-Йорк, Филадельфию и Сиэтл), это и есть равновесие Нэша: учитывая выбор одного игрока, любое изменение выбора, сделанного другим игроком, приведет либо к пропуску, либо к совпадению городов в их списках и снизит выигрыш того, кто отклонился от равновесия. Такая же аргументация применима в случае, если один студент выберет Даллас, Лос-Анджелес и Сиэтл, а другой – шесть оставшихся городов. Иными словами, в данной игре существует столько равновесий Нэша, сколько существует способов разделить список из девяти чисел на два разных подмножества. Существует 29 = 512 таких способов; следовательно, в данной игре присутствует огромное число равновесий Нэша.

Могут ли у участников этой игры сойтись ожидания, которые создадут фокальную точку? Если оба игрока были американцами или жили в США уже достаточно долго, в 80 процентах случаев они делили список по географическому принципу: студенты, за которыми был закреплен Бостон, выбирали города, расположенные к востоку от Миссисипи, а студенты, за которыми был закреплен Сан-Франциско, – к западу[121]121
  Возможно, через несколько лет этот метод станет неэффективным, если информация о снижении уровня географических знаний среди американских школьников соответствует истине.


[Закрыть]
. Такая координация была гораздо менее вероятной, если один или оба студента не являлись гражданами США. Следовательно, национальность или культура могут способствовать созданию фокальной точки. Когда в ходе эксперимента Крепса у пар студентов не было общего опыта, порой они выбирали города по алфавиту, но даже в этом случае отсутствовала очевидная точка раздела. Если бы общее число городов в списке было четным, фокальной точкой могло бы стать разделение списка поровну, но с девятью городами сделать это невозможно. Таким образом, нельзя утверждать, что игроки всегда найдут способ выбрать одно из множества равновесий Нэша благодаря сходимости своих ожиданий; вполне возможно, что им не удастся найти фокальную точку[122]122
  Игра в разделение списка городов может показаться неинтересной или не имеющей отношения к делу, но подумайте о двух компаниях, которые пытаются разделить между собой американский рынок, с тем чтобы получить в своем сегменте бесспорную монополию. Антимонопольные законы США запрещают явный сговор с этой целью. Для того чтобы компании пришли к молчаливому взаимопониманию, необходимо, чтобы их ожидания сошлись. Результаты эксперимента Крепса говорят о том, что две американские компании могут добиться в данной ситуации большего, чем американская и зарубежная компании.


[Закрыть]
.

Далее предположим, что каждому из двух игроков предложили выбрать натуральное число. Если оба игрока выбирают одно и то же число, каждый из них получает приз. Если оба выбирают разные числа, они не получают ничего. В подавляющем большинстве случаев выбор выпадает на число 1: это первое число ряда целых (натуральных) чисел; это наименьшее число и так далее; следовательно, оно и есть фокальная точка. В данном случае причины, по которым это число выделяется среди других чисел, носят сугубо математический характер.

Томас Шеллинг приводит в качестве иллюстрации пример, когда двое или больше людей приходят вместе в людное место и теряют друг друга. Куда должен пойти каждый из них, чтобы встретиться с остальными? Если бы в таком месте, скажем в универмаге или на железнодорожном вокзале, было специальное окошко под названием «Потерявшиеся» или «Найденные», оно вполне могло бы стать фокальной точкой. В данном случае причины того, что мост заметен, носят лингвистический характер. Иногда места встречи создаются специально для того, чтобы обеспечить сходимость ожиданий. Например, в Германии и Швейцарии на многих вокзалах выделены места с хорошо заметными указателями Treffpunkt («Место встречи»).

В игре во встречу замечательно не только то, что в ней два игрока находят друг друга, но и то, что фокальная точка играет большую роль во многих других случаях стратегического взаимодействия. Один из самых важных примеров такого взаимодействия – Фондовый рынок. Джон Мейнард Кейнс – пожалуй, самый известный экономист ХХ столетия – объяснял поведение фондового рынка, проводя аналогию с популярным в те времена газетным конкурсом. Во время такого конкурса в газете печаталось несколько фотографий лиц, а читатели должны были угадать, какое именно лицо посчитает самым красивым большинство участников голосования[123]123
  «Деятельность инвесторов-профессионалов можно уподобить тем газетным конкурсам, в которых участникам предлагается отобрать шесть самых хорошеньких лиц из сотни фотографий и приз присуждается тому, чей выбор наиболее близко соответствует среднему вкусу всех участников состязания. Таким образом, каждый из соревнующихся должен выбрать не те лица, которые лично он находит наиболее привлекательными, а те, которые, как он полагает, скорее всего, удовлетворяют вкусам других, причем все участники подходят к проблеме с той же точки зрения. Речь идет не о том, чтобы выбрать самое красивое лицо по искреннему убеждению выбирающего, и даже не о том, чтобы угадать лицо, действительно удовлетворяющее среднему вкусу. Тут мы достигаем третьей степени, когда наши способности направлены на то, чтобы предугадать, каково будет среднее мнение относительно того, каково будет среднее мнение». См.: Мейнард К. Дж. Общая теория занятости, процента и денег. М.: Эксмо, 2008.


[Закрыть]
. В этой ситуации логика рассуждений сводится к следующему: о каком лице большинство людей подумают, что большинство других людей подумают, что большинство других подумают… что оно самое красивое. Если бы лицо одного из участников конкурса было существенно красивее всех остальных, оно и стало бы необходимой фокальной точкой. Но задача читателей редко бывала столь простой. Представьте себе, что есть сотня финалистов конкурса, которых почти невозможно отличить друг от друга, разве что по цвету волос. Из сотни финалистов только у одного рыжие волосы. Вы выбрали бы рыжеволосого?

Следовательно, задача состоит не в том, чтобы составить однозначное мнение о красоте, а в том, чтобы найти фокальную точку этих размышлений. Как же достичь согласия в этом? Читатели должны найти такое согласие, не имея возможности общаться друг с другом. Можно рассуждать по принципу «выбрать самого красивого человека», но сделать это гораздо труднее, чем выбрать рыжеволосого человека, или человека с симпатичной щелью между передними зубами (как у Лорен Хаттон), или человека с родинкой (как у Синди Кроуфорд). Все, что отличает человека от других, становится фокальной точкой и обеспечивает сходимость ожиданий. Именно поэтому не стоит удивляться, что многие из лучших моделей мира не обладают совершенной внешностью; они скорее почти идеальны, но у них есть какой-либо милый изъян, который придает их внешнему виду индивидуальность и привлекает к себе всеобщее внимание, а значит, играет роль фокальной точки.

Кейнс использовал конкурсы красоты как метафору для фондового рынка, где каждый инвестор стремится купить акции, которые вырастут в цене, а значит, акции, курс которых повысится, по мнению широкого круга инвесторов. «Горячие» акции – это акции, по поводу которых все думают, что все думают… что это «горячие» акции. Тот факт, что акции разных компаний пользуются повышенным спросом в разное время, объясняется разными причинами, такими как хорошо разрекламированное первичное размещение акций, рекомендация известного аналитика и так далее. Концепция фокальной точки позволяет объяснить, почему такое большое внимание привлекают к себе круглые числа, например 10 000 в случае индекса Доу-Джонса или 2500 в случае индекса NASDAQ. Эти индексы рассчитываются на основании стоимости акций, входящих в состав соответствующего портфеля. Число 10 000 не имеет никакого внутреннего значения; оно служит в качестве фокальной точки только потому, что ожидания чаще сходятся на круглых числах.

Смысл всего сказанного состоит в том, что равновесие вполне может быть выбрано под влиянием порыва. Не существует фундаментального закона, который гарантировал бы, что будет выбрана самая красивая участница конкурса красоты или что лучшие акции будут расти в цене быстрее всех. Есть только факторы, которые способствуют этому. Высокая прогнозируемая прибыль на акцию – это то же самое, что внешность участницы конкурса красоты: одно из множества необходимых, но ни в коем случае не достаточных условий, требуемых для того, чтобы обуздать не поддающиеся контролю порывы и предпочтения.

Многим специалистам по теории математических игр не нравится зависимость исхода игры от исторических, культурных или лингвистических факторов или от условных инструментов, таких как круглые числа. Они предпочли бы, чтобы решение зависело только от абстрактных математических фактов об игре, таких как число игроков, стратегии, имеющиеся в распоряжении каждого из них, а также выигрыш каждого игрока в зависимости от стратегии, выбранной другими игроками. Мы не согласны с этой точкой зрения. Мы считаем закономерным тот факт, что исход игры, в которую играют люди, взаимодействующие друг с другом в обществе, зависит от социальных и психологических аспектов этой игры.

Возьмем в качестве примера ведение переговоров по поводу заключения той или иной сделки. В этом случае интересы игроков совершенно несовместимы: большая доля для одного означает меньшую долю для другого. Однако во многих случаях, если сторонам не удается договориться, обе не получают ничего и могут понести серьезные убытки – например, когда срываются переговоры по поводу заработной платы, после чего начинается забастовка или наступает локаут (временная остановка работы по инициативе работодателя). Интересы обеих сторон таких переговоров совпадают в том смысле, что обе стремятся избежать подобных разногласий. Они могут сделать это, если найдут фокальную точку, а также если каждая сторона считает, что другая больше ничего не уступит. Именно поэтому так часто встречается вариант разделения 50:50. Это простой и понятный вариант, у которого есть одно важное преимущество: он кажется справедливым. Кроме того, при наличии таких соображений этот вариант обеспечивает сходимость ожиданий.

Рассмотрим в качестве примера проблему чрезмерно высокой оплаты труда генеральных директоров компаний – CEO. Во многих случаях СЕО действительно заботятся о своей репутации. Получит ли такой человек 5 или 10 миллионов долларов, на самом деле не окажет большого влияния на его жизнь. (Нам легко так говорить, поскольку для нас обе цифры не более чем абстракция.) Какое же «место встречи» интересует большинство СЕО? Быть исключительным. Каждый стремится оказаться в верхней половине лучших. Все СЕО хотят «встретиться» именно там. Проблема в том, что это «место встречи» может вместить в себя только половину желающих. Но они обходят эту проблему благодаря повышению заработной платы. Каждая компания платит своему СЕО больше средней заработной платы топ-менеджеров за предыдущий год, чтобы все думали, будто у них исключительный генеральный директор. В итоге происходит необоснованное повышение заработной платы СЕО до чрезвычайно высокого уровня. Для того чтобы решить эту проблему, необходимо найти другую фокальную точку. Например, в прошлом СЕО компаний заслуживали серьезную репутацию благодаря бескорыстному служению обществу. Соперничать в этом направлении – хорошая мысль во всех отношениях. Текущая фокальная точка в плане оплаты труда топ-менеджеров сформировалась под влиянием опросов Business Week и консультантов по вопросам бизнеса. Изменить эту ситуацию будет нелегко.

Вопрос справедливости – это также вопрос выбора фокальной точки. В Декларации целей развития на пороге тысячелетия, а также в книге Джеффри Сакса The End of Poverty[124]124
  Джеффри Сакс. Конец бедности. Экономические возможности нашего времени. – М.: Издательство Института Гайдара, 2011.


[Закрыть]
говорится о том, что, если выделить на развитие всего один процент ВВП, можно к 2025 году покончить с нищетой. Главное здесь то, что фокальная точка вклада в развитие выражена в процентах от доходов, а не в абсолютном значении. Это означает, что богатые страны должны сделать более весомый вклад, чем бедные. Очевидная справедливость этого принципа может обеспечить сходимость ожиданий в данном вопросе. Но будут ли обещанные средства действительно выделены, остается только гадать.

Игры «семейный спор» и «трус»

В охотничьей игре интересы двух игроков полностью совпадают: оба отдают предпочтение одному из двух вариантов равновесия в охоте на крупного зверя, а единственная проблема заключается в том, чтобы их субъективные оценки сошлись в фокальной точке. Теперь проанализируем еще две игры, в которых тоже есть не одно равновесие Нэша, но присутствует конфликт интересов. Каждая из этих игр позволяет почерпнуть интересные идеи по поводу стратегии.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации