Текст книги "Изобретение науки. Новая история научной революции"

Автор книги: Дэвид Вуттон
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 13 (всего у книги 48 страниц) [доступный отрывок для чтения: 16 страниц]
Портрет Пачоли иллюстрирует, что после открытия законов перспективы математика и искусство шли рука об руку. Пьеро делла Франческа написал несколько работ по математике (сохранились две: «Трактат об абаке» и «Книга о пяти правильных телах), в которых рассматриваются практические проблемы, например вычисление количества зерна в конической куче или объема вина в бочонке, а также книгу «О перспективе в живописи»{396}396
Baxandall. Painting and Experience in Fifteenth-century Italy (1972).
[Закрыть]. Подобные задачи превращают реальные объекты – кучи зерна, бочонки с вином – в абстрактные формы, к которым можно применить законы математики. Публикации Пачоли воспроизводят материалы из книг Пьеро. Пачоли дружил не только с Леонардо, но и с Альберти, с которым в молодости несколько месяцев жил вместе. Сам он не был художником, но в трактате «О божественной пропорции» рассматривал золотое сечение, законы архитектуры и разновидности шрифтов. Нам Пачоли известен в основном объемным трудом, на котором на картине лежит додекаэдр: «Сумма арифметики, геометрии, отношений и пропорций» (Summa de arithmetica, geometria, proportioni et proportionalità, 1494). Это был учебник прикладной математики, и в нем впервые в письменном виде излагались принципы двойной записи в бухгалтерском учете – новой была не сама система, а ее публикация; Пачоли просто воспользовался очевидной возможностью{397}397
Gleeson-White. Double Entry (2011). Я надеюсь еще вернуться к влиянию двойной записи в бухгалтерском деле на идеи рациональности в начале современного периода истории.
[Закрыть].
§ 4
Живопись с использованием законов перспективы требует необычной формы абстракции: построения точки схода. Следует отметить, что сам этот термин относительно новый: в английском языке он впервые появляется в 1715 г. Альберти называет ее центральной точкой (il punto del centro), а во многих ранних текстах о ней упоминают как о горизонте{398}398
Panofsky. Perspective as Symbolic Form (1991). 143: переводя Палладио, Панофски отмечает, что «горизонт… в старой терминологии всегда означает «точку схода».
[Закрыть]. Однако Альберти совершенно определенно указывает, что изображение в перспективе с одной точкой схода изменяется, «как бы уходя в бесконечность»{399}399
Alberti. On Painting (1991). 54 (§ 19).
[Закрыть]. Интеллектуала эпохи Возрождения это утверждение ставило в тупик. Вселенная Аристотеля конечна и имеет сферическую форму; более того, она не окружена бесконечным пространством, а пустого пространства вообще не существует. И действительно, Аристотель не разделял пространство и заполняющие его объекты. Поэтому для него любое пространство конечно и ассоциируется с местом, а идея бесконечного продолжения концептуально противоречива, как и идея вакуума{400}400
Hintikka. Aristotelian Infinity (1966); полезно прочесть работу Charleton. Physiologia Epicuro-Gassendo-Charletoniana (1654). 62–71, где делается попытка сформулировать понятие пространства.
[Закрыть].
Разумеется, это не верно в геометрии Евклида, где параллельные линии можно продолжать до бесконечности, и они никогда не пересекутся (следует добавить, что и в оптике Альхазена тоже). Однако на бесконечном расстоянии вы ничего не увидите. Таким образом, если вы хотите работать с точкой схода, то полезно определить такое понятие, как «ничто». У Евклида не было нуля, который появился в Европе в начале XIII в. вместе с арабскими цифрами (на самом деле только одна из десяти цифр является арабской; остальные индийские). Арабские цифры сделали возможными ведение документированной бухгалтерии с двойной записью. Ноль – чрезвычайно полезное, хотя и необыкновенно загадочное понятие; вероятно, только культура, использующая ноль, могла воспринять идею, что точка схода может быть одновременно точкой, где ничего невозможно увидеть, и ключом к интерпретации живописи{401}401
Rotman. Signifying Nothing (1993).
[Закрыть].
Появление понятия точки схода привело к тому, что художники обнаружили, что живут одновременно в двух несовместимых мирах. С одной стороны, они знали, что Вселенная конечна. С другой стороны, геометрия перспективы требовала от них представлять ее бесконечной. Ярким примером могут служить комментарии Чезаре Чезарьяно к Витрувию (1521). Чезарьяно приводит стандартное изображение Вселенной Аристотеля как череды конечных сфер. Но когда он объясняет принцип измерения расстояний, то представляет измерения расстояний до Солнца, планет и далее в бесконечность и открыто заявляет, что линии от наблюдателя через точки Т и М (см. рисунок ниже) уходят в бесконечность. Таким образом, перспектива вводила в конечную Вселенную аномальное понятие бесконечности{402}402
Vitruvius Pollio. De architectura (1521). Койре считает концепцию бесконечности ключевым различием между физикой Аристотеля и современной физикой: Koyré. Études d’histoire de la pensée scientifique (1973). 165.
[Закрыть].

Измерение Вселенной. Из трактата Витрувия «Об архитектуре» с комментариями Чезаре Чезарьяно, 1521
Художникам было непросто справиться с этими проблемами. В первых работах с использованием законов перспективы точка схода зачастую спрятана за якобы случайно выбранным объектом, ногой или одеждой. В религиозном искусстве неявное присутствие бесконечности можно было выгодно использовать. Так, например, точка схода в «Троице» Мазаччо находится над гробницей в пустом, на первый взгляд, пространстве.
Однако изначально перед фреской находился алтарь, и точка схода располагалась прямо за гостией, которую священник поднимает в кульминационный момент мессы, когда происходит пресуществление. Именно к этой точке прикованы глаза зрителя. (Фреска Мазаччо так удачно сочеталась с гостией, что вскоре ее стали копировать для конструкции табернаклей – деревянных шкафчиков для хранения гостий.) В фреске Мазаччо «Чудо со статиром» точка схода находится позади головы Христа{403}403
Moffitt. Painterly Perspective and Piety (2008); Parronchi. Un tabernacolo brunelleschiano (1980).
[Закрыть].
Точка схода вызывала у художников особый интерес в связи с одним конкретным сюжетом – Благовещением. Лоно Марии сравнивали с запертым садом («Запертый сад – сестра моя, невеста, заключенный колодезь, запечатанный источник», говорится в Песни песней), и поэтому закрытую дверь, ведущую в сад, часто помещали в точку схода{404}404
Песнь песней, 4: 12.
[Закрыть]. Но вочеловечивание Христа восстанавливает для людей возможность спасения души, вновь открывая врата рая, которые закрылись за Адамом и Евой, то есть открывая для верующих путь к вечному блаженству. Таким образом, открытая дверь в сад может символизировать спасение души. И естественно, Бог бесконечен, и поэтому Благовещение воплощает в себе встречу конечного человека и бесконечного божественного начала: в «Благовещении» Пьеро делла Франчески точка схода, по всей видимости, используется для того, чтобы создать ощущение бесконечности, а завитки мрамора становятся символическим отображением Бога, которого нельзя увидеть или постигнуть[154]154
См. цветные иллюстрации 13 и 14.
[Закрыть].
Однако в нерелигиозных сюжетах точку схода следовало держать под контролем, поскольку мир человека конечен и ограничен. Например, в изображении идеального города, датируемом 1480–1484 гг. и приписываемом Фра Карневале, линии зданий, расположенных по обе стороны площади, сходятся в дальней точке, но это место загораживает храм, полуоткрытая дверь которого намекает, что можно заглянуть и дальше, но только в замкнутом пространстве[155]155
См. цветную иллюстрацию 17.
[Закрыть]. Если тут и присутствует бесконечность, то лишь в закрытом религиозном пространстве. В «Ночной охоте» Учелло мы видим тревожное умножение точек схода, причем все они ведут в темноту. Создается впечатление, что охотники могут потеряться, а олень убежать; картина обыгрывает идею исчезновения, поскольку взгляд зрителя теряется в темноте, а не в бесконечном пространстве.
§ 5
В середине XV в. художники экспериментировали с идеей бесконечного, абстрактного и единообразного пространства. Они понимали, что эта идея трудна для понимания и необычна, но знали, что без нее невозможно отображение в соответствии с законами перспективы. Искусство сбежало – по крайней мере, отчасти – от Аристотеля и укрылось под крылом геометрии и оптики. Но перспектива также поощряла новый взгляд на мир в трех измерениях, с последующей его регистрацией, позволивший увидеть то, чего раньше не видели, и делать то, чего раньше не делали.
До появления рисунков, выполненных по законам перспективы, если вы хотели сконструировать какой-либо механизм, приходилось изготавливать его – или его модель. Работу с объемными материалами заменить было нечем. Но после того как у инженеров появилась возможность изображать на бумаге трехмерные объекты, они могли разрабатывать свои конструкции с помощью ручки или карандаша (карандаш изобрели приблизительно в 1560). Леонардо (1452–1519) придумал разнообразные механизмы, которые не были построены, причем многие (например, летательные аппараты) не могут быть реализованы. На цветной иллюстрации 15 показана конструкция лебедки с трещоточным приводом. Сама лебедка изображена слева, а справа помещен ее рисунок в разобранном состоянии (или «по частям»), чтобы продемонстрировать конструкцию. Каждое колесо соединено с трещоточным механизмом. Если потянуть за рычаг с правой стороны лебедки, одно из колес входит в зацепление с валом, который поднимает груз. Если рычаг толкнуть, в зацепление входит другое колесо, однако конструкция лебедки такова, что вал вращается в ту же сторону, и груз продолжает подниматься. Поскольку тянуть и толкать рычаг легче, чем вращать ворот обычной лебедки, трещоточный механизм эффективнее поднимает грузы. Рисунок Леонардо достаточно понятен, чтобы по нему можно было построить модель лебедки и продемонстрировать ее работоспособность. От такого рисунка до современных чертежей всего один шаг. В наброске Леонардо используется масштабирование – детали трещоточного механизма показаны с большим увеличением{405}405
Edgerton. The Heritage of Giotto’s Geometry (1991). 108–147; Long. Power, Patronage and the Authorship of Ars (1997); Galluzzi. The Art of Invention (1999); Ackerman. Art and Science in the Drawings of Leonardo da Vinci (2002); Lefèvre. The Limits of Pictures (2003); Long. Picturing the Machine (2004).
[Закрыть].
Разумеется, построить реальный механизм по рисунку – непростая задача. Какие инструменты вам потребуются, чтобы изготовить лебедку, сконструированную Леонардо? Если нужно поднимать тяжелые грузы, штырьки, приводящие в движение механизм, будут испытывать серьезные нагрузки. Из какого дерева их следует делать? Альбомы рисунков начала современной эпохи были предназначены в основном для демонстрации инженерного искусства и не содержали сведений, необходимых для самостоятельной работы. Даже подробные иллюстрации великой «Энциклопедии» (1751–1772) Дидро и Д’Аламбера, которая вроде бы информировала о том, что можно сделать, не рассказывали, как именно это сделать. Тем не менее существуют успешные примеры конструирования при посредстве книгопечатания. В 1602 г. большим тиражом вышел труд Тихо Браге «Механика обновленной астрономии» (Astronomiae Instauratae mechanica) с подробными иллюстрациями новых инструментов, изобретенных им для астрономических наблюдений. В 1670-х гг. в Пекине астроном из ордена иезуитов Фердинанд Вербист сумел изготовить инструменты на основе этих рисунков, не видя оригиналов Браге{406}406
Chapman. Tycho Brahe in China (1984).
[Закрыть].
Леонардо был не только художником, архитектором и инженером (общим для этих профессий было использование геометрии и законов перспективы), но также занимался анатомическими исследованиями, препарируя животных и людей. По всей видимости, он собирался опубликовать результаты своих исследований, но так этого и не сделал. Революцию в анатомии совершил труд Андреаса Везалия «О строении человеческого тела» (De corpore humani fabrica, 1543). Везалий (преподававший в университете Падуи) нанимал художников из мастерской Тициана в Венеции для выполнения иллюстраций самого высокого качества. Иллюстрации были снабжены буквенными обозначениями, которым соответствовал текст. Леонардо в своем рисунке лебедки уже использовал буквы в качестве обозначений, и эта практика основана на геометрических чертежах, но Везалий был первым, кто систематически применил ее в анатомии. Так Везалий мог показать читателю, что он увидел в человеческом теле. Пластины с гравировкой, изготовленные в Венеции, затем перевозились через Альпы в Базель, поскольку Везалий не доверял венецианским печатникам такую тонкую работу.

Конструкция армиллярной сферы Браге. Из «Механики обновленной астрономии», 1598

Императорская обсерватория в Пекине. Из книги Фердинанда Вербиста «Рисунки заново изготовленных инструментов», составлявшейся с 1668 по 1674 г., в которой были показаны инструменты, изготовленные миссионером-иезуитом на основе рисунков Браге.
Главное в трактате Везалия «О строении человеческого тела» – утверждение, что свидетельства наших органов чувств должны быть важнее текста Галена. Средневековые анатомы на лекциях вслух зачитывали Галена, в то время как их ассистенты вскрывали труп: тело должно было проиллюстрировать слова Галена, а не исправлять его ошибки. Но даже когда средневековые анатомы сами препарировали тело, то находили (или думали, что находили) именно то, что говорил Гален. Например, Мондино де Луцци (1270–1326), автор первого средневекового учебника анатомии, имел огромный практический опыт, но тем не менее находил в основании человеческого мозга rete mirabile (чудесную сеть) кровеносных сосудов, о присутствии которых говорил Гален, хотя их там не было – такие сосуды есть только у копытных животных. Леонардо препарировал трупы, но считал, что находит канал, соединяющий мужской пенис со спинным, а значит, и с головным мозгом: он полагал, что по этому каналу поступает субстанция, которая является частью семенной жидкости и очень важна для произведения потомства. Первым анатомом, которые регулярно не соглашался с Галеном, опираясь на непосредственный опыт, был Джакопо Беренгарио да Карпи, трактат которого «Анатомия» вышел в 1535 г., всего за несколько лет до труда Везалия{407}407
Thorndike. A History of Magic and Experimental Science (1923). Vol. 5. 498–514.
[Закрыть]. Такой проект, как «О строении человеческого тела» Везалия, мог осуществиться только в культуре, где уже начал расшатываться авторитет великих классиков, в том числе Птолемея и Галена. В этом смысле совпадение по времени великих трудов Коперника и Везалия указывает на некую общность: оба жили в то время, когда новая культура инноваций окончательно подорвала уважение к Античности, по крайней мере у людей пытливого ума.
Текст Галена никогда не сопровождался иллюстрациями – Гален открыто говорил об их бесполезности, – поскольку при отсутствии книгопечатания качество иллюстраций при каждой последующей переписке неизбежно ухудшалось[156]156
Именно поэтому не сохранилось ни одного экземпляра «Географии» Птолемея с картами, которые описывает автор, и ни одного экземпляра великого труда Витрувия об архитектуре (написанного в эпоху императора Августа, 27 до н. э. – 14 н. э.) вместе с прилагавшимися чертежами. В любом случае чертежи, изначально сопровождавшие текст Витрувия, были немногочисленными и очень примитивными. Первое иллюстрированное издание появилось в 1511 г.
[Закрыть]{408}408
Carpo. Architecture in the Age of Printing (2001). 16–22. В Cunningham. The Anatomical Renaissance (1997), где утверждается, что анатомия эпохи Возрождения была продолжением классической анатомии, автор упускает из виду фундаментальные перемены, ставшие результатом механического копирования иллюстраций. Превосходный пример трудности передачи визуальной информации в рукописях см. в: Eagleton. Medieval Sundials and Manuscript Sources (2006).
[Закрыть]. Таким образом, описания Галена зачастую было очень трудно понять. У Везалия, наоборот, легко увидеть, о чем он говорит. Везалий утверждал, что обнаружил у Галена большое количество ошибок, и тем самым подрывал его авторитет – точно так же, как открытия Колумба подорвали авторитет Птолемея. Но для анатомов следующих поколений было важнее то, что, если на иллюстрациях Везалия отсутствовали или были неверно отображены какие-либо анатомические детали, появлялась возможность с уверенностью указать на его ошибку. Сложные печатные иллюстрации, выполненные с учетом законов перспективы, превратили анатомию в развивающуюся науку, где каждое следующее поколение анатомов могло выявить ошибки и оплошности предшественников. Открытия в анатомии начались не с Везалия: скорее он установил линию отсчета, позволявшую другим заявлять об открытии.
Приемы, примененные Везалием в анатомии, в тот же период использовались и в ботанике, где авторы сталкивались с той же трудностью, что и сам Везалий: должны ли они описывать конкретные растения со всеми их недостатками и дефектами, точно отражая реальный мир, или давать идеализированное изображение представителя вида, как сделал Везалий с человеческим телом? Должны ли они показывать растение на определенной стадии развития или совмещать в одной иллюстрации цветок и плод? Точно так же, как иллюстрации Везалия позволяли надежно идентифицировать части человеческого тела, новая иллюстрированная ботаника сделала возможными достоверные знания о различных видах, а также способствовала прогрессу в их наименовании и идентификации. Но прогресс предполагает установление различий: Конрад Геснер, первым в век книгопечатания попытавшийся систематизировать знания в области зоологии (Historiae animalium, 1551–1558), часто приводит изображения, которые он называет ошибочными. Даже Везалий в одном случае иллюстрирует неверное утверждение Галена. То, что мы считаем само собой разумеющимся – то есть что иллюстрации отображают реальность, – стало очевидным не сразу{409}409
Ogilvie. The Science of Describing (2008); Kusukawa. The Sources of Gessner’s Pictures for the Historia animalium (2010).
[Закрыть].
Таким образом, к 1543 г. две революции сошлись вместе, открыв возможность для появления новой науки. Во-первых, были сформулированы законы перспективы в живописи, основанные на геометрической абстракции; во-вторых, печатные станки позволили размножать иллюстрации, сопровождавшиеся текстом. Живопись с использованием законов перспективы появилась в 1425 г., гравюры – не позже 1428 г., книгопечатание – в 1450 г. В 1453 г. пал Константинополь, и в результате на латинский Запад с Востока хлынул поток греческих рукописей и говорящих на греческом ученых (что улучшило понимание греческих оригиналов работ Галена)[157]157
Иногда говорят, что это и есть истинная дата начала эпохи Возрождения. Альтернативная, более ранняя дата, для тех, кому нравится думать, что трансформацию культуры можно уложить в четкие временные рамки, – повторное открытие Петраркой в 1345 г. писем Цицерона к Аттику. Это событие символизирует возвращение культурного наследия Древнего Рима, тогда как падение Константинополя служит знаком возвращения культурного наследия Древней Греции.
[Закрыть]. Почему же потребовалось еще сто лет, чтобы завершить трансформацию, вызванную механическим воспроизведением изображений, созданных по законам перспективы? На этот вопрос есть два ответа. Во-первых, после изобретения книгопечатания первоочередной задачей издатели считали публикацию огромного количества религиозных, философских и литературных текстов – сначала на латыни, а затем, для более ограниченного круга читателей, на греческом. Первое серьезное издание Галена, с которым работал Везалий, появилось в Базеле в 1538 г.; Везалий настоял, чтобы его труд печатался именно в этом городе. Во-вторых, должна была произойти растянутая во времени культурная революция, чтобы книжные знания утратили приоритет над непосредственным опытом. Эта революция – о чем было сказано выше – началась с Колумба.
Рядом с великими работами Коперника и Везалия мы можем поставить труд Леонарта Фукса «Описание растений» (De historia stirpium commentarii insignes), который был издан годом раньше (1542) и в котором содержалось 512 точных изображений растений. В предисловии Фукс пишет:

Первое изображение мускулатуры человека. Из трактата Везалия «О строении человеческого тела», 1543
Хотя на подготовку рисунков было затрачено много сил и труда, мы не знаем, не будут ли они названы бесполезными и не имеющими смысла и не вспомнит ли кто-либо слова такого скучнейшего авторитета, как Гален, утверждавшего, что для описания растений не нужны изображения. Но зачем тратить столько времени? Кто в здравом уме станет осуждать рисунки, которые могут передать сведения доходчивее, чем самый красноречивый из людей? То, что предстает перед нашими глазами, изображенное на доске или бумаге, гораздо прочнее удерживается в памяти, чем то, что лишь описывается словами{410}410
Цит. по: Ackerman. Early Renaissance ‘Naturalism’ and Scientific Illustration (1991). 202.
[Закрыть].
Слова Фукса отражают две свершившиеся революции: развенчание авторитетов древности (Гален назван «скучнейшим авторитетом», и нам трудно представить, какими шокирующими выглядели в то время эти слова) и признание эффективности изображений в новый век механического копирования{411}411
Ivins. Prints and Visual Communication (1953), классическая работа. Не все соглашались с Фуксом и Везалием относительно ценности изображений: Kusukawa. Picturing the Book of Nature (2011). 124–131, возражения Фуксу, и 233–237, возражения Везалию.
[Закрыть]. Это две важнейшие предпосылки научной революции.
§ 6
В 1464 г. немецкий астроном Йоганн Мюллер (1436–1476), известный как Региомонтан (по латинскому названию города, где он родился, Кенигсберга), прочел лекцию в Университете Падуи{412}412
Swerdlow. Montucla’s Legacy (1993). 299; Byrne. A Humanist History of Mathematics? (2006).
[Закрыть]. Региомонтан недавно закончил описание астрономии Птолемея и комментарии к ней – работу, начатую его учителем, Георгом Пурбахом. Эта книга стала стандартным учебником по астрономии до конца XVI в., и в ней Пурбах и Региомонтан без стеснения критиковали ошибки Птолемея. В 1464 г. Региомонтан писал новаторскую работу по плоской и сферической тригонометрии («О всех видах треугольников»), которая заложила основы для всех астрономических вычислений. Он изучал греческий в Вене, чтобы читать Птолемея в оригинале, и в Италии смог прочесть работы Архимеда (в Средние века их перевели на латынь, но в печати они еще не появились) и Диофанта (он еще был недоступен на латыни; Диофант (ок. 210 – ок. 290) считается основателем алгебры).
Региомонтан одним из первых ощутил пользу от появления в Италии греческих текстов после падения Константинополя. Когда он, меньше чем через десять лет после появления Библии Гутенберга, читал лекцию в Падуе, революция книгопечатания только начиналась: например, труды Евклида были изданы на латыни только в 1482 г., на греческом – в 1533 г., на итальянском – в 1543 г., на английском – в 1570 г. Таким образом, лекция Региомонтана отмечает поворотный пункт в повторном открытии греческой математики и указывает на амбициозную программу публикации математических текстов, разработанную Региомонтаном, хотя он и не дожил до ее осуществления.
Региомонтан восхвалял математические науки, критикуя философию Аристотеля, которую преподавали в университетах. Будь Аристотель жив, утверждал Региомонтан, он не увидел бы смысла в том, что говорят его современные ученики. «Только безумец может приписать это [то есть невразумительность текстов] нашим [математическим] наукам, поскольку ни века, ни традиции не могут у них ничего отнять. Теоремы Евклида сегодня так же достоверны, как и тысячу лет назад. Открытия Архимеда будут вызывать не меньшее восхищение у людей через тысячу столетий, чем у нас, когда мы читаем о них»{413}413
Swerdlow. Montucla’s Legacy (1993). 299.
[Закрыть]. Однако похвала Региомонтана математическим наукам не означала некритичного восхищения современной математикой. Всего лишь за год до своей лекции он писал: «Я не могу не удивляться лености большинства астрономов нашего времени, которые, подобно легковерным женщинам, воспринимают как нечто священное и непреложное все, что читают в книгах… поскольку они верят авторам [таким, как Птолемей] и не прилагают усилий для поисков истины»{414}414
Swerdlow. Montucla’s Legacy (1993). 188 (перевод изменен).
[Закрыть]. Эта мысль – о том, что нужно перейти от изучения книг к изучению реальной жизни, – снова и снова повторялась сторонниками новых наук, которые восставали против старой философии. Например, она была одним из любимых риторических приемов Галилея: в 1620-х гг. подобное предложение выглядело таким же радикальным, как и в 1460-х, поскольку в университетах старая система обучения не сдавала своих позиций. Галилей также разделял убежденность Региомонтана, что Евклид и Архимед («божественный Архимед», как он его называл) служат единственными примерами достоверного знания{415}415
Wootton. Galileo (2010). 22, 138, 165, 166, 210. Сравните с Boyle, ниже, 416. Таким образом, первая стадия научной революции заключается в повторном открытии греческой математической науки: Russo. The Forgotten Revolution (2004).
[Закрыть].
В 1471 г. Региомонтан разработал метод измерения параллакса небесных тел, а значит, вычисления их удаленности от Земли{416}416
Оригинальный текст воспроизведен в: Jervis. Cometary Theory in Fifteenthcentury Europe (1985). 170–193, вместе с переводом, 96–112.
[Закрыть]. Его метод предполагал использование эккера, инструмента, изобретенного рабби Леви бен Гершомом (1328){417}417
Jervis. Cometary Theory in Fifteenth-century Europe (1985). 108–110.
[Закрыть]. Эккер – простейший инструмент, представляющий собой калиброванный стержень, вдоль которого скользит планка. Вы смотрите вдоль стержня и передвигаете планку вперед и назад, пока не совместите ее концы с двумя точками; получившийся угол считывается со шкалы на стержне. Эккер можно использовать, например, для измерения высоты солнца над горизонтом в полдень. Зная дату и имея под рукой соответствующие таблицы, по этому углу вы определите широту (разумеется, при этом придется, прищурившись, смотреть на солнце; квадрант был изобретен в 1594 г., и он позволял выполнять измерения, не глядя на солнце). Ночью можно определить широту, измерив угол между горизонтом и Полярной звездой. Эккер – это один из целого ряда инструментов, таких как квадрант и секстант, предназначенных для измерения углов визуальным наблюдением. До изобретения эккера для этого использовалась астролябия (в средневековой Европе ее скопировали с восточных образцов), а также метод измерения высоты солнца по длине тени. С появлением эккера появилась возможность определить широту, зная время, но гораздо важнее для большинства пользователей было другое – они могли определить время, зная широту и дату. Для топографии, астрономии и навигации были разработаны разные варианты этого инструмента, но во всех использовался один и тот же принцип измерения углов для вычисления расстояния или времени[158]158
От них отличался пассажный инструмент: с его помощью по положению звезд в созвездии Большой Медведицы, которое вращается вокруг Полярной звезды, можно определить время ночью, если вы знаете дату. В нем не измеряется угол между наблюдателем и двумя удаленными объектами – своего рода стрелками часов служат сами звезды.
[Закрыть]{418}418
Bennett. The Divided Circle (1987).
[Закрыть].

Использование эккера в топографии и астрономии. Титульный лист «Введения в географию» Петера Апиана, 1533
При геодезических работах теперь можно было без труда вычислить высоту здания, зная расстояние до него. Допустим, вам нужно оценить высоту стен крепости, расположенной на другом берегу реки. Вы можете выполнить два измерения на одной линии с крепостью, а затем по расстоянию между точками измерений и разнице углов вычислить высоту стен и изготовить лестницы соответствующей длины. Основные принципы необходимых вычислений описаны у Евклида, и в Средние века они были хорошо известны. Те же самые принципы использовались для построения перспективы в живописи. Но если перспектива в живописи превращает трехмерный мир в двумерный, то Региомонтан теперь пытался взять двумерное изображение – ночное небо – и превратить его в трехмерный мир. Для этого, по существу, необходимо перейти от монокулярного зрения к бинокулярному.
Сделать это позволяет принцип параллакса. Он представляет собой вариант базового принципа: если известен угол и одна сторона равнобедренного или прямоугольного треугольника, то можно определить остальные углы и стороны треугольника. Для этого требуется не одно измерение, а два. Вытяните перед собой руку с поднятым пальцем, закройте левый глаз и отметьте положение пальца относительно окружающего фона. Затем посмотрите на палец другим глазом. Палец переместится вправо. Зная расстояние между глазами и измерив угол видимого смещения пальца, вы можете вычислить расстояние до него – хотя, конечно, никому это не нужно. В данном случае расстояние между глазами составляет значительную часть расстояния от глаз до пальца; если же вы пытаетесь измерить расстояние до удаленного объекта, то вам нужно разнести точки наблюдения как можно дальше – по крайней мере, так кажется на первый взгляд.
Региомонтан понял, что астроному не обязательно путешествовать, чтобы получить две удаленные друг от друга точки наблюдения{419}419
В Barker & Goldstein. The Role of Comets in the Copernican Revolution (1988). 311, ошибочно предполагается, что Региомонтан обобщил метод Птолемея вычисления расстояния до Луны. Метод Птолемея требует одного измерения, а не двух: Van Helden. Measuring the Universe (1985). 16; Newton. The Authenticity of Ptolemy’s Parallax Data – Part 1 (1973). Возможно, они правы в том, что метод Региомонтана и идею применить его к кометам описывал Леви бен Гершом, но эта часть его работы не была известна в эпоху Возрождения.
[Закрыть]. Если небо вращается вокруг центра Вселенной и если ее центр совпадает с центром Земли или находится поблизости от него, то точка наблюдения для астронома, находящегося на поверхности Земли, меняет свое положение относительно движущегося неба просто потому, что астроном смотрит на небо не из центра Вселенной, а из точки, удаленной от центра.
Представьте, что вы стоите в центре карусели, на которой лошади расставлены по трем концентрическим окружностям. В центре расположена неподвижная платформа, вокруг которой синхронно вращаются лошади, делая один оборот за одно и то же время. Если смотреть на вращающихся лошадей из центра платформы, то их относительное положение остается неизменным – если две лошади находятся на одной линии, то через четверть оборота они тоже будут находиться на одной линии. Но если вы сделаете несколько шагов к краю платформы, то относительное положение будет все время меняться. Более того, если вы знаете размер неподвижной платформы и расстояние до внешней окружности лошадей, то изменения в относительном положении лошадей на двух других окружностях позволят определить расстояния до них. Таким образом, Региомонтан понял, что можно измерить параллакс небесных тел, выполнив два измерения из одной точки, но в разное время, вместо двух измерений из разных точек одновременно.
Согласно Аристотелю, кометы располагаются в верхней части атмосферы. Они должны находиться именно там, поскольку появляются и исчезают, тогда как небеса остаются неизменными. Таким образом, кометы принадлежат подлунному, а не надлунному миру: они летают ниже, а не выше Луны. Гипотеза Аристотеля состояла в том, что они представляют собой выбросы пламени из Земли, которая захватила огонь. Насколько нам известно, до 1471 г. никто не пытался измерить параллакс кометы; теория Аристотеля просто считалась верной.
Региомонтан разработал метод такого измерения в 1471 г., но полное описание процедуры опубликовал только в 1531 г. К сожалению, в 1548 г. был опубликован текст, предположительно принадлежавший Региомонтану, в котором сообщалось об измерении параллакса кометы, появившейся в 1472 г., и подтверждалась ее близость к Земле, поскольку параллакс составлял целых 6° – получалось, что комета гораздо ближе к Земле, чем Луна, суточный параллакс которой всего 1°. Тщательное расследование показало, что автором текста был не Региомонтан: должно быть, документ нашли после его смерти среди других бумаг, и почерк, вероятно, совпадал, однако в нем не использовались методы Региомонтана и он был опубликован при жизни астронома неким анонимным врачом из Цюриха (предположительно Эберхардом Шлезингером). В XVI в., в отличие от нас, никто этого не знал, что вызвало большую путаницу в исторической литературе{420}420
Jervis. Cometary Theory in Fifteenth-century Europe (1985). 114–120.
[Закрыть]. Астрономы XVI в. искренне верили якобы убедительным свидетельствам, что Региомонтан подтвердил традиционную оценку расстояния от Земли до комет; нам известно, что нет никаких оснований считать, что Региомонтан действительно применял систему измерений, описанную им в 1471 г., – в любом случае для этого требовалось учесть тот факт, что кометы представляют собой движущиеся, а не неподвижные объекты. Как бы то ни было, в 1532 г. Иоганн Фогелин измерил параллакс появившейся на небе кометы и подтвердил ошибочность результатов лже-Региомонтана.
Затем, в 1572 г., в небе появилась сверхновая Браге. На какое-то время она стала самым ярким небесным объектом за исключением Солнца и Луны, даже ярче Венеры. Такие события происходят один раз приблизительно в тысячу лет. И, в отличие от кометы, новая звезда оставалась неподвижной, что значительно облегчало измерение ее параллакса. К ней было привлечено внимание всех европейских астрономов, и поскольку они были знакомы с методом Региомонтана для измерения параллакса, то, естественно, пытались его применить. Одни сумели найти доступный измерению параллакс, другие настаивали, что никакого параллакса нет и измерять попросту нечего. Точное определение параллакса было сопряжено со значительными трудностями, поскольку требовало гораздо более точного измерения времени, чем обеспечивали любые часы XVI в.; проще было показать отсутствие измеряемого параллакса. Достаточно расположить натянутый шнурок так, чтобы на одной линии со сверхновой оказались две звезды, одна ближе, а другая дальше ее, и, если по прошествии нескольких часов эти звезды по-прежнему остаются на одной линии со сверхновой, значит, измеряемого параллакса нет. Этот простой прием использовал Михаэль Местлин, учитель Кеплера{421}421
Jervis. Cometary Theory in Fifteenth-century Europe (1985). 125.
[Закрыть]. А если параллакса нет, то комета должна находиться на огромном расстоянии, гораздо дальше Луны, параллакс которой измерить легко; то есть комета должна принадлежать к надлунным, а не подлунным объектам.
Как объяснить появление новой звезды в небе? Поскольку ее присутствие невозможно приписать естественным причинам, то это событие, вне всякого сомнения, является чудом, знаком, который послал Бог. Лучшие астрономы и астрологи – Томас Диггес в Англии, Франческо Мавролико в Италии, Тадеаш Гаек в Праге – ломали головы в попытке понять, что может предвещать этот знак, и торопились опубликовать свои противоречивые выводы{422}422
Gingerich. Tycho Brahe and the Nova of 1572 (2005).
[Закрыть].
За сверхновой звездой 1572 г. последовала комета 1577 г., и измеренный параллакс снова поместил ее дальше Луны. Но если сверхновую можно было признать чудом, то кометы были довольно распространенным явлением, и поэтому если кометы действительно являются надлунными объектами, то Аристотель ошибался{423}423
В Barker & Goldstein. The Role of Comets in the Copernican Revolution (1988) утверждается, что это упрощение, и существовала альтернативная теория комет как линз, фокусирующих лучи Солнца, и в этой теории местоположение комет было несущественным. Но, во-первых, эта теория не дает адекватного объяснения изменениям в небе, а во-вторых, объяснение движения комет по небу несовместимо с теорией прозрачных сфер. Авторы правы в том, что теория комет не привела к появлению системы Коперника (как уже говорилось выше, ключевой предпосылкой было представление о Земле как об одной сфере), а также в том, что сама система Коперника сохранила многое из старой астрономии. Ошибка – признание возможности продолжать вносить коррективы в систему Аристотеля – Птолемея, чтобы учесть параллакс комет, и утверждение, что сама идея согласованной космологической системы принадлежит Кеплеру и Галилею.
[Закрыть]. Браге также работал над еще одной задачей, которую можно было решить измерением параллакса: существенное различие между системой Птолемея и системами Коперника и Тихо Браге заключалось в том, что, согласно современным системам, Марс должен подходить к Земле ближе, чем предсказывал Птолемей. Поначалу Браге считал, что получил надежные результаты измерения параллакса Марса, опровергающие Птолемея, но затем понял, что все гораздо сложнее. В идеале метод Региомонтана для измерения параллакса требовал сравнения видимого положения небесного объекта вскоре после наступления темноты с его видимым положением незадолго до рассвета, что максимизировало измеряемый параллакс. Ни сверхновая 1572 г., ни комета 1577 г. не появлялись в ночном небе Северной Европы, и поэтому идеальная процедура была неприменима; в случае с Марсом астрономам приходилось выполнять измерения, когда планета практически двигалась синхронно с Солнцем и никогда не поднималась над горизонтом ночью. При измерении положения объекта поблизости от горизонта Браге приходилось учитывать рефракцию, обусловленную большей толщиной атмосферы, через которую проходят лучи, и в конечном итоге он обнаружил, что ошибся в расчете этой поправки, исказив измерения, которые, как он надеялся, стали бы ключевым аргументом против системы Птолемея. Однако его длинная серия измерений положения Марса стала бесценным материалом для Кеплера, когда тот вычислял «орбиту» (именно он изобрел этот термин, используемый в астрономии) Марса согласно предположениям Коперника и показал, что ее форма наиболее точно описывается как эллипс{424}424
Gingerich & Voelkel. Tycho Brahe’s Copernican Campaign (1998).
[Закрыть].
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?