Электронная библиотека » Дженнифер Даудна » » онлайн чтение - страница 6


  • Текст добавлен: 21 апреля 2022, 16:23


Автор книги: Дженнифер Даудна


Жанр: Биология, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 6 (всего у книги 20 страниц) [доступный отрывок для чтения: 6 страниц]

Шрифт:
- 100% +
Глава 3
Взламывая код

Я помню, как в первый раз вошла в настоящую исследовательскую лабораторию, помню звуки, запахи и ощущение открывающихся возможностей – чувства того, как постепенно раскрываются загадки природы. Это был 1982 год, и после первого курса колледжа я приехала к родителям на Гавайи. Мой отец, профессор английского языка в Гавайском университете, договорился со своим коллегой, профессором биологии Доном Хеммесом, о том, чтобы я смогла провести несколько недель в его лаборатории. Вместе с двумя другими студентами я получила возможность исследовать, как гриб Phytophthora palmivora заражает папайю. Изучение этого гриба, доставляющего большие неприятности фермерам, выращивающим папайю, оказалось очень интересным. Он быстро и легко рос в лабораторных условиях, и его можно было фиксировать на разных стадиях развития, благодаря чему мы были способны выявить химические изменения, происходящие во время роста. Тем летом я научилась заливать образцы гриба смолой и делать с них тонкие срезы для анализа под электронным микроскопом. Хотя я посвятила этому проекту лишь небольшое время, в результате нашей работы мы обнаружили нечто важное: ионы кальция играют принципиальную роль в развитии гриба, подавая его клеткам сигнал для роста в ответ на наличие питательных веществ. Тогда я впервые почувствовала трепетное волнение, сопутствующее научному открытию, о котором я столько раз читала раньше, – и теперь мне хотелось испытать его вновь.

Атмосфера умиротворения и спокойной концентрации, характерная для маленькой исследовательской команды Дона Хеммеса, привлекла меня, однако с годами я осознала, что являюсь частью куда большего сообщества ученых и каждый из нас своим путем идет к открытию законов природы. Каждый крошечный шаг вперед был словно еще одной правильно подобранной деталью огромного пазла, в котором работа одного исследователя строится на работе других ради общей цели – сборки цельной картины.

Проект по изучению CRISPR хорошо символизирует этот аспект научной работы: несколько исследователей по всему миру работали над материалами, из которых в конце концов сложится огромная область исследования со всеми возможными последствиями и вариантами практического применения технологии. Когда мы собирали информацию о CRISPR, нашей маленькой командой двигали те же эмоции, что и множеством других ученых: чувство общности, совместной увлеченности и любопытства, – словом, те чувства, что и привлекли меня изначально в мир науки.

В те дни, когда эта область исследования только начинала развиваться, меня и Блейка заряжала энергией работа наших коллег из компании Danisco, из Северо-Западного университета и Вагенингенского университета, и в то же время нас завораживало то, как много фундаментальных вопросов о CRISPR все еще оставались без ответа. Хотя биологи тогда уже понимали, что CRISPR обеспечивает бактерии и археи адаптивным иммунитетом к фагам и что последовательности ДНК фагов, которые соответствуют РНК CRISPR, каким-то образом становятся мишенями для уничтожения, никто на самом деле не знал, как это все работает. Мы задались вопросом: каким образом различные молекулы в составе этой системы действуют сообща для уничтожения вирусной ДНК? И что конкретно происходит на этапах иммунного ответа, связанных с наведением на цель и ее уничтожением?

Мы сконцентрировались на этих вопросах и, соответственно, на задачах, которые необходимо было решить, чтобы найти ответы. Нам нужно было выяснить, каким образом бактерии вытаскивают короткие фрагменты ДНК из генома фага в разгар инфекции и точнейшим образом встраивают их в существующую структуру CRISPR – так что у защитной системы появляется возможность нацеливаться на генетический материал вируса. Также нужно было определить, каким образом молекулы РНК CRISPR вырабатываются внутри клетки и превращаются из длинных нитей в гораздо более короткие, причем каждая из этих последних содержит отдельную последовательность, совпадающую с вирусной. И – что, вероятно, наиболее важно – нам предстояло выяснить, каким образом фрагмент РНК образует пару с комплементарным ему участком ДНК бактериофага и вызывает разрушение этой ДНК. Это было главным вопросом во всей системе защиты, которую мы изучали, и мы не могли полностью понять CRISPR, не объяснив эту сторону процесса.


Нацеливание на ДНК посредством РНК CRISPR и Cas-белков


Было ясно, что для решения этих вопросов нам нужно выйти за рамки генетического исследования и применить скорее биохимический подход, который позволил бы нам изолировать молекулы, составляющие CRISPR, и изучать их поведение. Кроме того, было необходимо взглянуть на проблему в более широкой перспективе и рассматривать не только сам механизм CRISPR, но и все ассоциированные с CRISPR гены, или cas-гены, которые в бактериальных геномах примыкают к областям CRISPR и, видимо, кодируют особые типы белков – ферменты. Если коротко, этот класс белковых молекул отвечает за катализ всех видов межмолекулярных реакций в клетках. Если бы мы выяснили, что именно делают эти белковые ферменты Cas, мы бы значительно приблизились к пониманию того, как работает CRISPR.


Ученые могут многое узнать о функции гена, лишь посмотрев на его химический состав. Фрагменты ДНК, составляющие каждый ген, содержат всю информацию, необходимую клетке для сборки белков из аминокислот. Так как известен генетический код, который используют клетки для перевода четырех “букв” ДНК в двадцать “букв” белка, биологи могут определить последовательность аминокислот в белке, который будет производиться по информации с гена, зная только изначальную последовательность ДНК. Затем, сравнивая полученную последовательность аминокислот со сходными последовательностями у других, лучше изученных белков, ученые могут обоснованно прогнозировать функции многих различных генов.

Выдвигая такие многоступенчатые предположения, специалисты в области вычислительной биологии уже выяснили химический состав сотен различных cas-генов, непременно примыкающих к областям CRISPR. Какой бы организм вы ни рассматривали, правило неизменно: если в его геноме содержится ДНК CRISPR, то в непосредственной близости также будут располагаться cas-гены. Это выглядит так, словно CRISPR эволюционировал вместе с cas-генами, и их невозможно представить друг без друга.

Мы предположили, что белки, кодируемые этими cas-генами, должны вплотную работать с ДНК CRISPR – или, возможно, с молекулами РНК CRISPR, или даже с ДНК фагов. Было совершенно очевидно: прежде чем мы сможем разобраться в устройстве иммунной системы CRISPR, нам необходимо выяснить, как работают эти гены, и определить биохимические функции белков, которые они вырабатывают.

Для начала Блейк выбрал два вида бактерий – Escherichia coli и Pseudomonas aeruginosa, которые содержат определенные типы систем CRISPR. Бактерия E. coli, например, зарекомендовала себя в качестве лучшего друга биохимика. Неважно, чей ген изучает этот биохимик – микроба, растения, лягушки или человека, – работа часто начинается с внедрения этого гена в искусственную мини-хромосому (плазмиду); затем создается специализированный штамм E. coli, который примет плазмиду как часть собственного генома. Совмещая интересующий его ген с другими синтетическими ДНК-инструкциями, биохимик может заставить E. coli не только создавать десятки копий плазмиды в расчете на одну клетку, но и направлять большинство своих ресурсов на конвертирование информации с изучаемого гена в тысячи копий белка, который тот кодирует. Таким образом биохимик практически превращает E. coli в своего рода микроскопический промышленный биореактор, запрограммированный на массовую выработку определенных белков.

Блейк быстро сконструировал плазмиды из отдельных ассоциированных с CRISPR генов, скопировав последние из геномов E.coli и P. aeruginosa. Собрав десятки штаммов E. coli, которые он “научил” использовать плазмиды как часть своего генетического материала, Блейк начал литрами выращивать культуры каждого из созданных штаммов, чтобы наработать достаточно Cas-белков для своих экспериментов. Давая бактериям ночь на размножение, по утрам Блейк выливал содержимое колб с культурами в большие емкости и отделял клетки от жидкой питательной среды в больших скоростных центрифугах, в которых клетки подвергались воздействию силы, в четыре тысячи раз большей, чем сила земного притяжения. Затем, работая с каждым штаммом по отдельности, он помещал клетки в небольшое количество солевого раствора и подвергал эту жижу воздействию высокоэнергетических звуковых волн, которые резко разрывали клетки, высвобождая их содержимое – в том числе и выработанные ими Cas-белки.

После отделения лишнего материала – разрушенных мембран, вязких ДНК и прочего клеточного “мусора” – у Блейка оставалось несколько тысяч бактериальных белков, из которых ему нужен был только один: Cas-белок. Но благодаря хитроумному строению плазмиды Cas-белок содержал особенный химический ярлык, или придаток, который отличал его от остальных тысяч белков. С помощью определенной стратегии очистки (а также проведя несколько раундов дополнительной очистки) Блейк смог отделить этот молекулярный придаток и получить чистые высококонцентрированные образцы каждого из Cas-белков, которые мы хотели изучать.

Когда Cas-белки оказались в его распоряжении, Блейк наконец смог проводить различные эксперименты для изучения того, что именно делают эти ферменты. Нашим первым вкладом в область изучения CRISPR была публикация о следующем открытии: мы обнаружили, что белковый фермент под названием Cas1 мог разрезать ДНК[67]67
  B. Wiedenheft et al., “Structural Basis for DNase Activity of a Conserved Protein Implicated in CRISPR-Mediated Genome Defense”, Structure 17 (2009): 904–912.


[Закрыть]
 таким образом, что это, возможно, помогало вставлять новые фрагменты ДНК фага в массив CRISPR на стадии формирования памяти иммунной системы. Это приблизило нас к пониманию того, каким образом CRISPR “ворует” кусочки ДНК у атакующих фагов и встраивает эту генетическую информацию в свою собственную, закладывая основу для двух фаз иммунного ответа: наведения на цель и ее уничтожения.

Приблизительно на этом этапе Блейк привлек к работе над проектом магистрантку Рэйчел Хорвитц, и вместе они сделали еще одно открытие. Работая со вторым белковым ферментом, Cas6, Рэйчел и Блейк обнаружили, что он, как и Cas1, функционирует в качестве своего рода химического колуна[68]68
  R. E. Haurwitz et al., “Sequence– and Structure-Specific RNA Processing by a CRISPR Endonuclease”, Science 329 (2010): 1355–1358.


[Закрыть]
. Однако в случае Cas6 задача заключалась в том, чтобы избирательно и методично разрезать длинные молекулы РНК CRISPR на более короткие куски, которые могли бы быть использованы для нацеливания на ДНК фага.

По мере того как мы и другие исследователи собирали детали CRISPR-пазла, медленно, но верно начинала вырисовываться общая картина. В ней мы уже могли различить ответы на некоторые вопросы, которые поставили перед собой в начале работы над проектом. Мы видели, что нам предстоит открыть еще множество функций Cas-белков. В ходе исследования мы обнаруживали все больше и больше таких белков, которые оказывались ферментами, разрезающими ДНК или РНК, – а значит, вероятно, играли в иммунном ответе CRISPR роль, похожую на роль Cas1 и Cas6.

К 2010 году проект по изучению CRISPR расширился, в него вошли еще несколько участников моей команды, включая соавтора этой книги Сэма Стернберга, и атмосфера в лаборатории буквально искрилась от радостного возбуждения. Наше понимание CRISPR, казалось, улучшалось каждую пару недель, а у изучаемых нами ферментов открывались интересные и необычные свойства, которые, как мы понимали, могут иметь практическое применение. К примеру, мы заинтересовались идеей использования новых ферментов, разрезающих РНК, в качестве своего рода диагностического инструмента для выявления отличительных молекул РНК вирусов человека, включая вирусы лихорадки Денге и желтой лихорадки; для воплощения этой идеи мы получили грант от фонда Билла и Мелинды Гейтс. Вскоре мы стали сотрудничать с биоинженерной лабораторией в Беркли, чтобы совместить эту технологию с их инновационной системой обработки крошечных количеств жидкости для выявления вирусов в крови или слюне.

Затем в 2011 году мы с Рэйчел основали компанию под названием Caribou Biosciences, чтобы начать получать доход от Cas-белков. В то время мы мечтали создать простые наборы инструментов, которыми могли бы пользоваться ученые и даже врачи для выявления вирусной или бактериальной РНК в биологических жидкостях. Для нас обеих этот выход за пределы фундаментальных научных исследований открыл двери в удивительный новый мир. Следующей весной, защитив свою кандидатскую диссертацию, Рэйчел стала президентом и генеральным директором молодой и быстро растущей компании; я стала научным советником – эта должность позволяла мне делать вклад в проекты Caribou и вместе с тем успевать выполнять все университетские дела. Позже Caribou прославилась благодаря другой технологии, связанной с CRISPR, – куда более продвинутой.

В то время наши с Блейком основные интересы сместились с ферментов, режущих молекулы ДНК или РНК бактериальной системы CRISPR, на белки, разрезающие вирусную ДНК, – то есть в операции “найти и унитожить”, которую проводит CRISPR, они отвечают за “уничтожить”. Мы полагали, что, как только РНК CRISPR идентифицирует вирусную ДНК и соединяется с ней, специальные ферменты атакуют этот чужеродный генетический материал, разрезают его на части и обезвреживают. Интересные свидетельства в пользу этой гипотезы приходили от наших коллег по изучению CRISPR, среди которых были Сильвен Мойно из Университета Лаваля в Канаде и Виргиниюс Шикшнис из Вильнюсского университета. Исследование Сильвена показало, что ДНК фага, на которую нацеливается система CRISPR, разрезается[69]69
  J. E. Garneau et al., “The CRISPR/Cas Bacterial Immune System Cleaves Bacteriophage and Plasmid DNA”, Nature 468 (2010): 67–71.


[Закрыть]
 в пределах последовательности, совпадающей с РНК CRISPR, а Виргиниюс обнаружил, что уничтожение фагов в бактерии зависит от присутствия определенных cas-генов[70]70
  R. Sapranauskas et al., “The Streptococcus thermophilus CRISPR/Cas System Provides Immunity in Escherichia coli”, Nucleic Acids Research 39 (2011): 9275–9282.


[Закрыть]
. Понимание того, каким образом генетический материал фага в конечном счете разрушается в ходе иммунного ответа, подвело бы нас к пониманию сути всей системы CRISPR в целом.

Исследование Блейка в сочетании с работой наших коллабораторов в лаборатории Джона ван дер Ооста лишь приоткрыло всю сложность этого процесса уничтожения вируса. В двух бактериальных системах, которые мы исследовали, – E. coli и P. aeruginosa – клеткам нужны были многочисленные Cas-белки для нацеливания на вирусную ДНК и ее расщепления. К тому же скоординированная атака на генетический материал фага проходила в два отдельных этапа. Сначала молекула РНК CRISPR связывалась с куда более крупной структурой, содержащей, как показало исследование ван дер Ооста, около десяти или одиннадцати разных Cas-белков. Этой молекулярной машине исследователи дали яркое название Cascade (аббревиатура выражения “связанный с CRISPR комплекс для противовирусной защиты”, CRISPR-associated complex for antiviral defense), и она служит чем-то вроде GPS-координат, определяющих точную последовательность вирусной ДНК, подлежащей уничтожению. На втором этапе, после того как Cascade определяла и помечала совпадающую последовательность ДНК, подлежащую уничтожению, появлялся белковый фермент под названием Cas3 – еще одна нуклеаза и, собственно, само оружие атаки, – чтобы разрезать целевую ДНК.

Проводя опыты для серии статей, которые мы опубликовали в 2011–2012 годах, мы еще лучше поняли механику этого процесса. Используя мощь электронного микроскопа и тесно сотрудничая с профессором Беркли Эвой Ногалес и ее постдоком Гейбом Ландером, мы получили первые изображения структуры Cascade[71]71
  B. Wiedenheft et al., “Structures of the RNA-Guided Surveillance Complex from a Bacterial Immune System”, Nature 477 (2011): 486–489.


[Закрыть]
 в высоком разрешении. Эти изображения показали, что структура Cas-белков и молекул РНК CRISPR спиралеобразная; можно было наблюдать, как микроскопическая машина плотно оборачивалась вокруг вирусной ДНК, подобно питону, обвивающему газель. Мы были поражены, увидев, как красиво менялась ее трехмерная форма для выполнения геометрической задачи, необходимой для нацеливания на ДНК. Мы также осознали важность взаимодействий, способствующих образованию пар оснований и позволяющих “буквам” РНК CRISPR распознавать комплементарные “буквы” вирусной ДНК; мы обнаружили, что Cascade действует удивительно точно, прикрепляясь только к тем мишеням на вирусной ДНК, которые полностью или практически полностью совпадают с РНК CRISPR. Столь высокая разборчивость позволяла Cascade избегать случайного нацеливания на собственную ДНК бактерии и ее уничтожения – катастрофического аутоиммунного события, которое бы вызвало быструю смерть клетки.

Дополнительные исследования в литовской лаборатории Виргиниюса Шикшниса показали, каким образом фермент Cas3 уничтожает вирусную ДНК, которую Cascade выбрала в качестве мишени[72]72
  T. Sinkunas et al., “In Vitro Reconstitution of Cascade-Mediated CRISPR Immunity in Streptococcus thermophilus”, EMBO Journal 32 (2013): 385–394.


[Закрыть]
. В отличие от более простых нуклеаз, Cas3 не надрезал ДНК один раз, а “разжевывал” ее на сотни кусочков. Как только Cascade отправляла Cas3 к месту, где последовательности РНК CRISPR и вирусной ДНК совпадают, Cas3 начинал двигаться вперед и назад вдоль генома фага со скоростью свыше трех сотен пар нуклеотидов в секунду, нарезая ДНК и превращая длинный геном фага в беспорядочную кучу обломков. Если более простые нуклеазы можно уподобить секатору, то Cas3 уместно сравнить с механизированными садовыми ножницами. Его скорость и эффективность поражают.

По мере того как наши коллеги делали эти удивительные открытия, а моя лаборатория продолжала получать новые биохимические и структурные данные, загадочный поначалу механизм работы CRISPR обретал ясность: становилось видно, какие молекулы входят в его состав и что они делают. Однако в то же время мы начинали осознавать, что иммунная система CRISPR представляет собой нечто вроде движущейся цели: существует не одна система, а множество ее вариаций. Некоторые ученые, включая Евгения Кунина и Киру Макарову, это уже предсказывали, сравнивая различные наборы cas-генов, примыкающих к последовательностям CRISPR; мы же открыли это явление благодаря резко возросшему количеству геномов бактерий и архей, которые к тому времени секвенировали исследователи, имевшие доступ к более совершенным инструментам. Иммунные системы CRISPR оказались очень разнообразными, и их можно было сгруппировать во множество различных категорий – у каждой свой уникальный набор cas-генов и Cas-белков.

Мы были поражены тем, насколько велико разнообразие CRISPR. В 2005 году исследователи идентифицировали девять различных типов иммунных систем CRISPR[73]73
  D. H. Haft et al., “A Guild of 45 CRISPR-Associated (Cas) Protein Families and Multiple CRISPR/Cas Subtypes Exist in Prokaryotic Genomes”, PLoS Computational Biology 1 (2005): e60.


[Закрыть]
. К 2011-му это число снизилось до трех – однако считалось, что в эти обширные типы входит десять подтипов[74]74
  K. S. Makarova et al., “Evolution and Classification of the CRISPR-Cas Systems”, Nature Reviews Microbiology 9 (2011): 467–477.


[Закрыть]
. А к 2015 году классификация снова поменялась: теперь она состояла из двух обширных классов, включающих шесть типов и девятнадцать подтипов[75]75
  K. S. Makarova et al., “An Updated Evolutionary Classification of CRISPR-Cas Systems”, Nature Reviews Microbiology 13 (2015): 722–736; S. Shmakov et al., “Discovery and functional Characterization of Diverse Class 2 CRISPR-Cas Systems”, Molecular Cell 60 (2015): 385–397.


[Закрыть]
.

Эти открытия поместили наше собственное исследование в общий контекст – и сделали очевидными ограничения нашей работы. Результаты, которые мы получали, изучая E.coli и P. aeruginosa, были справедливы только для двух подтипов систем CRISPR, которые, в свою очередь, входили в категорию иммунных систем CRISPR-Cas I типа. В то время как многие выводы наших исследований были применимы и к другим подтипам систем CRISPR, становилось все сложнее сравнивать наши данные с результатами исследования бактерий с CRISPR-системами II типа, наподобие S. thermophilus – бактерии, благодаря которой образуется йогурт и на примере которой впервые было показано существование основанного на CRISPR иммунитета.

Также нашлись некоторые занятные отличия в том, каким образом разные системы CRISPR-Cas уничтожают ДНК фага. В системах I типа (как у E. coli и P. aeruginosa) фермент Cas3 – те самые механизированные “садовые ножницы” – разрывал ДНК в клочья. Невозможно было даже рассмотреть разрушение ДНК в реальном времени, настолько быстро действовала эта крошечная машина; когда мы попытались наблюдать за реакцией в ходе эксперимента в пробирке, мы разглядели лишь молекулярный хаос, в ходе которого по всему геному фага распадались большие куски ДНК. Система II типа, обнаруженная в S. thermophilus, напротив, была более сдержанной и точной. Канадским ученым Сильвену Мойно и Жозиану Гарно во время работы с командой из Danisco удалось фиксировать состояния геномов фагов из инфицированных клеток, пока они подвергались разрушению иммунной системой CRISPR. В процессе, характерном для более простых нуклеаз, механизм, разрезавший фаговую ДНК в S. thermophilus, больше напоминал ножницы: он работал точно в том месте, где “буквы” вирусного генома совпадали с “буквами” РНК CRISPR.

Хирургическая точность фермента Cas в S. thermophilus впечатляла – однако мы знали о белке в этой системе II типа несравненно меньше, чем о ферменте в системе I типа. Ни один из описанных мной или Блейком белков в машине Cascade, которая в одиночку выполняла нацеливание на ДНК в системе CRISPR E. coli (I тип), не присутствовал в системе S. thermophilus (II тип). Более того, мы не знали точно, каким образом ферменты II типа взаимодействуют с РНК CRISPR для определения места разреза в вирусной ДНК.

Какой фермент был главным оружием в системе II типа, если не Cas3? Благодаря чему происходило нацеливание на ДНК в этой системе – да, благодаря РНК CRISPR, но чему еще? Ответы на эти вопросы помогли бы нам понять, как природа решает одну и ту же молекулярную задачу – разрушение вирусной ДНК – различными путями, и постигнуть, а может быть, даже и “приручить” мощный новый тип бактериальной иммунной системы.

Эта загадочная защитная система, созданная природой, обнаруживала черты, странным образом напоминающие свойства искусственно созданных нуклеаз – программируемых ферментов, разрезающих ДНК; эти ферменты все чаще использовались для внесения изменений в определенные участки ДНК клеток в ходе редактирования генома. Хотя иммунная система CRISPR II типа в S. thermophilus, как оказалось, не редактировала ДНК фага, а просто уничтожала ее, однако способность системы находить и вырезать определенные последовательности ДНК не отличалась – по крайней мере принципиально – от функций уже существующих инструментов для редактирования генома: ZFN и TALEN. Но были также и существенные различия, и два вопроса в особенности беспокоили исследователей CRISPR: что за фермент отвечает за разрезание ДНК в системе II типа и как он работает?

Поскольку я все еще была сосредоточена на системах I типа, меня бы, возможно, и не затянуло в это новое направление исследований, если бы не случайная счастливая встреча с коллегой, чья лаборатория располагалась практически на другом конце света и о чьей работе я лишь читала. Эта случайная встреча вдохновила меня на то, чтобы направить свои усилия на понимание CRISPR в новом свете, и стала началом судьбоносного творческого союза: благодаря этому союзу было открыто удивительное свойство системы CRISPR, о котором раньше мало кто мог подозревать.


Весной 2011 года я отправилась из Беркли в Пуэрто-Рико, чтобы принять участие в ежегодной конференции Американского общества микробиологов. Для ученых подобные конференции – отличный способ познакомиться с коллегами, узнать о новейших достижениях в своей области и отдохнуть от каждодневной лабораторной рутины. Хотя я и не была регулярной участницей этой конференции, на этот раз меня пригласили, чтобы я рассказала о работе моей лаборатории с CRISPR; к тому же я знала, что на конференции будет и Джон ван дер Оост, – к тому времени мы уже дружили и иногда сотрудничали, и я с нетерпением ждала возможности пообщаться лично. Кроме того, мне хотелось получше узнать Пуэрто-Рико. Однажды я уже была на острове в годы моей магистратуры, и мне запомнилось, насколько его чудесные тропические леса и виды на океан напоминают мои родные Гавайи.

Вечером второго дня конференции мы с Джоном заскочили в какое-то кафе, чтобы захватить с собой в аудиторию, где намечалась следующая серия выступлений, по стаканчику кофе. За угловым столиком сидела стильная молодая женщина. Джон представил нас друг другу, и, как только он произнес ее имя – Эммануэль Шарпантье, в моей голове молнией пронеслось воспоминание.

Студенты из моей лаборатории рассказывали мне о восхитительной лекции, которую Эммануэль прочитала в Вагенингене на небольшой конференции, посвященной CRISPR. Я не могла присутствовать там, однако, по словам моих подопечных, доклад Шарпантье был посвящен иммунной системе CRISPR II типа бактерии Streptococcus pyogenes. Поразмыслив, я поняла, что ее статья на ту же тему незадолго до этого была опубликована в журнале Nature[76]76
  E. Deltcheva et al., “CRISPR RNA Maturation by Trans-Encoded Small RNA and Host Factor RNase III”, Nature 471 (2011): 602–607.


[Закрыть]
 и вызвала вспышку радостного возбуждения в моей лаборатории. До выхода статьи все мы думали, что в каскадах реакций CRISPR участвует всего один вид молекул РНК. Однако Эммануэль и ее коллега Йорг Фогель, уже долгое время изучавшие функции небольших бактериальных РНК в своей лаборатории, по счастливому стечению обстоятельств обнаружили вторую молекулу РНК, которая в некоторых случаях была необходима для выработки РНК CRISPR. Это открытие поразило других исследователей CRISPR, показав, насколько многообразен бактериальный иммунитет, – создавалось впечатление, что эволюция создала своего рода швейцарский армейский нож для борьбы с вирусами.

Во время нашей короткой беседы Эммануэль говорила тихо и держалась скромно, однако я также отметила ее тонкое чувство юмора и приятную непринужденность в общении. Мне она сразу понравилась. На следующий день после утренних выступлений у нас выдалось свободное время. Я планировала посидеть во дворике и поработать на компьютере, но Эммануэль пригласила меня посмотреть старый Сан-Хуан, и я не смогла отказаться. Прогуливаясь по мощенным булыжником улочкам, которые напомнили Эммануэль о доме в Париже, где она провела детство, мы болтали о том, где успели побывать за недавнее время, сравнивали наши впечатления от университетских систем в Беркли и в Швеции (куда как раз переместилась ее лаборатория) и обсуждали лекции, которые только что прослушали на конференции. В конце концов беседа зашла о нашей научной работе, и Эммануэль призналась, что уже некоторое время собирается позвонить мне и предложить сотрудничество.

Ей очень хотелось узнать, каким образом в патогенной бактерии, которую она изучала, Streptococcus pyogenes, система CRISPR II типа разрушает вирусную ДНК. Работа Эммануэль, как и более ранние генетические исследования Сильвена Мойно, Виргиниюса Шикшниса и других коллег, все больше наводила на мысль, что в процессе был задействован как минимум один ген – он называется csn1. Так вот, не хочу ли я объединить с ней усилия и использовать наработки моей лаборатории в области биохимии и структурной биологии, чтобы помочь определить функцию белка, кодируемого геном csn1? Когда мы спускались по узкой улочке к сияющему океану, Эммануэль повернулась ко мне: “Я уверена, что, работая вместе, мы сможем понять, что делает этот загадочный Csn1”. Приятная дрожь проходила по моему телу, когда я обдумывала перспективы этого проекта.

Я была заинтригована идеей поработать с CRISPR-системами II типа, в которых отсутствовали Cascade и белки Cas3. И если этот загадочный белок Csn1 действительно участвует в разрезании ДНК в системах II типа, то сотрудничество с Эммануэль могло дать моей лаборатории шанс внести вклад в эту область исследований CRISPR.

Меня манила и сама эта новая бактерия. В качестве экспериментального объекта S. pyogenes обладала некоторыми интересными сходствами и различиями с бактерией S. thermophilus, используемой в производстве йогурта. Последняя к тому моменту стала одним из самых популярных организмов у исследователей CRISPR. Для начала, обе бактерии принадлежат к одному роду, Streptococcus, и иммунная система CRISPR S. pyogenes казалась очень похожей на иммунную систему S. thermophilus. Хотя у каждой бактерии собственный набор фагов-мишеней, молекулярная основа систем у них одна и та же и кодируют CRISPR одни и те же гены, поэтому перейти с изучения одной бактерии к другой было бы несложно.

И все же S. pyogenes играет в нашей жизни совершенно иную роль, нежели S. thermophilus. Исследование S. thermophilus имеет значение для экономики из-за широкого использования этой бактерии в молочной промышленности – для производства сыра и йогурта. Стоит отметить, что S. thermophilus – это единственный штамм из рода Streptococcus, который признан безопасным для людей и других млекопитающих. В то же время S. pyogenes и все остальные представители этого рода – патогены для нескольких видов млекопитающих, включая и наш. Поразительно большое количество человеческих болезней связано с этой бактерией. S. pyogenes – одна из десяти самых частых причин смертельных инфекционных заболеваний у представителей нашего вида, и каждый год из-за нее происходит свыше полумиллиона смертей[77]77
  A. P. Ralph and J. R. Carapetis, “Group A Streptococcal Diseases and Their Global Burden”, Current Topics in Microbiology and Immunology 368 (2013): 1–27.


[Закрыть]
. Среди болезней, виновником которых может стать S. pyogenes, – токсический шок, скарлатина, стрептококковое воспаление горла, а кроме того, жуткий некротический фасциит, из-за которого S. pyogenes получила неприятное прозвище “плотоядная бактерия”.

Таким образом, изучение S. pyogenes имеет большое значение для медицины, и это также повышает ее привлекательность для исследователей. На самом деле именно желание изучить патогенность S. pyogenes привело Эммануэль в область CRISPR. Система CRISPR, как она надеялась, сможет дать нам новые способы борьбы со стрептококковыми инфекциями, а это помогло бы спасти бесчисленное количество жизней.

К счастью для исследователей, эту опасную бактерию можно изучать в том числе и способами, сводящими риски к минимуму. Когда Эммануэль обратилась ко мне с предложением о сотрудничестве, было ясно, что S. pyogenes в моей лаборатории будет изучаться исключительно in vitro (от латинского “в стекле”), а не in vivo (от латинского “в живом”). Нам предстояло проводить эксперименты в пробирках с очищенными белками и молекулами РНК и ДНК, а не с живыми клетками и фагами. Нам не нужно было выращивать культуры S. pyogenes в чашках Петри с овечьей кровью или работать в изолированной лаборатории, чтобы гарантировать, что этот смертельно опасный патоген не распространится за ее пределы. Мы также могли использовать E. coli, нашу лабораторную “рабочую лошадку”, для безопасной массовой выработки отдельных генов и белков из S. pyogenes, не подвергая сотрудников, работающих с бактериями, риску заражения.

Во время полета обратно в Калифорнию после конференции в Пуэрто-Рико я думала о предложенном мне сотрудничестве и о том, кого из моей лаборатории я бы могла попросить стать руководителем проекта. К 2011 году изучение CRISPR в моей лаборатории велось значительно более масштабно, чем в начале проекта: теперь в моей команде было несколько постдоков, аспирантов и руководителей экспериментов, работавших над различными аспектами биологии CRISPR и созданием инструментов на его основе. Но практически каждый был занят своим проектом, и я не решалась никого обременить дополнительной работой.

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2 3 4 5 6
  • 4 Оценок: 5

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации