Электронная библиотека » Джо Мерчант » » онлайн чтение - страница 3


  • Текст добавлен: 8 сентября 2017, 19:40


Автор книги: Джо Мерчант


Жанр: Зарубежная образовательная литература, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 3 (всего у книги 17 страниц) [доступный отрывок для чтения: 5 страниц]

Шрифт:
- 100% +

Первыми греками, о которых нам достоверно известно, что они использовали шестерни, были два знаменитых изобретателя III в. до н. э. – Ктесибий и Архимед. Сын брадобрея Ктесибий стал величайшим инженером своего времени – после легендарного Архимеда. Он работал в Александрии и, вероятно, был первым заведующим знаменитого Александрийского мусейона. Ни один из текстов Ктесибия не дошел до нас, но мы много знаем о нем из работ позднейших авторов, таких как римский архитектор Витрувий, живший двумя столетиями позже. Витрувий сообщает, что Ктесибий сконструировал водяные часы, в которых поплавок, поднимавшийся вместе с уровнем воды, двигал стрелку с помощью «зубчатой рейки и шестерни». Это устройство, в котором одна шестерня соединена с плоским зубчатым стрежнем, используется для превращения линейного движения во вращательное, и наоборот.

Архимед жил в богатом городе Сиракузы на Сицилии, хотя в юности почти наверняка работал в Александрии с Ктесибием. В числе множества приписываемых ему изобретений – «бесконечный винт», в котором винт с резьбой используется для того, чтобы включить в работу зубчатое колесо с куда большим шагом передачи. Полный оборот винта поворачивает колесо всего на один шаг, то есть множество малых оборотов проворачивают колесо лишь немного, но с куда большей силой, чем прилагалась к винту. Согласно Плутарху, похожее приспособление (полиспаст, система блоков и канатов, в которой выигрыш в усилии идет за счет потери в расстоянии. – Прим. ред.) позволило Архимеду произвести впечатление на тирана Сиракуз, когда он одной рукой вытащил корабль из моря на сушу, «так легко и гладко, как если бы тот шел по воде».

Еще одно, более сложное приспособление, которое описывает Витрувий, – это одометр, измеритель пройденного пути. Его действие основано на том, что колесо повозки диаметром около 1,2 м совершает, проезжая одну римскую милю, 400 оборотов. С каждым оборотом выступ на оси колеса цепляет шестерню с 400 зубцами, поворачивая ее на один шаг, так что с каждой милей механизм совершает оборот. Это колесо сцепляется с другой шестерней с отверстиями по окружности, в которых закреплены камешки, и по мере того, как шестерня поворачивается, камешки один за другим падают в ящик. Количество камешков соответствует милям пути.

Возможно, римским возничим платили помильно. Но мы не можем с уверенностью сказать, было ли это изобретение реализовано на практике. Однако общая идея выражена достаточно ясно, и подобные механизмы могли появиться задолго до времен Витрувия. В IV в. до н. э. Александра Македонского в азиатском походе сопровождали «бематисты», у которых была, наверно, самая скучная работа в античном мире – считать шаги, чтобы измерять расстояние. Точность их подсчетов даже в походах на сотни миль (ошибка часто составляла менее одного процента) наводит на мысль, что они, возможно, пользовались механическими одометрами.

Но вершины в изобретении зубчатых колес в Древней Греции достиг механик Герон, еще один последователь Ктесибия, преподававший в Александрийском мусейоне в I в. Герон писал о принципе, который начал разрабатывать Архимед, применяя зубчатые колеса разной величины, чтобы изменить силу приложенного воздействия.

В частности, он описал подъемную машину и нарисовал ее, показав, как последовательность зубчатых колес все большего размера позволяет поднимать тяжелый груз, прилагая относительно небольшое усилие. Нет никаких свидетельств в пользу того, что это изобретение было не чисто теоретическим – многие ученые считали, что зубцы оказались бы недостаточно прочны, чтобы приспособление работало на практике, – но само описание показывает: принцип взаимодействующих зубчатых колес в те времена понимали. Другой инструмент, детально описанный Героном, – диоптр, прибор для измерения углов, в котором для точной настройки применялись бесконечный винт и зубчатое полукольцо.

Итак, мы знаем, что греки использовали зубчатые колеса в простых механических устройствах начиная с 300 г. до н. э. Но большинство этих приспособлений включали лишь одну-две шестерни, соединявшиеся с винтом или зубчатым стержнем. От них не требовалось особой точности – лишь передать усилие или поднять груз. И тем не менее Герона считали гением, опередившим свою эпоху, писавшим о невозможных устройствах, которые находились за пределами понимания его современников. В одной заметной работе 1950-х гг. о диоптре Герона говорится как об изобретении «уникальном, без прошлого и без будущего, прекрасном, но преждевременном, сложность которого превосходила технические возможности того времени».

В отличие от подъемного механизма и диоптра – которые, как считалось, далеко опередили свое время, – система зубчатых колес в Антикитерском механизме не оставляла сомнений в своей реальности, а от ее сложности захватывало дух. Это были точно выточенные бронзовые шестерни, явно предназначенные для каких-то вычислений. Подсчитать количество зубчатых колес в разрушенных фрагментах было нелегко, но Стаис и его коллеги разглядели только на источенных коррозией поверхностях по меньшей мере 15 шестерен. Похоже, они соединялись так, чтобы производить какие-то математические операции, результат которых на шкале указывали стрелки.

Сложность этого механизма наводила на мысль, что это могли быть часы или механический калькулятор, нечто вовсе непохожее на то, что, как предполагалось, могли создать древние греки. Но если так, то он почти на 2000 лет опередил свое время. Механические часы столь малого размера требовали изящных пружин и регулирующих устройств, и появились они в Европе только в XV в., а до первых механических калькуляторов, сложных хитроумных машинок, использующих шестеренки для того, чтобы складывать, вычитать, умножать и делить, не додумались и в следующие 200 лет.

Сегодня мы так привыкли к электронным компьютерам и калькуляторам, что сама идея вычислений с помощью металлических шестеренок может показаться странной. Представьте, например, что у вас есть шестерня с 20 зубцами, которая захватывает шестеренку с 10 зубцами. Каждый раз, когда вы проворачиваете первую шестерню на один оборот, вторая делает два. Иными словами, ваш ввод умножается на два (фактически вторая шестерня вращается в противоположном первой направлении, так что можно утверждать, что введенная величина умножается на минус два, но вы уловили идею). Это часть того, что происходит в часах – превращение тикающих секунд в минуты, а потом и в часы. Чем больше в вашем распоряжении шестеренок, соединенных последовательно или параллельно, тем более сложные вычисления можно производить.

Мысль о том, что обнаружены античные часы или калькулятор, вызвала в Афинском музее волнение и даже некоторый испуг. Понимая, что интерпретация находки выходит за пределы его компетенции, Стаис пригласил двух экспертов. Первым был Иоаннис Своронос, директор Национального нумизматического музея Афин, хранитель древних монет и специалист по античным надписям. Один из старейших археологов страны и весьма эрудированный человек, он, к сожалению, был склонен выступать с эксцентричными теориями, которые не многие осмеливались оспорить. Вторым экспертом был австриец Адольф Вильгельм, блестящий молодой специалист по надписям, оказавшийся тогда в Афинах.

Через несколько дней Вильгельм осторожно предположил, что надпись на механизме была сделана где-то между II в. до н. э. и II в. н. э. Между тем Своронос и некоторые ведущие ученые Греции выступили с громкими и противоречащими друг другу публикациями в национальной прессе, горячо обсуждая возможное назначение странного инструмента. Их дебаты о зубцах и шкалах появлялись рядом с сообщениями о только что завоевавшей независимость Кубе и оккупации Южной Африки Британией. Но со временем первоначальный ажиотаж утих, и эксперты занялись изложением своих теорий в научных изданиях.

Своронос успел первым и в 1903 г. представил доклад, написанный совместно с Периклесом Редиадисом, профессором геодезии и гидрографии. Старейший член Афинского археологического общества, Редиадис интересовался также историей мореплавания и был хорошо известен своими исследованиями места, где в 480 г. до н. э. произошло знаменитое Саламинское сражение.

Своронос размышлял над загадочными письменами Антикитерского механизма, вооружившись увеличительным стеклом. Он сумел расшифровать 220 стершихся греческих букв и несколько полных слов и сравнил их начертания с надписями на античных монетах, которые знал очень хорошо. Он отбросил мнение Вильгельма о возрасте устройства и заявил, что надписи датируются первой половиной III в. Это была бурная эпоха гражданских войн, когда Римской империей и входившей в нее Грецией правили сменявшие друг друга узурпаторы: они захватывали власть только для того, чтобы вскоре быть жестоко убитыми.

Тем временем Редиадис дал описание фрагментов устройства – первый технический, хотя и довольно расплывчатый отчет о предмете, который он назвал «крайне странным инструментом». Он отметил, что механизм помещался в деревянном ящике, как и навигационные приборы на современных ему кораблях, и заключил, что предмет этот не принадлежал к корабельному грузу, но был навигационным прибором, которым пользовалась команда.

По остаткам букв, расшифрованных Свороносом и Вильгельмом, Редиадис предположил, что надписи были инструкциями по обращению с прибором, и подчеркнул особую важность одного очень необычного греческого слова – μοιρογνωμονιον. Это технический термин, относящийся к градуированной шкале. Слово использовалось в одном из самых ранних известных детальных описаний устройства астролябии, датируемом VI в. Исходя из этого Своронос и Редиадис сделали вывод, что Антикитерский механизм – это некая разновидность астролябии.

Астролябии принадлежат к числу самых хитроумных инструментов, применявшихся в древности. Это были своего рода калькуляторы. Они использовались для решения задач, связанных со временем и положением Солнца и звезд на небе, и были популярны вплоть до XVII в., когда их начали вытеснять все более точные часы и астрономические таблицы.

В астролябиях, однако, было нечто, чего не могли заменить новые технологии. Название ее значит «ловец звезд», и это совершенно уместно: держа гравированный металлический круг астролябии, вы держите на ладони все небо. Со времен Аристотеля считалось (и очень мало кто в этом сомневался), что Земля неподвижно покоится в центре Вселенной, Солнце обращается вокруг нее, а позади вращается сфера неподвижных звезд.

Астролябия – это плоский диск, поверх которого крутится круглая пластина, представляя двумерную картину вращения небес – такой, какой она видится с Земли. Солнце, звезды, горизонт и все небо показаны на ней в виде замысловатых схем. Надписи сегодня кажутся нам сложными и непонятными, но это результат многовековых астрономических наблюдений, и в них зашифровано наше место в видимой Вселенной.

В центре круглой основы инструмента – по латыни она называется mater, то есть «мать» – есть штырек, на который, как виниловый диск в проигрывателе, надевается плоская металлическая панель, так называемый тимпан. На нем выгравирована непонятная, но красивая паутина пересекающихся кривых, прямых и окружностей. Это карта небесной сферы, спроецированная на плоский диск, с северным полюсом в центре – так обычные географические карты показывают нашу шарообразную планету на плоском листе бумаги. На пластине выгравированы вертикальный модуль, указывающий север и юг, и горизонтальный, определяющий восток и запад. Ряд кривых и окружностей изображает небесный экватор (как если бы он был протянут прямо в небо), тропики Рака и Козерога, горизонт, а также различные отметки высот над горизонтом и градусы широты. Положение этих линий зависит от того, на каком расстоянии к югу или северу от экватора вы находитесь, поэтому к большинству астролябий прилагались сменные пластины, каждая для определенной широты.

Поверх этой жестко зафиксированной карты неба располагается вращающаяся панель под названием «паук». На этом диске отмечены главные созвездия и окружность, изображающая путь Солнца по небу. Конечно, все небо движется, поскольку Земля вращается, но, так как мы вращаемся вокруг Солнца, нам кажется, что оно движется немного быстрее, чем звезды, ежедневно обгоняя их на несколько градусов. Путь, который проделывает Солнце относительно звезд на протяжении года, называется эклиптикой, потому что единственное время, когда можно точно увидеть положение Солнца относительно звезд – это время затмения (по-гречески «эклипсис»). В древности 360-градусный круг эклиптики был разбит на двенадцать 30-градусных секторов по долготе, соответствовавших 12 знакам зодиака. Они были нанесены по окружности астролябии – это и была шкала, упомянутая в тексте VI в. и в надписи на Антикитерском механизме.

На «пауке» промежутки между созвездиями были вырезаны, так что можно было видеть небесную карту под ней (отсюда название этой пластины, означающее «сеть» или «паутина»). Точные положения звезд указывали стрелки, часто весьма впечатляющей формы – в виде кинжалов или языков пламени. По мере того как этот просвечивающий диск вращался по небесной карте, он показывал движение звезд по небу. Поверх «паутины» крепился вращающийся прямой стержень, называвшийся линейкой и представлявший Солнце. Точное положение Солнца на небесной карте определялось точкой, в которой линейка пересекала окружность эклиптики. Вначале линейку устанавливали относительно эклиптики, чтобы показать определенный день года, затем она вращалась вместе с «паутиной», изображая движение Солнца по небу в течение дня. Дополнительные линии на фиксированной пластине, отмечавшие часы, позволяли астрономам узнать время, когда Солнце или любая отмеченная на карте звезда достигнут определенной высоты.

Астролябии использовали в основном для астрономических предсказаний и наблюдений (на оборотной стороне были визиры для измерения высоты звезд или Солнца). Для навигации они были не слишком удобны. Мало того, что тяжелый металлический диск раскачивался бы на ветру, если бы вы попытались использовать его на палубе, но к тому же были и другие, более простые приспособления для измерения полуденной высоты Солнца, а именно это нужно, чтобы определить широту, на которой находится корабль. И астролябии не измеряли долготу – как далеко к востоку или западу вы зашли. Это было невозможно вплоть до XVIII в., когда легендарный британский часовщик Джон Харрисон добился такой точности хода часов, что их можно было брать в плавание и определять разницу между временем в родном порту и временем в том месте, где корабль находился сейчас, определенном по звездам.

Хотя ни одного инструмента, сделанного ранее IX в., до наших дней не дошло, астролябии почти наверняка были в ходу намного раньше. Живший во II в. греческий астроном Птолемей описал конструкцию астролябии (он называл ее астролабоном, и это была, скорее, армиллярная сфера, или небесный глобус. – Прим. ред.) и оставил множество астрономических наблюдений, возможно, сделанных с ее помощью. До наших дней дошел колоритный (хотя и мало похожий на правду) рассказ, будто Птолемей изобрел астролябию, когда ехал на осле, размышляя над своим небесным глобусом. Он уронил глобус, а осел наступил на него и раздавил, подав таким образом Птолемею идею. В других текстах есть, однако, указания на то, что астролябию изобрел Гиппарх, астроном, который жил и работал на Родосе во II в. до н. э. Именно у него Птолемей почерпнул немало сведений для своих астрономических трактатов.

Зодиакальная шкала, обнаруженная Свороносом и Редиадисом, определенно наводила на мысль, что Антикитерский механизм имел какое-то отношение к астрономии. Но он не был похож ни на одну известную на тот момент астролябию. Начать с того, что астролябии не были квадратными и не помещались в деревянных ящиках. Но главное – хотя у астролябии есть шкалы и стрелки, ей совершенно ни к чему зубчатые колеса.

Как все, кто видел механизм, профессор Редиадис был поражен сложностью систем передачи. Несмотря на относительно позднюю датировку Свороноса, отнесшего механизм к III в., он с трудом сопротивлялся мысли, что перед ним прибор, созданный куда позже. Редиадису система передач Антикитерского механизма напоминала устройство современных часов. И если бы не уверенность Свороноса в том, что прибор был сделан задолго до изобретения пружин, регуляторов хода и анкерного механизма, он бы «решил, что перед ним морской хронометр Харрисона».

Но, когда пришло время определить назначение механизма, Редиадиса не обескуражило отсутствие сходства с известными астролябиями. Он полагал, что, как и в обычной астролябии, древний прибор должен был использовать линию визира в сочетании с градуированной шкалой, чтобы измерять высоту звезд или Солнца в небе. Он предположил, что Антикитерский механизм – это совершенно иной тип астролябии, в котором время дня или положение Солнца не считывались по выгравированным картам и шкалам, а вычислялись механически с помощью набора шестеренок, а результат указывали стрелки. И хотя он назвал прибор «астролябией» (на следующие полвека определение это, как заметил один историк, «прилипло как банный лист»), на самом деле он описал род часового механизма, который работал не автоматически после завода, но вращался вручную и настраивался согласно движению звезд. Это была вдохновенная и довольно красивая догадка, выстроенная на редких намеках, содержавшихся в обломках Антикитерского механизма.

К сожалению, ни Редиадис, ни Своронос не задались вопросом, зачем кому-то понадобилось создавать такой сложный механизм, чтобы делать то, с чем прекрасно справлялась обыкновенная астролябия.

В 1905 г. другой историк мореплавания по имени Константин Радос, такой же, как и Редиадис, специалист по Саламинскому сражению, опубликовал работу, в которой утверждал, что Антикитерский механизм слишком сложен для астролябии. Он тоже сравнил систему зубчатых передач с часовым механизмом и даже, как он полагал, заметил остатки металлической пружины в одном из обломков. Так может ли быть, что это все-таки механические часы с заводом? Радос не мог поверить, что такое сложное устройство могло применяться на том корабле, с которого подняли античные статуи у Антикитеры. Он предположил, что прибор мог затонуть в результате другого, более позднего кораблекрушения и лишь случайно оказался среди более древних обломков.

Еще через два года «в борьбу» вступил молодой немец Альберт Рем. Позже он стал одним из крупнейших в мире специалистов по античным надписям. Но тогда он только что поступил на работу в Мюнхенский университет и лишь начинал делать себе имя. Разочарованный недостатком технических подробностей в описании Редиадиса и плохим качеством фотографий, он отправился в Афины, чтобы лично изучить обломки, после чего поддержал Радоса, придя к выводу, что, хотя механизм определенно древний, он никак не может быть разновидностью астролябии.

К тому времени обломки подверглись осторожной, но все же не слишком удачной очистке. Она открыла новые отметки и была необходима, чтобы предотвратить дальнейшее разрушение бронзы, однако в ходе процедуры были утрачены некоторые наружные детали. В результате очистки, однако, Рему удалось прочитать на передней шкале третьего фрагмента прежде скрытое и крайне важное слово: ΠΑΧΩΝ. Это греческое название месяца древнеегипетского календаря. Не было никакого смысла указывать названия месяцев на астролябии, утверждал Рем, да и на любом другом навигационном приборе.

Он предположил, что обломки представляют собой остатки прибора планетарий. При повороте рукоятки шестерни разного размера могли передавать движение пропорционально скоростям известных тогда планет – Меркурия, Венеры, Марса, Юпитера и Сатурна, показывая их приблизительное положение при взгляде с Земли в разные дни, недели и месяцы года.

В 1910 г. рассерженный Редиадис дал ответ. В новой работе он утверждал, что, даже если механизм и не является астролябией, еще менее вероятно, что это может быть планетарий – шестерни слишком слабые и плоские для устройства сферической формы. Вдобавок он повторил свой несколько сомнительный старый аргумент: раз прибор находился на корабле и помещался в деревянной шкатулке, то, скорее всего, он относился к корабельному оборудованию.

После этого изучение механизма приостановилось, хотя перебранка между некоторыми всемирно известными историками науки продолжалась. Единственное крупное исследование обломков в эти годы относительного затишья провел Ион Теофанидис, контр-адмирал греческого флота. Он заинтересовался механизмом в 1920-е гг., когда готовил статью для морской энциклопедии о путешествиях апостола Павла, который в I в., распространяя христианство, неоднократно пересекал Средиземное море, пока не попал в кораблекрушение у Мальты, когда его везли в качестве заключенного в Рим.

Теофанидис опубликовал свои выводы в 1934 г. Когда известковый налет счистили, обнаружилось большое кольцо на лицевой пластине главного фрагмента механизма с градуированной шкалой по окружности. Могла ли это быть зодиакальная шкала, упоминавшаяся в надписи?

Теофанидис также подтвердил, что большое крестообразное зубчатое колесо вовлекало во вращение несколько меньших шестерен. Он также описал рукоятку сбоку, которая, по-видимому, приводила в движение главное колесо, когда ее вращали вручную, предположил Теофанидис, или, возможно, с помощью водяных часов. Он также отметил, что буквы были выгравированы столь искусно, что над ними явно трудился высококвалифицированный мастер, а не простой работяга. И, как и все специалисты в морском деле, Теофанидис был убежден, что механизм представляет собой навигационный прибор. А надписи – это инструкции или правила, которые капитан мог записать для себя лично.

Вдобавок к этому, как и Рем, Теофанидис считал, что приспособление использовалось для вычисления точного положения Солнца, Луны и планет, а передаточные отношения зубцов разных шестерен обеспечивали правильное отображение скорости движения светил. Но он не мог полностью отбросить мысль об астролябии. В некоторых выгравированных числах он увидел те же отношения, что и между прямыми и окружностями астролябии, и предположил, что надписи – это инструкции по совмещению этих отметок с линейкой и компасом так, чтобы их можно было использовать вместе с прибором для решения различных астрономических и навигационных задач. Он также предположил, что, установив стрелки прибора в соответствии с тенью, которую отбрасывает стержень, помещенный в центр концентрических окружностей, можно, приведя механизм в движение, вычислить точное местонахождение корабля.

Теофанидис увлекся Антикитерским механизмом и провел много лет, изучая фотографии его фрагментов и пытаясь построить его модель. Ему даже пришлось продать несколько принадлежавших его семье домов в центре Афин, чтобы финансировать исследования. Но больше он ничего не опубликовал. Значительная часть его обширных трудов не получила известности, оставшись после его смерти лежать в виде пыльных кип бумаг в доме его семьи.

Между тем Альберт Рем поднимался по карьерной лестнице все выше и выше и в 1930 г. стал ректором Мюнхенского университета, превратившись в одного из самых влиятельных ученых страны. Но жизнь вокруг него менялась. С середины 1920-х гг. усиливалось влияние нацистской партии, к этому добавился экономический спад. Рем с ужасом замечал, что нацистское движение набирает силу среди его студентов, и делал все, чтобы разубедить их, но без большого успеха. Когда в 1933 г. к власти пришел Адольф Гитлер, многим евреям-коллегам Рема не осталось иного выбора, кроме как бежать из страны. Сам Рем продолжал громко протестовать, вызывая все большее неудовольствие режима, и в 1936 г. его вынудили подать в отставку.

Через девять лет, когда Вторая мировая война закончилась, Рема снова назначили ректором в знак признания его заслуг в сопротивлении нацизму. Но он недолго занимал этот пост. Он столь же откровенно выступал против новых властей, не признававших важность классических исследований для немецкого образования, и в 1946 г. снова был смещен с должности. Подобное упорство было присуще Рему во всем: он, как и Теофанидис, не мог забыть о древних шестернях Антикитерского механизма. После первой своей публикации о нем он всю жизнь изучал фрагменты устройства, намереваясь окончательно разгадать, как оно работало, и одной триумфальной исчерпывающей работой заставить всех критиков замолчать.

В то время как Рем сопротивлялся нацистскому режиму, тень Гитлера накрыла и Афины. В апреле 1941 г. в город вступили немецкие войска. Король и правительство бежали на Крит (кроме премьер-министра Александроса Коризиса, который в отчаянии застрелился), Национальный археологический музей был закрыт. Ценные экспонаты убрали со стендов и спрятали в заколоченных ящиках – некоторые в пещерах в холмах вокруг Афин, некоторые в подземных хранилищах Банка Греции, а остальные в подвалах самого музея, где их торопливо засыпали песком. Там экспонаты переждали долгие темные годы оккупации, сокрытые от мародерствующей армии. К несчастью, спрятать таким же образом городские запасы продовольствия было невозможно. Немецкие солдаты, не озаботившиеся снабжением, разграбили все афинские склады. К моменту, когда спрятанные экспонаты снова увидели свет, десятки тысяч афинян умерли от голода.

Когда оккупация закончилась, Грецию несколько лет терзала гражданская война, но музей все-таки открылся вновь под руководством нового директора Христоса Карузоса, и в период между 1945-м и 1964-м те экспонаты, что не пропали в годы смуты, постепенно возвращались в экспозицию. Антикитерский механизм пережил все, но к этому времени о нем успели подзабыть. Историки науки, яростно спорившие о его датировке и назначении, отошли в мир иной, а в глазах искусствоведов и археологов, работавших в музее теперь, обшарпанные обломки не могли идти ни в какое сравнение с прекрасными вазами и статуями, заполнявшими залы. Так что таинственные куски не были выставлены вместе с другими предметами из Антикитеры. Они вновь лежали в ящике в запасниках.


Страницы книги >> Предыдущая | 1 2 3 4 5 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации