Текст книги "Революция в физике"
Автор книги: Луи де Бройль
Жанр: Физика, Наука и Образование
сообщить о неприемлемом содержимом
Текущая страница: 17 (всего у книги 20 страниц)
Глава XI. Спин электрона
1. Тонкая структура и магнитные аномалии
Мы изложили принципы волновой механики электрона. Теперь мы должны показать, почему, несмотря на ее успехи, эта механика в своей первоначальной форме оказалась все же несовершенной и должна претерпеть еще существенные изменения. Причина заключается в том, что волновая механика электрона в своей первоначальной форме не позволяет объяснить некоторых фактов спектроскопических и магнитных измерений, известных уже много лет, которым старая квантовая механика не могла дать объяснения.
К первой категории трудно объяснимых фактов относятся данные спектроскопии. Мы знаем, что старая квантовая теория, а вслед за ней и новая механика, успешно и с большой точностью предсказали существование большого числа спектральных линий. Однако таблицы спектральных линий, полученные на основе этих теорий, как выяснилось, оказались неспособны передать всю сложность реальных спектров. Иными словами, в оптических и рентгеновских спектрах существуют линии, которые не находят объяснения. Мы видели, что Зоммерфельд, использовав идеи теории относительности в рамках старой квантовой теории, добился успеха в объяснении тонкой структуры водородного спектра и рентгеновских спектров. Он пошел путем, который на первый взгляд выглядит вполне удовлетворительно, однако более внимательное изучение не вполне подтверждает это благоприятное впечатление: теория Зоммерфельда правильно предсказывает образование дублетов серии Бальмера и рентгеновских серий, однако их положения она указывает неправильно. Не следует думать, что кажущийся успех Зоммерфельда был чисто случайным, однако всегда чувствовалось, что в его теории отсутствует какой-то важный элемент. Ситуация далеко не прояснилась с созданием волновой механики. Наоборот, она ухудшилась. Действительно, чтобы перевести попытки Зоммерфельда на язык волновой механики, необходимо было ввести в нее элементы теории относительности. Релятивистское волновое уравнение легко было найти. Оно представляет собой естественное релятивистское обобщение уравнения Шредингера, за исключением того, что оно второго порядка по времени. Казалось, достаточно было бы применить к этому уравнению новый метод квантования, т е. найти его собственные значения, как мы снова сразу же получим формулу Зоммерфельда. Результат такого вычисления оказался разочаровывающим: полученная формула имела вид, аналогичный зоммерфельдовской, но тем не менее несколько отличный, и эта формула нисколько не лучше соответствовала экспериментальным фактам. Провал был полным: волновая механика не внесла того нового элемента, который был необходим и природа которого была к тому времени известна благодаря работам Уленбека и Гоудсмита. О них мы скажем несколько позже.
Но кроме вопросов, связанных с дублетами Зоммерфельда, возникли также другие трудности, касающиеся тонкой структуры. Так, в рентгеновских спектрах теория Зоммерфельда очень хорошо предсказывает некоторые из тонких структур, которые реально существуют, однако строение этих серий в значительной степени более сложно, чем следует из формул этой теории. Например, в рентгеновских спектрах элементов всегда имеется три L–серии, линии которых в шкале частот перекрываются. Теория же Зоммерфельда позволяет предсказать две, и только две L–серии, из нее никак не получается третья. Чтобы получить недостающие спектральные линии, Зоммерфельд впоследствии ввел наряду с двумя квантовыми числами, имеющимися в его теории, третье квантовое число, которое он назвал внутренним квантовым числом. Введение этого третьего квантового числа было совершенно эмпирическим. Всякие попытки его теоретически обосновать, предпринятые в то время, были отброшены. Не удалось добиться большего и квантовой механике. Она оказалась неспособной объяснить существование лишней серии и внутреннего квантового числа. Снова чувствовалась необходимость введения нового элемента, о котором мы говорили.
Обратимся теперь ко второй категории явлений, не нашедших своего объяснения в старой квантовой теории, – магнитным аномалиям. Мы уже отмечали существование аномального эффекта Зеемана, который одинаково безуспешно пытались объяснить и первая теория электрона Лоренца, и старая квантовая теория, и волновая механика. Причина этой общей неудачи заключается в том, что в основу объяснения эффекта Зеемана во всех трех теориях был положен один и тот же постулат. Предполагалось, что магнитные моменты, которыми могут обладать атомы, возникают лишь благодаря орбитальному движению внутриатомных электронов. Такая точка зрения предполагала, что полный момент количества движения атома обязательно должен иметь строго фиксированное отношение к его полному магнитному моменту, причем величина этого отношения зависит исключительно от отношения электрического заряда электрона к его массе. Этот вывод, одинаковый и в классической теории электрона, и в старой квантовой теории, и в волновой механике в ее первоначальной форме, привел во всех этих трех теориях к тому, что эффект Зеемана всегда должен быть нормальным, таким, какой был впервые предсказан Лоренцом и открыт экспериментально Зееманом.
Существование аномального эффекта Зеемана, так же как существование спектроскопических данных, о которых мы говорили, указывало на необходимость введения в теорию нового элемента и показывало, что этот элемент должен как-то влиять на магнитные свойства. Кроме того, непрерывно продолжались, начиная с памятного открытия Зеемана, экспериментальные исследования аномального эффекта Зеемана и эмпирические законы его были очень хорошо известны. Мы не можем здесь обсуждать эти эмпирические законы, а лишь ограничимся сообщением, что Ланде добился успеха, обобщив большое число таких законов введением в формулы старой квантовой теории некоего фактора, g-фактора Ланде, корректное, объяснение которого оставалось сомнительным. В то же время, безусловно, все эти исследования аномального эффекта Зеемана прокладывали дорогу к окончательной теории явления, так как заранее был известен точный математический вид законов, которые нужно объяснить.
Однако аномальный эффект Зеемана – это не единственное явление в области магнетизма, которое оставалось необъясненным. Были еще гиромагнитные аномалии. Из гипотезы о возникновении атомного магнетизма благодари орбитальному движению электронов в атоме следовало, что если подвешенный железный цилиндр намагнитить вдоль его оси, то он начнет вращаться. И наоборот, если этот цилиндр привести во вращение вокруг его оси, то у него должен возникнуть магнитный момент. Причем отношение механического момента к магнитному моменту в обоих случаях должно быть равно упомянутой выше константе, отношению заряда электрона к его массе. Были проделаны эксперименты с целью количественного подтверждения этого вывода-теории (Эйнштейн и Де-Хааз, Вернет). Оказалось, что оба эти явления существуют: намагниченный цилиндр приходит во вращение и происходит намагничивание вращающегося цилиндра. Однако отношение магнитного момента к механическому оказалось примерно вдвое больше предсказанной величины. Этот неожиданный результат ясно показал, в каком направлении нужно предпринимать попытки введения нового элемента. Стало очевидно, что не весь магнетизм атома возникает из-за вращательного движения электронов и что есть магнитные и механические моменты, отношения которых не всегда имеют принимавшуюся до тех пор величину. Исходя из этого, Уленбек и Гоудсмит пришли к важной идее о существовании собственного вращения и собственного магнетизма электрона.
2. Гипотеза Уленбека и Гоудсмита
Уленбек и Гоудсмит в 1925 г. в работе, имеющей огромное значение, предложили считать, что электрон обладает не только электрическим зарядом, но также и магнитным и механическим моментами. Очень легко дать классическую модель такого магнитного вращающегося электрона: достаточно его себе представить в виде небольшого шарика, заполненного отрицательным электричеством и вращающегося вокруг одного из своих диаметров. Уленбек и Гоудсмит уточнили свою гипотезу, предположив, что отношение собственного магнитного момента электрона к его собственному моменту количества движения вдвое больше нормального классического значения. На мысль об этом их навели результаты гиромагнитных экспериментов. Кроме того, ее можно оправдать с помощью классической модели вращающейся электрической сферы, однако такое подтверждение из-за трудностей, возникающих в этой классической модели, с квантовой точки зрения нельзя считать очень убедительным. Тем не менее, как мы увидим, гипотеза Уленбека и Гоудсмита замечательно подтвердилась своими следствиями: элемент, отсутствующий во всех предыдущих теориях, был найден!
Какова же количественная сторона этой новой гипотезы? В квантовой теории атомные электроны в своих квантованных состояниях обладают орбитальным механическим моментом, величина которого всегда кратна постоянной Планка h, деленной на 2»пи», – это результат квантования. Они также обладают орбитальным магнитным моментом, величина которого кратна фундаментальной величине, носящей название магнетона Бора, играющей роль настоящего атома магнетизма и значение которой во всех современных общих теориях магнитных явлений весьма велико. Знаменитый эксперимент Штерна и Герлаха, позволивший измерить магнитный момент атома, совершенно определенно подтвердил реальное существование магнетона Бора. Частное от деления магнетона Бора на квантовую единицу момента количества движения h/2»пи» имеет постоянное значение, о котором мы уже неоднократно говорили, Уленбек и Гоудсмит приписали электрону собственный момент количества движения, равный половине квантовой единицы h/2»пи». Таким образом, отношение указанных двух моментов оказалось как раз равным удвоенной классической величине. Для описания собственного вращения электрона и соответствующего момента количества движения они ввели английское слово «спин», которое вскоре стало общепринятым.
К тому времени, когда эти два голландских физика выдвинули свою замечательную идею о введении спина электрона, новая механика находилась на заре своего развития. Поэтому вполне понятно, что эта новая гипотеза сначала могла развиваться только в рамках старой квантовой теории. Сначала Уленбек и Гоудсмит, а затем и другие физики, среди которых мы смогли бы назвать Томаса и Френкеля, обратились к теории тонкой структуры и эффекта Зеемана, введя в нее новые свойства, только что приписанные электрону. Результаты оказались вполне удовлетворительными и ясно показали, что мы находимся на правильном пути. Некоторые трудности, правда, еще оставались. Но было очевидно, что они являются результатом использования методов старой квантовой механики и должны исчезнуть, как только спин электрона будет введен в волновую механику. Это введение происходило не без некоторых трудностей, но в конце концов Дирак, вдохновленный важной работой Паули, добился успеха. Он ввел спин очень интересным путем, открывшим массу новых возможностей.
3. Теория Паули
Спин электрона представляет собой некоторый аналог того свойства фотона, которое называют поляризацией света. По существу он описывает определенную асимметрию электрона, не изотропность его свойств. Конечно, полной аналогии здесь нет, ибо спин имеет направление и знак, в то время как поляризация вследствие колебаний вектора электрического поля характеризуется только направлением. Тем не менее казалось вероятным, что если ввести спин в волновую механику, то мы должны исходить из схемы, в которой в дуалистической концепции света можно говорить о поляризации наряду с существованием фотона, ибо этот индуктивный метод представляет собой естественное продолжение рассуждений, приведших нас к теории волн, связанных с частицами, когда мы исходили из известной теории световых волн. Эти соображения, по-видимому, руководили Паули в его работе о спине.
Посмотрим теперь, как следует пытаться согласовать поляризацию света с существованием фотона. Рассмотрим пучок плоскополяризованного света, падающего на призму Николя, или просто николь. Согласно классическим представлениям волновой оптики при этом происходит следующее: николь разлагает падающую плоскополяризованную волну на две компоненты, поляризованные в двух перпендикулярных направлениях Dи D', которые определяются структурой кристалла. При этом D–компонента проходит через призму, а D'–компонента не проходит. Если николь повернуть на 90°, то можно считать, что оси Dи D'не изменились, однако теперь уже проходит лишь D'–компонента.
Таким образом, для любой пары осей Dи D', перпендикулярных направлению распространения и расположенных под прямым углом друг к другу, падающее колебание может быть разложено вдоль осей Dи D', и ориентированный должным образом николь отделит одну компоненту от другой. Точно такая же ситуация будет иметь место, если падающий свет не плоско поляризован, а имеет произвольную поляризацию. Таким образом, данный падающий свет может быть разложен на компоненты, поляризованные по двум взаимно перпендикулярным направлениям (нормальным к направлению распространения) бесконечным числом способов, ибо эти два направления могут быть бесконечным числом способов ориентированы в своей плоскости. Каждое из этих разложений позволяет с помощью николя разделить два поляризованных под прямым углом друг к другу пучка.
Теперь попытаемся истолковать это явление с точки зрения существования фотонов. Поток фотонов, связанных с волной известной поляризации, попадает в николь: часть фотонов проходит через кристалл и регистрируется на выходе прибора как волна, поляризованная в направлении D, другая же часть фотонов поглощается. Согласно волновой теории энергия прошедшего света измеряется квадратом амплитуды, интенсивностью D–компоненты падающего колебания, а энергия света, поглощенного призмой, измеряется интенсивностью перпендикулярной компоненты. Поэтому мы должны предположить, что количество падающих фотонов, поляризация которых после прохождения Николя направлена вдоль D, измеряется интенсивностью D–компоненты падающего светового колебания. Число же фотонов, поглощенных Николем, определяется интенсивностью перпендикулярной компоненты.
Однако можно предположить, что эксперимент проводится со светом очень слабой интенсивности: фотоны при этом падают на призму поочередно и, как в случае интерференции, мы должны заменить статистическую точку зрения вероятностной и сказать, что вероятность того, что падающий фотон, пройдя николь, окажется поляризованным в направлении D, измеряется интенсивностью D–компоненты падающего колебания. Мы можем еще сказать, что для каждой пары взаимно перпендикулярных осей Dи D'имеется две возможных поляризации фотона, и соответствующие вероятности этих двух возможностей определяются интенсивностями D– и D'–компонент падающего колебания. Таким образом, совершенно очевидно, что мы приходим к понятиям, аналогичным тем, которые были приняты для измерения механических величин. Николь можно рассматривать как устройство, позволяющее определять поляризацию падающего фотона, и если его состояние, определяемое соответствующей волной, известно, то мы, вообще говоря, не можем точно предсказать результат измерения, а можем только указать вероятность каждой из возможностей.
Поскольку имеется бесчисленное количество способов выбора осей Dи D', то существует бесконечно большое число возможных поляризаций, потенциально заключенных в начальном состоянии фотона, точно так же, как существуют различные значения энергии, потенциально содержащиеся в состоянии частицы, соответствующая волна которой не монохроматична. Конечно, в исключительных случаях можно точно предсказать результат воздействия николя на фотон: это будет тогда, когда начальное состояние является чистым состоянием в смысле направления поляризации, иными словами, когда падающая волна плоско поляризована вдоль Dи D'. Все это без труда переносится на случай, когда вместо плоского анализатора, подобного николю, используется круговой или эллиптический анализатор.
Следовательно, нельзя спросить о фотоне, связанном с какой-то световой волной: какова поляризация этого фотона?Этот вопрос не имеет смысла: на него не существует сколько-нибудь разумного ответа. Единственный вопрос, который можно задать, заключается в следующем: какова вероятность того, что эксперимент (проделанный с плоским анализатором) позволит нам приписать фотону поляризацию в данном направлении D(нормальном к направлению распространения)?Мы только что видели, как волновая теория дает нам ответ на этот вопрос, и этот ответ существенно опирается на возможность разложения волновой функции на две компоненты.
Паули, чтобы ввести спин электрона в волновую механику, считал необходимым точно так же приписать «КСИ»-волне две компоненты, не предполагая при этом, что эти две компоненты обязательно должны иметь смысл взаимно перпендикулярных компонент вектора, как в случае света. Точно так же, как нельзя говорить о плоской поляризации фотона, нельзя говорить и о направлении спина электрона. Можно лишь спросить о том, какова вероятность, что спин электрона имеет заданное направление.
Однако спин имеет направление и знак. Предполагалось также, что величина спина равна половине квантовой единицы момента количества движения, или h/4»пи». Поэтому Паули предположил, что для каждого направления D(которое не перпендикулярно направлению распространения, поскольку «КСИ»-волны не поперечны) спин может иметь два значения ±h/4»пи» «бета» зависимости от знака, который он имеет в данном направлении. Должна быть определенная вероятность обнаружить на опыте, что спин рассматриваемого электрона направлен вдоль Dи имеет величину +h/4»пи»; определенная вероятность, что эксперимент даст значение спина – h/4»пи» «бета» направлении D.
Паули по аналогии с поляризацией света предположил, что для каждого заданного направления Dволну можно разложить на две компоненты, интенсивности которых являются мерой вероятностей двух возможных величин ±h/4»пи» спина в направлении D. Конечно, если направление Dменяется, разложение «КСИ»-волны на две компоненты производится иным способом, точно так же, как для света разложение на две взаимно перпендикулярные компоненты производится различно в зависимости от того, какова система взаимно перпендикулярных осей. Паули выписал систему двух дифференциальных уравнений, которым должны удовлетворять две компоненты «КСИ»-волны для данного направления D. Он изучил также способ преобразования этой компоненты, когда направление Dменяется. При этом он заметил, что компоненты «КСИ»-волны преобразуются не как компоненты вектора. Перед нами первый пример применения в физике особого математического понятия. Действительно, «КСИ»-волна частицы со спином не попадает в общий класс тензоров, частным случаем которых, как известно, являются скаляры и векторы. Это математическое понятие совершенно нового типа впоследствии было хорошо изучено и получило название полу вектора, или спинора.
Мы не можем здесь подробно описывать формализм теории Паули, к тому же он не получил широкого применения, ибо вскоре был заменен теорией Дирака. Кроме того, теория Паули не релятивистская. Поэтому ее нельзя применить для предсказания тонкой структуры в смысле, указанном ранее Зоммерфельдом. Однако соображения Паули представляют огромнейший интерес. Они показывают, как можно ввести спин в волновую механику, рассмотрев вероятности двух возможных знаков спина для данного направления и введя вместо однокомпонентной «КСИ»-функции «КСИ»-функцию с несколькими компонентами. И Дираку в его блестящей работе удалось довести до конца эту первую черновую попытку.
4. Теория Дирака
Конечно, Дирак руководствовался идеями Паули, но у него был, кроме того, еще один руководящий принцип: создать вполне удовлетворительную релятивистскую волновую механику. Действительно, как мы видели, с самого начала развития волновой механики предполагалось, что релятивистская волновая механика должна базироваться на волновом уравнении второго порядка по времени. Дирак подверг это предположение тщательному изучению и пришел к заключению, что оно должно быть отвергнуто.
Главное возражение Дирака состояло именно в том, что уравнение распространения в релятивистской квантовой механике не может быть уравнением второго порядка по времени. Из такого уравнения в противоположность выводам нерелятивистской волновой механики следует, что если задано какое-либо начальное состояние, выраженное с помощью некоторой «КСИ»-волны, то закон сохранения полной вероятности не выполняется автоматически. Автоматическое же сохранение полной вероятности необходимо для того, чтобы могли соблюдаться общие принципы новой механики.
Дирак проследил эти соображения с железной логикой и пришел к выводу, что уравнение или уравнения релятивистской волновой механики должны обязательно быть уравнениями первого порядка по времени и что, следовательно, в силу релятивистской симметрии пространства и времени они равным образом должны быть уравнениями первого порядка по координатам пространства. Затем с помощью соображений, на которых мы не можем здесь останавливаться, он показал, что в релятивистской волновой механике волновая функция должна иметь четыре компоненты, которые подчиняются системе четырех уравнений в частных производных, которые в целом заменяют единственное уравнение распространения нерелятивистской волновой механики.
Наконец, Дирак исследовал вопрос о том, как преобразуются уравнения распространения и компоненты волновой функции при переходе от одной системы координат к другой. Он довольно красиво показал, что эти уравнения инвариантны относительно преобразования Лоренца. Это сразу сделало его теорию удовлетворительной с релятивистской точки зрения. Он нашел формулы преобразования для четырех компонент волновой функции, которые оказались не такими, как для пространственно временного четырехвектора, а относятся, как мы покажем, к новому типу спинорных преобразований, уже встречавшихся у Паули.
Поразительна именно эта особенность теории Дирака. Уравнения его теории, полученные только с помощью аргументов чисто релятивистской и квантовой природы, в которых нигде не появляется гипотеза о спине, сами по себе содержат все свойства магнитного вращающегося электрона. Действительно, согласно новым уравнениям распространения, электрон будет вести себя так, будто он обладает собственным магнитным моментом, равным магнетону Бора, и собственным механическим моментом, равным половине квантовой единицы момента. Появление спиновых свойств в уравнениях, полученных без привлечения гипотезы о спине, – один из замечательнейших результатов всей современной теоретической физики среди многих, которыми она богата.
Покажем теперь, как теория Дирака связана с теорией Паули. Все, касающееся спиновых свойств в теории Дирака, нужно привести к форме Паули. Иными словами, следует определить, какова вероятность того, что спин будет обладать той или иной из двух возможных величин в некотором направлении D. Чтобы ответить на этот вопрос, необходимо прежде всего выяснить, как разлагается «КСИ»-функция на четыре компоненты, если ось zнаправить вдоль D. Вероятность одной из величин +h/4»пи» «альфа»удет тогда выражаться суммой интенсивностей двух четных компонент (второй и четвертой), а вероятность величины – h/4»пи» – суммой интенсивностей нечетных компонент «КСИ»-функции (первой и третьей). Дальнейшее исследование решений уравнения Дирака показывает, что если скорость частицы мала по сравнению со скоростью света, то первыми двумя компонентами волновой функции можно пренебречь по сравнению с двумя последними. Иными словами, если можно пренебречь релятивистскими эффектами, то «КСИ»-функцию достаточно считать двухкомпонентной. При этом интенсивность одной компоненты определяет вероятность одного из возможных значений спина, а интенсивность второй – другого.
Таким образом, мы в точности приходим к теории Паули. Оказывается, последняя – просто нерелятивистское ньютоново приближение теории Дирака. В то же время становится понятным, почему вместо двух компонент в теории Паули «КСИ»-функция в теории Дирака имеет четыре компоненты: существование спина приводит к расщеплению «КСИ»-функции на две компоненты; релятивистские эффекты еще раз приводят к расщеплению каждой из этих двух компонент, причем это второе расщепление исчезает в ньютоновом приближении.
Между прочим заметим, что вся вероятностная интерпретация новой механики очень легко переносится в теорию Дирака ценой некоторого усложнения обозначений. Эта новая точка зрения оказывается здесь совершенно правильной. Прежде всего она позволяет понять проблему тонкой структуры и однозначно обосновать формулы Зоммерфельда, одновременно внося в них исправления.
Действительно, если с помощью уравнения Дирака снова проквантовать атом водорода, то оказывается, что благодаря появлению нового свойства – спина – возникают новые, доселе неизвестные квантовые числа. Они в точности совпадают с внутренними квантовыми числами, введенными эмпирически за несколько лет до этого при классификации спектральных термов, наблюдавшихся на опыте.
Полученная таким путем формула для тонкой структуры совпадает с формулой Зоммерфельда, в которой старые азимутальные квантовые числа заменены новыми квантовыми числами. В результате такой последовательной повсеместной замены достигается полное совпадение экспериментально наблюдаемых спектров с теоретическими. Аналогичные результаты получаются и для более тяжелых атомов, если, конечно, можно довести до конца все расчеты, введя некоторые упрощающие предположения. Таким образом, трудности, связанные с рентгеновскими дублетами, устраняются. Итак, важная идея Зоммерфельда о введении в квантовую теорию релятивистских понятий для объяснения тонкой структуры оказалась верной. Однако, чтобы получить вполне удовлетворительные результаты, понадобилось ввести также спин. Первый успех Зоммерфельда не случаен, однако в его теории отсутствовал еще один важный элемент: спин.
Теории Дирака удалось также полностью объяснить магнитные аномалии. При изучении эффекта Зеемана было обнаружено существование аномальных эффектов, которые вызвали большой интерес теоретиков того времени. Причину такого успеха легко понять. Чтобы добиться объяснения аномальных эффектов, нужно было приписать отношению магнитного момента атома к его механическому моменту значение, отличное от так называемого нормального. Это нормальное значение возникает из гипотезы, что магнитный момент атома – результат исключительно орбитального движения его электронов. Приписывая же электрону в соответствии с гипотезой Уленбека и Гоудсмита собственный магнитный момент, отношение которого к его собственному механическому моменту равно удвоенному по сравнению с нормальным значению, теории Дирака удалось выйти из рамок нормального эффекта Зеемана и предсказать аномальные эффекты. И это успех не только качественный, но и количественный. Действительно, расчеты позволяют подтвердить формулу Ланде и предсказать несколько эмпирически величину коэффициента, введенного им для описания аномальных эффектов.
В действительности очень красивая работа Дирака дала, таким образом, замечательные результаты. Она охватила весь комплекс спектроскопических и магнитных явлений, упорно не поддававшихся никаким попыткам объяснения, которые в конце концов с необходимостью привели к представлению о спине. Вызывает восхищение путь, которым было осуществлено объединение квантовой точки зрения с гипотезой Уленбека и Гоудсмита. Можно спросить, сколь далеко идет теория Дирака в применении и слиянии квантовых и релятивистских представлений, ибо первые требуют существенной дискретности, а вторые пронизаны представлением о непрерывности. Это трудный вопрос, который мы не хотели бы здесь обсуждать. Нам кажется, что слияние релятивистских и квантовых представлений осуществлено в теории Дирака не вполне удовлетворительно. Однако в целом здание этой теории восхитительно и представляет собой в настоящее время кульминационный пункт волновой механики электрона.
Не останавливаясь на изучении других приложений теории Дирака, например на проблеме рассеяния излучения веществом (формула Клейна – Нишины), мы хотели бы поговорить об одном странном следствии уравнений Дирака, которое на первый взгляд составляет слабый пункт теории, а на самом деле оказывается ее достижением.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.